Fuzzy Fixed Point Theorems for Fuzzy Mappings Viafuzzy β-Admissible

Buthainah A. A. Ahmed¹, Manar Falih Dheyab²

Department of Mathematics, College of Science, University of Baghdad, Iraq

Abstract: The aim of this paper is introduced the notion of $fuzzy \beta$ -admissible, fuzzy β -Jaggi contractive and study some results of fuzzy fixed point for fuzzy mapping via $fuzzy \beta$ -admissible in Hilbert spaces.

Keywords: fuzzy mapping, fuzzy fixed point, β – admissible mapping and Hilbert space

1. Introduction

The concept of fuzzy set was introduce by L.Zadeh [3]in 1965. After that a lot of work has been done regarding fuzzy set and fuzzy mappings. The concept of fuzzy mapping was first introduced by Heilpern [4]. In 2001, Estruch and Vidal [5] proved a fuzzy fixed point theorem for fuzzy contractive mappings. On the other hand, the concept of an β -admissible mapping was introduced by Samet et al. [2]. Recently, Mohammadi et al. [1] introduced the concept of β -admissible for multivalued mappings . In this paper, introduced fuzzy β -admissible mapping, fuzzy β -Jaggi contractive mappingand study some results of fuzzy fixed point theorems for fuzzy mapping via fuzzy fixed point theorems for fuzzy mapping via fuzzy admissible in Hilbert space.

2. Preliminaries

In this section, we recall some basic definitions and preliminaries that will be needed in this paper.

Definition 2.1[3]: Let H be a Hilbert space and F(H) be a collection of all fuzzy sets in H. Let $A \in F(H)$ and $\alpha \in [0, 1]$ the α – level set of A, denoted by A_{α} is defined by

$$A_{\alpha} = \frac{\{x : A(x) \ge \alpha\}}{A_0 = \{x : A(x) > \alpha\}} \text{ if } \alpha \in [0, 1]$$

Where \overline{B} denotes the closure of a set B.

Definition 2.2[4]: A fuzzy set A is said to be an approximate quantity if and only if A_{α} is compact and convex for each $\alpha \in [0,1]$, and $\sup_{x \in X} A(x) = 1$. When A is an approximate quantity and $A(x_0)=1$ for some $x_0 \in H$, A is identified with an approximate of x_0 .

The collection of all fuzzy sets in H is denoted by F(H) and W(H) is the sub collection of all approximate quantities.

Definition 2.3[4]: Let A, B
$$\in$$
 W(H) and $\alpha \in [0,1]$. Then

1) $P_{\alpha}(A,B) = \inf_{x \in A_{\alpha}, y \in B_{\alpha}} ||x - y||$

2) $D_{\alpha}(A,B) = dis(A_{\alpha}, B_{\alpha})$, where "dis" is the Hausdorff distance

3) $D(A, B) = sup_{\alpha}D_{\alpha}(A,B)$

4) $P(A, B) = \sup_{\alpha} P_{\alpha}(A, B).$

It is to be noted that for any ' α ', P_α is a non decreasing as well as continuous function.

Definition 2.4[3]. Let A, $B \in W(H)$. An approximate quantity A is said to be more accurate than B (denoted by $A \subset B$) if and only if $A(x) \leq B(x)$, $\forall x \in H$.

Definition 2.5[4]:A mapping T from the set H into W(H) is said to be fuzzy mapping.

Definition 2.6[4]:The point $x \in H$ is called fixed point for the fuzzy mapping T if $\{x\} \subset Tx$. If $x_{\alpha} \subset Tx$ is called fuzzy fixed point of T. We shall use the following lemmas due to Helipern.

Lemma 2.7[4]: $P_{\alpha}(x,B) \le ||x - y|| + P_{\alpha}(y,B), \forall x, y \in H.$

Lemma 2.8[4]:If $\{x_0\} \subset A$, then $P_{\alpha}(x_0,B) \leq D_{\alpha}(A,B), \forall B \in W(H).$

Lemma 2.9[4]:Let $A \in W(H)$ and $x_0 \in H$, if $\{x_0\} \subset A$ then $P\alpha(x0, A) = 0$, for each $\alpha \in 0, 1$.

Lemma 2.10[4]: Let H be a Hilbert space and T fuzzy mapping from H into W(H) and $x_0 \in H$, then there exist $x_1 \in H$ such that $\{x_1\} \subset Tx_0$.

3. Fuzzy Fixed Point Theorem

In this section, we introduce the concept of fuzzy β – admissible for fuzzy mapping and some results of fuzzy fixed point theorems.

Definition 3.1[2]: Let H be a Hilbert space $\beta: H \times H \rightarrow [0, \infty), \alpha \in [0, 1]$ and T:H \rightarrow W(H). A mapping T is said to be fuzzy β – admissible if for each $x \in H$ and $y \in [Tx]_{\alpha}$, with $\beta(x, y) \ge 1$, we have $\beta(y, z) \ge 1$ for all $z \in [Ty]_{\alpha}$.

Definition 3.2:Let H be a Hilbert space $\beta: H \times H \rightarrow [0, \infty), \alpha \in [0, 1]$ and T: $H \rightarrow W(H)$. A mapping T is said to be fuzzy β^* – admissible if for each $x, y \in H$ with $\beta(x, y) \ge 1$, we have $\beta([Tx]_{\alpha}, [Ty]_{\alpha}) \ge 1$

Where $\beta([Tx]_{\alpha}, [Ty]_{\alpha}) = \inf\{\beta(a, b) : a \in [Tx]_{\alpha} \text{ and } b \in Ty\alpha.$

 $\begin{array}{cccc} \textbf{Remark} & \textbf{3.3:} & \text{If} & T & \text{is} & \text{fuzzy} \\ \beta^* - \text{admissible, then Tis also fuzzy } \beta - \\ \text{admissible mapping} \,. \end{array}$

Volume 6 Issue 7, July 2017 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

=

Definition 3.4: Let H be a Hilbert space, $\beta: H \times H \rightarrow [0, \infty)$. A fuzzy mapping T:H \rightarrow W(H) is called fuzzy β – Jaggi contractive, if there exists two function $\beta: H \times H \rightarrow$ $[0,\infty)$ and $\Psi: [0,\infty) \to [0,\infty)$, where Ψ is non-decreasing $\sum_{n=1}^{\infty} \Psi^{n}(t) < \infty$, for each t > 0 and Ψ^{n} is n - 1and th iteration of Ψ such that $\beta(x, y)D^2(Tx, Ty) \leq$ $\Psi(M(x,y)) + LN(x,y), \forall x , y \in H$, where $L \ge 0, \alpha \in$ $[0,1], \beta > 0$,

 $M(x,y) = \frac{\alpha P_{\alpha}^{2}(x,Tx) \cdot P_{\alpha}^{2}(y,Ty)}{\|x-y\|^{2}} + \beta \|x-y\|^{2} - \alpha P_{\alpha}^{2}(x,Tx)$ And N(x,y)

 $min \big\{ P_{\alpha}^2(x\text{ , }Tx)\text{ , }P_{\alpha}^2(y\text{ , }Ty)\text{ , }P_{\alpha}^2(x\text{ , }Ty)\text{ , }P_{\alpha}^2(y\text{ , }Tx) \big\}.$

Theorem 3.4: Let H be a Hilbert space and T be a fuzzy β -Jaggi contractive mapping satisfies the following conditions: 1) T is fuzzy β – admissible

2) There exists $x_0 \in H$ and $x_1 \in [T x_0]_{\alpha}$ such that $\beta(x_0, x_1) \geq 1$

3) If { x_n } is a sequence in H such that $\beta(x_n, x_{n+1}) \ge 1$ and $x_n \to u$ as $n \to \infty$, then $\beta(x_n, u) \ge 1$

4) Ψ is continuous

Then, there exists $x \in H$ such that x_{α} is a fuzzy fixed point of T.

Proof: Let $x_0 \in H$ and $x_1 \in [T x_0]_{\alpha}$ by condition (2) $(x_0, x_1) \ge 1$.

Since $[T x_1]_{\alpha}$ is non-empty compact subset of H , there exists $x_2 \in [T x_1]_{\alpha}$, such that $||x_1 - x_2||^2 = P_{\alpha}^2(x_1, T x_1) \le$ $D^{2}(T x_{0}, T x_{1})$

So $||x_1 - x_2||^2 \le D^2(Tx_0, Tx_1)$

Since $(x_0, x_1) \ge 1$, then $||x_1 - x_2||^2 \le D^2(T x_0, T x_1)$ $\leq \, \beta \, (x_0 \, , x_1) \, D^2 (T \, x_0 \, , T \, x_1) \leq \, \Psi \big(M(\, x_0 , \, x_1) \big) \, + \,$

Lmin{ $P_{\alpha}^{2}(x_{0}, T x_{0}), P_{\alpha}^{2}(x_{1}, T x_{1}), P_{\alpha}^{2}(x_{0}, T x_{1}), P_{\alpha}^{2}(x_{1}, T x_{0})$ } $\leq \Psi(M(x_0, x_1))$

+ Lmin{
$$P_{\alpha}^{2}(x_{0}, x_{1}), P_{\alpha}^{2}(x_{1}, x_{2}), P_{\alpha}^{2}(x_{0}, x_{2}), P_{\alpha}^{2}(x_{1}, x_{1})$$
}
 $||x_{1} - x_{2}||^{2} \le \Psi(M(x_{0}, x_{1})).$

By the same argument, for $x_2 \in H$ we have $[T x_2]_{\alpha}$ which is non-empty compact subset of H and there exists $x_3 \in$ $[T x_2]_{\alpha}$, such that

$$\begin{split} \|x_2 - x_3\|^2 = & P_{\alpha}^2(x_2, T x_2) \le D^2(T x_1, T x_2) \\ \text{For } x_0 \in H \text{ and } x_1 \in [T x_0]_{\alpha} \text{with } (x_0, x_1) \ge 1 \text{ , by} \end{split}$$
definition of fuzzy β – admissible, we get $\beta(x_1, x_2) \ge 1$, then

$$\begin{aligned} \|x_2 - x_3\|^2 &\leq D^2(T x_1, T x_2) \leq \beta(x_1, x_2) D^2(T x_1, T x_2) \\ &\leq \Psi(M(x_1, x_2)) \end{aligned}$$

+ Lmin{
$$P_{\alpha}^{2}(x_{1}, T x_{1}), P_{\alpha}^{2}(x_{2}, T x_{2}), P_{\alpha}^{2}(x_{1}, T x_{2}), P_{\alpha}^{2}(x_{2}, T x_{1})$$
}
 $\leq \Psi(M(x_{1}, x_{2}))$

+ Lmin{
$$P_{\alpha}^{2}(x_{1}, x_{2}), P_{\alpha}^{2}(x_{2}, x_{3}), P_{\alpha}^{2}(x_{1}, x_{3}), P_{\alpha}^{2}(x_{2}, x_{2})$$
}
 $||x_{2} - x_{3}||^{2} \le \Psi(M(x_{1}, x_{2})).$

By induction, we can construct a sequence $\{x_n\}$ in H such that , for each $n\in N$, $\ x_n\in [T\ x_n]_\alpha$ with $\beta\left(x_{n-1}\ ,x_n\right)\,\geq\,1$ and

$$\begin{split} \| x_{n} - x_{n+1} \|^{2} &\leq \Psi \big(\mathsf{M}(x_{n-1}, x_{n}) \big) \,. \\ \mathsf{M}(x_{n-1}, x_{n}) &= \frac{\alpha P_{\alpha}^{2}(x_{n-1}, T x_{n-1}) \cdot P_{\alpha}^{2}(x_{n}, T x_{n})}{\|x_{n-1} - x_{n}\|^{2}} \,+ \\ \beta \| x_{n-1} - x_{n} \|^{2} - \alpha P_{\alpha}^{2}(x_{n-1}, T x_{n-1}) &\leq \\ \alpha \| x_{n-1} - x_{n} \|^{2} + \beta \| x_{n-1} - x_{n} \|^{2} \\ &\leq \alpha \| x_{n+1} - x_{n} \|^{2} + \beta \| x_{n-1} - x_{n} \|^{2} - \alpha \| x_{n+1} - x_{n} \|^{2} \\ M(x_{n-1}, x_{n}) &\leq \beta \| x_{n-1} - x_{n} \|^{2} \end{split}$$

We have
$$||x_n - x_{n+1}||^2 \le \Psi(\beta ||x_{n-1} - x_n||^2)$$

 $\leq \Psi(\Psi(\beta \| x_{n-2} - x_{n-1} \|^2))$ $\dots \leq \Psi^n(\beta \| x_0$ x12.

Next, we will show that $\{x_n\}$ is a Cauchy sequence in H. Since continuous function Ψ , there exists $\epsilon > 0$ and positive integer h=h(ϵ)such that $\sum_{n \ge h} \Psi^n(\beta \| x_0 - x_1 \|^2) < \epsilon$.

Let m > n > h. Using the triangular inequality, previous relation, we have $\|x_n - x_m\|^2 \le \sum_{k=n}^{m-1} \beta \|x_k - x_{k+1}\|^2 \le$ $n \ge h \Psi n \beta x_0 - x_{12} < \epsilon$.

This implies that $\{x_n\}$ is a Cauchy sequence in H. By completeness of H, there exists $x \in H$ such that $x_n \rightarrow$ x as $n \to \infty$.

Finally, we show that $P_{\alpha}^{2}(x, Tx) = 0$. By condition (3), we have $\beta(x_n, x) \ge 1$, for all $n \in N$

Now we have
$$P_{\alpha}^{2}(x, Tx) \le ||x_{n+1} - x_{n}||^{2} + P_{\alpha}^{2}(x_{n+1}, Tx)$$

 $\le ||x_{n+1} - x_{n}||^{2} + D_{\alpha}^{2}(Tx_{n}, Tx)$

$$\begin{split} & \leq \| \, x_{n+1} - \, x_n \|^2 \\ & + \, \beta \, (x_n, x) \, D^2_\alpha(Tx_n \, , Tx) \\ & \leq \| \, x_{n+1} - \, x_n \|^2 + \Psi \! \left(\! \frac{\alpha P^2_\alpha(\, x_n \, , T \, x_n). \, P^2_\alpha(x \, , Tx)}{\| \, x_n - x \|^2} \\ & + \, \beta \| \, x_n - x \|^2 - \alpha P^2_\alpha(\, x_n \, , T \, x_n) \right) \end{split}$$

+Lmin{ $P_{\alpha}^{2}(x_{n}, Tx_{n}), P_{\alpha}^{2}(x, Tx), P_{\alpha}^{2}(x_{n}, Tx), P_{\alpha}^{2}(x, Tx_{n})$ }

$$\leq \|x_{n+1} - x_n\|^2 + \Psi \left(\frac{\alpha \|x_{n+1} - x_n\|^2 \cdot P_{\alpha}^2(x, Tx)}{\|x_n - x\|^2} + \beta \|x_n - x\|^2 - \alpha \|x_{n+1} - x_n\|^2 \right)$$

 $+Lmin\{|| x_{n+1}|$

$$- x_n \parallel^2$$
, $P_{\alpha}^2(x, Tx)$, $P_{\alpha}^2(x_n, Tx)$, $P_{\alpha}^2(x, Tx_n)$ }
ag $n \rightarrow \infty$, it folloes that

Lettin $P_{\alpha}^{2}(x, Tx) \leq \Psi(0) = 0 \rightarrow P_{\alpha}^{2}(x, Tx) = 0.$

Hence by lemma 2.8 $x_{\alpha} \subset Tx$. This complete the proof.

Theorem 3.5: Let H be a Hilbert space and T be a fuzzy β -Jaggi contractive mapping satisfies the following conditions: 1) T is fuzzy β^* – admissible

- 2) There exists $x_0 \in H$ and $x_1 \in [T x_0]_{\alpha}$ such that $\beta(\mathbf{x}_0, \mathbf{x}_1) \geq 1$
- 3) If $\{x_n\}$ is a sequence in H such that $\beta(x_n, x_{n+1}) \ge 1$ and $x_n \rightarrow u$ as $n \rightarrow \infty$, then $\beta(x_n, u) \ge 1$
- 4) Ψ is continuous
- Then, there exists $x \in H$ such that x_{α} is a fuzzy fixed point of T.

Proof: Trivial

In Theorem 3.4 and 3.5, we take $\Psi(t) = \theta t$, where $\theta \in$ (0,1), then we have the following corollary which is a fuzzy extension of fixed point theorem .

Corollary 3.6:Let H be a Hilbert space and T be a fuzzy mapping. Suppose that there exists $\beta: H \times H \rightarrow [0, \infty)$ such that $\beta(x, y)D^2(Tx, Ty) \le \theta(M(x, y)) + LN(x, y), \forall x, y \in H$, where $L \ge 0, \alpha \in [0,1]$, $\beta > 0$,

$$M(x,y) = \frac{\alpha P_{\alpha}^{x}(x,1x) \cdot P_{\alpha}^{x}(y,1y)}{\|x-y\|^{2}} + \beta \|x-y\|^{2} - \alpha P_{\alpha}^{2}(x,Tx)$$

Volume 6 Issue 7, July 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

And N(x,y)min{ $P_{\alpha}^{2}(x, Tx), P_{\alpha}^{2}(y, Ty), P_{\alpha}^{2}(x, Ty), P_{\alpha}^{2}(y, Tx)$ }.

Satisfies the following conditions:

- 1) T is fuzzy β admissible(or fuzzy β^* admissible)
- 2) There exists $x_0 \in H$ and $x_1 \in [T x_0]_{\alpha}$ such that $\beta(x_0, x_1) \ge 1$
- 3) If $\{x_n\}$ is a sequence in H such that $\beta(x_n, x_{n+1}) \ge 1$ and $x_n \to u$ as $n \to \infty$, then $\beta(x_n, u) \ge 1$

Then, there exists $x \in H$ such that x_α is a fuzzy fixed point of T .

Proof: Trivial

References

- B.Mohammadi,S.Rezapour,N.Shahzad"Some results on fixed points of α-Ψ Ciric generalized multifunctions fixed point theory, Appl.24(2013)
- [2] Samet, B, Vetro, C, Vetro, P: Fixed point theorems for αψ-contractive type mappings. Nonlinear Anal. 75, 2154-2165 (2012)
- [3] L.A.zadeh , probability measures of fuzzy events, J.Math.Anal.Appl.23(1968),421-427
- [4] S.Heilpern, Fuzzy mappings and fixed point theorem, J.Math. Anal.83(1981), 566-569.
- [5] Estruch, VD, Vidal,A, "A note on fixed fuzzy points for fuzzy mappings",Rend. Ist. Mat. Univ. Trieste.32,39-45(2001).