
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Algorithm Design to Enhance Error Detection and

Correction in the ISBN

Waweru Kamaku

Abstract: The Conventional ISBN-13 has major limitations in Error detection and Correction capabilities with previous research

showing that these capabilities could also limit the number of codewords that the code generates. This paper discusses the algorithm

design of a new ISBN-16 code working modulo 17. The code is specifically designed to maximize the number of codewords and at the

same time enhance error detection and correction capabilities. It is further shown that the new code addresses the weaknesses in the

conventional ISBN-13 and can therefore replace it in identification of books universally.

Keywords: ISBN, Error Detection, Error Correction

1. Introduction

The International standard book number (ISBN-13) is a

unique number that identify all books. It is used as an

identifier for the book for identification of the title or

author (in libraries catalogues or in book’s search). Due to

the need for more codewords, the ISBN-13 was

implemented in 2007 as an upgrade to the ISBN-10 which

had historically been in use (Viklund, 2007; Eric, 2010).

Kamaku etal (2012) discussed the weaknesses of the ISBN-

10 and showed that it is not only limited in its dictionary

(number of codewords) but also had weaknesses in error

correction and detection capabilities. Kamaku etal (2012)

and Kamaku(2017) analyzed the ISBN-13 and discussed

showed that even if it improved on the dictionary compared

to ISBN-10, the new code is weaker and limited in error

detection and correction capabilities.

Communication channels always experience error related to

noise, electromagnetism and even human error which

means that communication can rarely guarantee an error

free channel. There is therefore a need to design an ISBN

code that does not only guarantee the dictionary needs but

also addresses the error detection correction capabilities.

This paper discusses the algorithm design for an ISBN-16

as an improvement on the ISBN-13.

ISBN-16 Algorithm Design

This section discusses the algorithm design for the ISBN-

16code aimed at improving the conventional ISBN-10,

ISBN-13 in error detection, error correction and overall

dictionary size. The newISBN-16code is made up of all

codewords;length sixteen (16) bit strings,consisting of any

of the numbers 0, 1, 2, …, 9, A, B, C, D, E, F, G where A,

B, C, D, E, F, G represent 10,11,12,13,14, 15and

16respectively. The choice of the letters is done to avoid

confusion that may occur when the two digit numbers

namely are used. For example, if one may confuse between

11 and 1,1.

Suppose a=a1a2a3… a15a16is a ISBN-16 codeword; it must

satisfy the condition

 𝑖𝑎𝑖 ≡ 0 (𝑚𝑜𝑑 17)16
𝑖=1 𝑓𝑜𝑟𝑖 = 1,2, … ,16 …Equation 1

Equation 1 is called a parity-check equation. All the

codewords in the code are in three blocks as :

𝑎1𝑎2 − 𝑎3𝑎4𝑎5𝑎6𝑎7𝑎8𝑎9𝑎10𝑎11𝑎12𝑎13 ⋯𝑎14𝑎15 − 𝑎16

Generation of an ISBN-16 Codeword

a) The first block of bit strings (made up of two bit strings)

is chosen randomly and represent the country where the

book was published. It is estimated that there are about

194-239 countries in the world. Since two bit strings

permute (out of 16 choices), there are 16
2
 = 256

possible permutations. This means that all the estimated

countries will be represented.

b) The second block of digits (made up of thirteen bit

strings) written in an increasing or decreasing order or

constant flow; it represents the number assigned to the

book by the publishing company. The flow depends on

the flow of the first block of bit strings.

c) The check bit strings is chosen such that Equation

1above is satisfied.

d) Repetition of numbers is allowed.

e) The digits do not have to follow one another

consecutively. That is, if you start with a 1 for an

increasing order then 2 is not necessarily the next digit;

it can be any of the other numbers including 1 itself

since repetition is allowed.

f) To change the order of flow of bit strings from

increasing to decreasing and vice versa is done by the

use of a zero (0). The new flow may start with zero or

any other digit. Zero (0) does not have to necessarily

change the order of flow it may be used as a part of the

codeword itself. That is, a zero may be used and the

order of flow does not change. Here the zero acts as a

neutral element. This means that the order of flow of

digits does not necessarily change once a zero is put. It

is at the discretion of the codeword developer to decide

if to change the order or not.

g) The check digit does not necessarily to obey the order

of flow of the bit strings. As seen earlier in Equation 1,

the check digit obeys the given condition. It is therefore

computed not chosen.

h) (ℤ∗
17,×, +) is a field.

Calculation of inverses in ISBN-16Code :

If a and b are elements in the field ℤ, a is said to be the

additive inverse of b (denoted by – b) if

b + a 0 (mod17) since 0 is the additive identity. The

following basic result hold.

a 1 2 3 4 5 6 7 8 9 A B C D E F G

-a G F E D C B A 9 8 7 6 5 4 3 2 1

Paper ID: ART20175207 DOI: 10.21275/ART20175207 314

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

If a and b are non zero elements in the fieldℤ, a is said to

be the multiplicative inverse of b (denoted by b
-1

) if 𝑎 × 𝑏

 1(mod17) since 1 is the multiplicative identity. The

following result hold.

a 1 2 3 4 5 6 7 8 9 A B C D E F G

a-1 1 9 6 D 7 3 5 F 2 C E A 4 B 8 G

The check digit in ISBN-16 Code

Let A= 𝑎1𝑎2𝑎3𝑎4 ⋯𝑎14𝑎15𝑎16be a codeword. To calculate

the check digit𝑎16 , evaluate

P = iai ≡ 0 (mod 17)15
i=1 for 𝑖 = 1, 2, … , 15. This yield

to 𝑃 + 16 𝑎16 ≡ 0 (𝑚𝑜𝑑17), thus

16 𝑎16 ≡ (−𝑃) (𝑚𝑜𝑑17).Hence𝑎16 ≡
16−1(−𝑃) (𝑚𝑜𝑑17)

Example 3.0.3.1

Find the check digit* in the codeword 111111111111111*

Solution: P = (1×1) + (2×1) + (3×1) + (4×1) + (5×1) +

(6×1) + (7×1) + (8×1) + (9×1)+(10×1) + (11×1) + (12×1) +

(13×1) + (14×1) + (15×1)= 120≡ 1 (mod17)

P + 16 a16≡0 (mod17) or simply 16 a16= (-P) (mod17). This

yield to

a16= 16
-1

(-1) (mod17) = 16×16 (mod17) =1(mod17). The

check digit is therefore 1 and the codeword is

1111111111111111.

Other examples of ISBN-16codewords include
0123456789

ABCDE3

ABCDE0EDCB

A0GGGF

8105678899

90000G

6890D74222

20111D

Error Detection in ISBN-16 Code

Let A= 𝑎1𝑎2𝑎3𝑎4 ⋯𝑎14𝑎15𝑎16be a codeword and suppose

an error(s) exist in the codeword.

To detect the error(s) the following steps are followed.

a) Count the number of bit strings in the codeword; they

must be 16. If not, an error(s) exists.

b) Check if the first block of bit strings indicates the

correct country where the book was published. If not

then we have error(s). Since the countries are many, it is

very tedious to keep checking to the respective code for

each country hence unless one is sure of the code this

step may be avoided. In this research, the first block of

bit strings shall always be assumed to be correct since

assignment of codes to each country has not been done.

c) Check the flow of the bit strings in the codeword. The

flow may be either increasing or decreasing or

constant.If any bit string(s) breaks the flow then we

have error(s).

d) Work out for Equation 1. Even if steps a, b and c are

correct, this step must be computed. It is the basis of the

parity check.

e) If the steps a b, c and d are correct, then the codeword is

a valid ISNB-16codeword. If any of the steps is not

correct, then error(s) exist.

Example 3.1.1

Consider the codeword 810567889290000G. In this

codeword the flow of bit strings is incorrect at tenth bit

string. By observation, only 9 can occupy this bit string

without breaking the order of flow. Replacing with 9 in this

position we find 810567889290000G. Working out the

parity check equation yields to

(1×8) + (2×1) + (3×0) + (4×5) + (5×6) + (6×7) + (7×8) +

(8×8) + (9×9) +(10×9) + (11×9) + (12×0) + (13×0) +

(14×0) + (15×0) + (16×16) ≡0 (mod 17). Hence

810567889990000G is the correct codeword.

Error Correction in ISBN-16 Code

To correct an error(s), it must first be detected. This means

that the bit string(s) in error have been identified and

(or)Equation 1is not met. This section deals with errors that

break the order of flow or errors involving the check digit.

Errors that do not break the order of flow are discussed in

chapter four later.

Errors Correction on first block of bit strings

If an error exists on the first block, that is, the first block of

bit strings differs from the country of publication (upon

assigning each country with a specific code), then to correct

the error correction is done as follows:

a) Identification of the correct country code where the

book was published is done.

b) Replacement of the faulty digit with the correct one is

done.

c) Identification of any other error(s) is done by through

the other error(s) detection steps listed in part 3.4 above.

Iferror(s) still exist, the bit string(s) in error is identified

and correction is done as follows.

Check digit’s Errors Correction

If the first block of bit strings digit and the order of flow of

digits are correct but Equation 1is not met then error exists

one the check digit (single error). To correct this:

a) 𝑖𝑎𝑖
15
𝑖=1 (mod 17) is worked out

b) a16is chosen such that 16a16 + 𝑖𝑎𝑖
15
𝑖=1 = 0 (mod17)

Example 3.2.2.1

Consider the codeword 5555566666777778. The order of

flow is correct. But 𝑖𝑎𝑖
16
𝑖=1 ≡14 (mod 17) hence the

codeword is in error. Working out the correct check digit as

given in part 3.0.3 above, a16 ≡16
-1

 (-P) (mod17). But P =

 iai ≡ 5 (mod 17)15
i=1 so

a16 ≡16
-1

 (-5) ≡ 16(12)≡ 5(mod17). The correct codeword

is thus 5555566666777778.

Single Error correction

A single error occurs mainly due to typing mistakes or due

to smudge. Suppose the order of flow is incorrect at one bit

string, then a single error is said to exist if upon correcting

the faulty bit string, the parity check equation holds,

otherwise multiple errors exist.

Once the error has been detected and error position noted as

in part 3.4 above, correction is done as follows.

a) The order of flow of bit strings (increasing, decreasing

or constant) just before and after the faulty bit string is

checked.

b) A number that obeys the order flow is chosen (they may

be many).

c) Work out Equation 1 for each of the numbers. Once a

correct one is found, replacement is done with the faulty

one.

Paper ID: ART20175207 DOI: 10.21275/ART20175207 315

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Example 3.2.3.1Consider the codeword

235AA053710GDBBC. We have an increasing flow of

digits up to the 5
th

 bit string, then at position six we have a

zero followed by a decreasing flow but at the 9
th

 position,

order of flow is broken (error exists).

The only digits that can obey the order of flow are 3, 2, 1

and 0.

Replacing 3 with the faulty digit yields

235AA053310GDBBC; working out the parity check

yields 𝑖𝑎𝑖
16
𝑖=1 ≡ 10 ≠ 0 (mod 17) hence

235AA053310GDBBC cannot be the correct bit

string.Replacing 2 with the faulty digit yields

235AA053210GDBBC; working out the parity check

yields 𝑖𝑎𝑖
16
𝑖=1 ≡ 0 (mod 17) hence

235AA053210GDBBC is the correct codeword.

Once the correct bit string is found, there is no need to

work out for other “possible” bit strings since inverses in

(ℤ∗
17,×, +) are unique, no two bit strings can be replaced

for one faulty position to satisfy Equation 1.

2. Double error correction

Double errors occur when two bit strings are in error. The

errors may be either on:

 Any two bit strings excluding the check digit.

This error is noticed easily since it simply occurs when any

two bit strings (excluding the check digits) break the order

of flow of digits. To correct these errors, the order of flow

on the preceding and consequent digits is established

(either increasing, decreasing or constant). A pair is chosen

to replace the faulty digits such that the flow of digits is

correct and the Equation 1 is obeyed.

Example 3.2.4.1.1

Consider the received codeword 810567184990000G

At position seven, the bit string 1 is between a bit string 7

and 8, breaking the order of flow leading to an error.

Similarly at position nine, the bit string 4 is between a bit

string 8 and 9, breaking the order of flow leading to an

error. At position seven only digits 0, 7 or 8 can occupy this

position without breaking the order of flow. At position

nine, only 0, 8 or 9 can occupy this position without

breaking the flow. Any pair that satisfies the parity check

equation yields the correct codeword. Replacing the

seventh and the ninth bit strings with 8 yields

810567889990000G which obeys the parity check equation

hence the sent correct codeword. This choice can easily be

done through trial and error though a simple computer

program can be designed. Due to uniqueness of the check

digit which comes as a result of unique inverses in ℤ17 , no

other pair can satisfy the equation.

 The check digit and any other bit string
This error occurs when one bit string and the check bit

string are in error. The bit string breaks the order of flow

and even when corrected, the Equation 1 is not obeyed. To

correct these errors, the order of flow for the preceding and

consequent digit is established (either increasing,

decreasing or constant). Replacement for the faulty bit

string is done and the check digit is chosen such that

Equation 1 is met. Since upon replacement, different digits

may obey the order of flow,the error correction may yield

many different but valid codewords. This simply means

that the original intended codeword must be among the

possible choices and to identify it, one may need to know

intended check digit on the sent codeword.

Example 3.2.4.2.1
Consider the received codeword 8105678895900005

At position ten, the bit string 5 is in between two 9’s hence

breaking the order of flow leading to an error. Only 0 or 9

can occupy this position without breaking the flow of

digits. But upon replacing them in the position, none of the

resultant codewords, 8105678890900005 or

8105678899900005, satisfy the Equation 1 hence the check

digit is also in error.

Considering 8105678890900005 and using the check digit

error correction method as in 3.5.2above,Bis the correct

check digit hence 810567889090000B is the correct

codeword.

Similarly considering 8105678899900005, G is the correct

check digit hence 810567889990000G is the correct

codeword.The codeword sent could therefore be any of the

two codewords. No other possible codeword could have

been the sent one since no other codeword can satisfy the

flow of digits.

3. Triple Error Correction

Triple errors occur when three bit strings are in error. Just

as in section 3.5.4 above on double errors, triple errors may

occur either on any three bit strings (they do not obey the

order of flow) or any two bitstring and the check bit string.

The error correction is similar as in 3.5.4 above. If the error

is on any three bit strings, a triple is chosen such that it

obeys the order of flow and satisfy’s the parity check

equation. If the error is on any two bit string and the check

bit string, a pair is chosen and check digit worked out such

that the order of flow is obeyed and the parity check

equation obeyed. Just as in 3.5.4.2 above, for errors

involving the check digit, different digits may obey the

order of flow. The error correction may yield many

different but valid codewords. This simply means that the

original intended codeword must be among the possible

choices and to identify it, one may need to know intended

check digit on the sent codeword.

Example 3.2.5.1 Consider the received codeword

5515566966772775

Bit string 1 at position three breaks the order of flow since

from position one to seven we have an increasing flow.

Similarly bit string 9 and 2 at positions eight and thirteen

respectively break the order of flow. The possible bit

strings that can fill these faulty (third, eighth and thirteenth)

positions without breaking the order of flow are:

 Position Three Position Eight Position Thirteen

Case 1 0 0 0

Case 2 0 6 0

Paper ID: ART20175207 DOI: 10.21275/ART20175207 316

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Case 3 0 0 7

Case 4 0 6 7

Case 5 5 6 7

Case 6 5 0 0

Case 7 5 6 0

Case 8 5 0 7

Considering the non faulty positions in the codeword 55-

_5566_6677_775, and taking the sum

 𝑖𝑎𝑖(𝑚𝑜𝑑 17)16
𝑖=1 , 𝑖 ≠ 3, 𝑖 ≠ 8 𝑎𝑛𝑑𝑖 ≠ 13yields

(5× 1) +(5× 2) + 5 × 4 +(5× 5)+(6× 6)+(6× 7)+(6× 9)+

(6× 10) + (7× 11)+(7×12)+(7× 14)+(7× 15) + (5× 16)

≡16(mod 17). To get the correct codeword, the

sum 𝑖𝑎𝑖 ≡ 0(𝑚𝑜𝑑 17)16
𝑖=1 as in Equation 1 so the faulty

digits should yield 1(mod17) so that the sum

16 +1 ≡0(mod17).

Working out case by case yields the following

Case 1: (0 × 3) + (0× 8) + (0× 13) ≡0(mod17) thus

incorrect

Case 2: (0 × 3) + (6× 8) + (0× 13) ≡14(mod17) thus

incorrect

Case 3: (0 × 3) + (0× 8) + (7× 13) ≡6(mod17) thus

incorrect

Case 4: (0 × 3) + (6× 8) + (7× 13) ≡3(mod17) thus

incorrect

Case 5: (5 × 3) + (6× 8) + (7× 13) ≡1(mod17) thus

correct

Case 6: (5 × 3) + (0× 8) + (0× 13) ≡15(mod17) thus

incorrect

Case 7: (5 × 3) + (6× 8) + (0× 13) ≡12(mod17) thus

incorrect

Case 8: (5 × 3) + (0× 8) + (7× 13) ≡4(mod17) thus

incorrect

The correct codeword is 5555566666777775

Each of the above cases would yield to a valid codeword if

one would work out their check digits separately.

Other Multiple Errors Correction

Errors occurring on more than 3 bit strings can also be

corrected. After detecting the faulty digits positions,

replacement is done on these positions such that the order

of flow and the parity equation are obeyed.

Example 3.2.6.1 Consider the received codeword

117118116117111

Considering the order of flow of bit strings, the third, sixth,

ninth and twelfths bit strings are in error since each of them

is in between two 1’s breaking the order of flow.

 Position

Three

Position

Six

Position

Nine

Position

Twelve
Case 1 0 0 0 0

Case 2 0 0 0 1

Case 3 0 0 1 0

Case 4 0 1 0 0

Case 5 1 0 0 0

Case 6 0 0 1 1

Case 7 0 1 0 1

Case 8 0 1 1 0

Case 9 1 0 0 1

Case 10 1 0 1 0

Case 11 1 1 0 0

Case 12 0 1 1 1

Case 13 1 0 1 1

Case 14 1 1 0 1

Case 15 1 1 1 0

Case 16 1 1 1 1

These sixteen cases will yield to a valid codeword if one

would work out their check digits separately. For this

example, the check digit is 1; working out yields

 𝑖𝑎𝑖(𝑚𝑜𝑑 17)16
𝑖=1 , 𝑖 ≠ 3, 𝑖 ≠ 6, 𝑖 ≠ 9 𝑎𝑛𝑑𝑖 ≠ 12 yield

4(mod17). Working out case by case yields case 16 as the

correct one since (1 × 3) + (1× 6) + (1× 9) + (1× 12)

≡13(mod17). But 13 + 4 ≡ 0(mod17) hence correct. The

correct codeword is thus 1111111111111111.

4. Conclusion

This paper discussed the algorithm design for new ISBN-16

and analyzed its error detection and correction

capabilities.It is shown that the new code by far surpasses

the conventional ISBN-13 in both dictionary and error

detection and correction.

References

[1] Kamaku, P. W., Kivunge, B., & Wangeci, C. (2012).

ON SOME PROPERTIES AND LIMITATIONS IN

THE ISBN-13 CODE. International Electronic Journal

of Pure and Applied Mathematics – IEJPAM ,4(3), 159–

165.

[2] Kamaku, W. (2017). On the Weaknesses in Error

Detection and Correction in the ISBN-13, 6(6), 2093–

2096. http://doi.org/10.21275/ART20174839

[3] Kamaku, W., Mwathi, C., & Kivunge, B. (2012).

LIMITATIONS IN THE CONVECTIONAL ISBN-10

CODE. American International Journal of Contemorary

Research, 2(2), 150–152.

Paper ID: ART20175207 DOI: 10.21275/ART20175207 317

