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Abstract: Moments of the squares of simple bilinear process were determined under second order analysis for the purpose of 

identification and discriminating between bilinear process and linear white noise process. We showed how the variance of the bilinear 

white noise process can be used to distinguish it from the linear white noise process. The simulation results showed that the squared 

data of the bilinear white noise series fitted the ARMA(2, 1) model better than ARMA(1, 1) and MA(1)) models respectively. 
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1. Introduction 
 

Over the years, much attention has been given to the issue of 

identification of the simple bilinear white noise process. 

Many works have been published on ways to discriminate 

between linear and bilinear time series models (see Granger 

and Andersen, 1978; Subba Rao, 1981; Pham and Tran, 

1981; Hannan, 1982; Akamanam, 1983; Subba Rao and 

Gabr, 1984; Akamanam et al., 1986; de Gooijer and Heuts, 

1987; Iwueze, 1988; Iwueze, 1989; Sesay and Subba Rao, 

1991; Subba Rao and da Silva, 1992; Martins, 1999; 

Goncalves et al., 2005; Omekara, 2008; Iwueze and 

Johnson, 2011). Granger and Andersen (1978) suggests that 

one way to distinguish between linear and non linear time 

series models is to do a second order analysis on the squares 

of the series. Some authors, including Granger and Andersen 

(1978), have shown that for a time series Xt that is normally 

distributed (and therefore linear), 
22 )]([)( tktk XX                   (1.1)  

where k  is the lag k autocorrelation.  

 

A white noise process ),0(~,, 2 NZtX ttt   is 

essentially, a time series. It is an independent and identically 

distributed (iid) random sequence usually assumed to be 

Gaussian distributed with zero mean and variance 2 . 

According to Granger and Andersen (1978) the bilinear 

white noise process is a bilinear stochastic model formed by 

adding a bilinear form to linear ARMA model as shown in 

(1.2) below:  
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where,  t, t  Z = (….., -1, 0, 1, …..) is a sequence of 

independent and identically distributed random variables 

with E( t) = 0; E ( t
2
) = 

2 
< ; and 1, 2, ……, p,  1, 

2, .…, q,  ij ,  

1  i  r, 1  j  s are real constants.   

 

In this paper, we considered higher order moments of the 

bilinear white noise process and how the variance of the 

powers of the process can be used to distinguish between the 

linear and simple bilinear white noise process. 

 

2. Moments of the Simple Bilinear White Noise 

Process (SBWNP) 
 

Consider the bilinear white noise process  

   2

12231 ,0~,  NXXX tttttt                                                  

(2.1) 

where, 1   and 2  are real constants and {t }, t  Z is a 

sequence of independent and identically distributed random 

variables with zero mean and variance, 
2
 > 0. 

 

Assuming normality of t, t  Z, we define the nth central 

moment of the process as 
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Then, the even moments are E(t
2
) = 

2
, E(t

4
) = 3

4
, E(t
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= 15
6
, E(t

8
) = 105

8
,  

E(t
10

) = 945
10  

, etc. For the bilinear white noise model 

(2.1), with t ~ N(0, 
2
) it can be easily shown that, 
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Since Xt and et are assumed to be stationary and E( Xt ) = 

E(et) = 0,  
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By the assumption of stationarity, 
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 (2.6) 
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This is a white noise structure. 

 

2.1 Mean and Variance of the Squares of the Simple 

Bilinear Model 

 

We have shown that the simple bilinear white noise process 

has the covariance structure of a linear white noise process, 

what is left is to determine the mean and variance of the 

squares of the simple bilinear model (1.2). We assumed that 

et ~ N(0, 
2
), E(et) = 0 and E(et

2
) = 

2 
< . We also assumed 

that the process, {Yt} is stationary.  

 

Let, 
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We have shown in section 1 above that  
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Since the process is assumed to be stationary, and E(Xt
3
) = 

E(Xt) = E(et) = 0 then, 
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3. Method of Identification of the Bilinear 

White Noise Process 
 

Simulation studies were performed to illustrate how the 

variance of the bilinear white noise can be used to 

distinguish it from the linear white noise process. 

Realization of {Xt}, and {Yt = Xt
2
}, of length 100 

respectively were constructed considering {t} as a sequence 

of i.i.d. symmetrically distributed random variable with zero 

mean and, t ~ N(0, 1). The experiment was repeated 100 

times using values of  in the interval -0.7 ≤  ≤ 0.7 where, 

  is assumed to be ( 1  
+ 2). For simplicity, 1  was 

assigned the value zero. The values of  were chosen to 

satisfy the stationary condition for model (2.10) i.e, 

3
1)( 4

2

44

1

4     or 
3

144  . The Chi-

square test for variance (Snedecor and Cochran, 1989) was 

used to test the hypothesis: 
22
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The decision rule was to reject the null hypothesis (H0) at 

level %5  if 
2

cal is less than α/2 quartile or larger than 

2/1   quartile of the Chi-square distribution with 1n   

degrees of freedom (that is, reject H0 if 
2

)1(,2/

2

 ncal  or if 
2

)1(,2/1

2

 ncal  ).  

In section 2, we stated that 
22 )(  tE  so, if ttX   

then, it can be easily shown that  
42 2)( tXVar . 

 

 

3.1  Fitting MA (1), ARMA (1, 1) and ARMA (2, 1) 

Models 

 

To fit the above mentioned models, we let 01   thus 

reducing Model 2.1 to 

 2

122 ,0~,  NXX ttttt   (3.1) 

 

Model (3.1) is the simple bilinear white noise process 

(SBWNP). Iwueze (1988) asserts that the covariance 

structure of the square of the simple bilinear white noise 

process is the same as that of linear ARMA (2,1). To 

confirm this assertion, we simulated the simple bilinear 

white noise process 

 2

12 ,0~,7.0  NXX ttttt   (3.2) 

and fitted the simulated data, using various ARMA Models 

and compared the results to identify the suitable ARMA(p, 

q) Model as alternative for SBWNP. 

 

4. Results  
 

The results of the test to discriminate between the linear and 

bilinear white noise processes are shown in Table 1.0 below. 

However, results for only one of the series are given here for 

illustration for want of space. From Table 1.0, it is shown 

that the null hypothesis, Ho was not rejected for values of  

in the interval -0.3 ≤  ≤ 0.5 thus, implying that the bilinear 

white noise process is identified as linear white noise for 

these values of  otherwise, the process is bilinear white 

noise.  
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4.1 Test for the Identification of the SBWNP Parameters 

 

Table 1: Result of Test for the identification of the bilinear White Noise Process 
Value of Bilinear 

coefficient 

True value of 

variance 

Estimated values of 

Variance 

Estimate of test 

statistic 

Decision at 5% 

L.O.S 

  
2  

22ˆ
tXS  

22
2ˆ
tX

S  

 2

0

2

ˆ2

)1( 2



S
tX

n
 

 

-0.7 1.0000 1.4887 4.2164 42.4931 Reject 

-0.6 1.0000 1.3236 2.9623 47.7757 Reject 

-0.5 1.0000 1.1984 2.2520 54.0464 Reject 

-0.4 1.0000 1.1077 1.9183 63.0715 Reject 

-0.3 1.0000 1.0466 1.8014 74.3177 Do not Reject 

-0.2 1.0000 1.0106 1.7980 85.3253 Do not Reject 

-0.1 1.0000 0.9958 1.8602 93.6432 Do not Reject 

0.1 1.0000 1.0230 2.1574 97.5064 Do not Reject 

0.2 1.0000 1.0668 2.4438 93.3983 Do not Reject 

0.3 1.0000 1.1363 2.9183 86.6489 Do not Reject 

0.4 1.0000 1.2402 3.7498 78.4597 Do not Reject 

0.5 1.0000 1.3928 5.2801 69.4532 Do not Reject 

0.6 1.0000 1.6189 8.1977 59.0768 Reject 

0.7 1.0000 1.9666 13.9319 46.1054 Reject 

 

4.2Numerical Analysis  

 

This section deals with the simulated data analysis of the 

squared simple bilinear white noise process, compare the 

results obtained and state the most effective or suitable 

model. If the time series data, ntt ,...,2,1,  , admits the 

SQRT(SBWNP), we achieve stationarity and fit an 

autoregressive moving average process of order p and 

q[  qpR , ].          

1 1 2 2 1 1 2 2. . . ...t t t p t p t t q t q tY Y Y Y e e e e                    

                  

    (4.1) 

where  t is the transformed series,  is a constant and 

 2,0~ te . 

 

4.2.1 Model Selection Criteria (AIC) 

When more than one model is selected from the process 

enumerated in Equation (4.1), the Akaike’s Information 

Criterion is then used to select the more suitable model 

amongst them. The Akaike’s Information Criterion is most 

commonly given as; 

log 2
RSS

IC n r
n

 
   

 
         (4.2) 

Where 
r is the number of model parameters,   = Effective 

number of data point used in the estimation procedure and 

RSS is the estimated residual sum of squares of the model. 

(Akaike, 1974; Biu and Iwueze, 2011). 

 

The simulated comprises of 100 data points and its series 

plot is shown as Figure 1.0. 

 

 
Figure 1.0: SQRT (SBWNP) “Yt” 

 

Examining Figure 1.0, we notice that the series is stationary 

and the variance is constant. We now fit the best ARMA(p, 

q) model to the transformed series [represented by (3.1)].  

 

 

ARMA Modelling of the Series (3.1) 
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However, suitable ARMA(p , q) models  2p q   may 

also be appropriate.  

On the other hand, a test is appropriate, to test if the constant 

mean “  ” is involved in the models. In this case, the 

hypothesis of interest is given as   

0:0: 00   against         (4.3) 

 

The test statistics for 

testing 0:0: 00   against is   

 t

t

std
t




                                   (4.4) 

 

The computed t-value using Minitab 16 statistical software 

is t = 7.04 with p-value = 0.0001 is shown in Appendix A. It 

can be seen that the p-value is less than the appropriate 

critical value 0.05; therefore we rejected 0   and concluded 

that 0 . That is,  is in the models. 

 

Various ARMA(p , q) models were fitted to the series (3.1) 

with respective residuals as white noise (Appendix B) and is 

summarized in Table 2.0. The model selection criteria used 

to select the best model is Akaike’s Information Criterion 

(AIC) [Equation (4.2)]. This is also shown in Table 2.0. 

 

Table 2.0: AIC Values for ARMA(p , q) models 

 2p q   with constant Computation (3.1) 

Model k  
2  

N AIC 

AR(2) with constant 3 1.986 100 176.20 

MA(2) with constant 3 1.988 100 176.16 

ARMA(1 , 1) with constant 3 1.989 100 176.14 

ARMA(1 , 2) with constant 4 2.008 100 177.72 

ARMA(2 , 1) 3 2.014 100 175.59 

ARMA(2 , 1) with constant 4 2.013 100 177.62 

ARMA(2 , 2)  4 2.045 100 176.16 

ARMA(2, 2) with constant 5 1.885 100 182.47 

The model identified using Akaike’s Information Criterion 

in Table (2.0) is 

 

ARMA(2, 1) with constant 

1 1 2 2 1 1t t t t tY Y Y                (4.5) 

 

Estimation Parameters of the Identified ARMA(2, 1) 

Model with Constant for (3.1) 

Estimates were obtained using Minitab 16.0 software and 

the results are tabulated in Table (3.0). 

 

Table 3.0:  Parameter Estimates of AR(2, 1) Models for 

(3.1) 

AR(2, 1) Model 

1 = 0.9025 0.1012 

2 = 0.0975 0.1010 

1 = 0.9801 0.0166 

2 2.014RSS    

 

Footnote: values after ( ) are their standard errors 

 

By Substitution; Equation (4.5) becomes 

1 2 10.90 0.10 0.98t t t t tY Y Y         (4.6) 
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Figure 2.0: Residual ACF correlogram of AR(2, 1) with 

constant 
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Figure 3.0: Residual PACF correlogram of AR(2,1) with 

constant 

 

The residuals ACF and PACF in Figures (2.0) and (3.0) 

reveal that the models are adequate for (3.1). The adequacies 

of the models were also checked by the use of Ljung-Box 

(1978) Chi-square statistics and the results are summarized 

in Table 4.0.  

 

Table 4.0: (Ljung-Box) Chi-square Statistic for Adequacy 

of (4.6) 

k  df  )(kQ for 

 AR(2,1)  

Chi-square Table 

 
2

h  

12
 

9
 

8.2 14.7
 

24
 

21
 

15.7 30.1
 

36
 

33
 

23.4 44.8
 

48
 

45
 

28.4 65.7
 

 

From Table (4.0), comparing  kQ  with  
2

df , [i.e. 

    48,36,24,12,2  kkQ df ], it is obvious that 

the models are adequate and they can be used for forecasting 

the square simple bilinear white noise process. 

 

5. Conclusion 
 

This results of the analysis show that the ARMA(2, 1) model 

fitted the squared data of the simple bilinear white noise 

process better than ARMA(1, 1) and MA(1)) models 

respectively thus, agreeing with theory. We therefore, 
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conclude that the suggested model in this research work 

[ARMA(2, 1)] is a better alternative for modelling and 

forecasting a simple bilinear white noise series (SBWNP). 

 

The results of the test to discriminate between the linear and 

bilinear white noise processes showed that the values  

should lie in the interval -0.3 ≤  ≤ 0.5 for identification.  
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Appendix A 
 

One-Sample T: SQRT(SBWNP)  
 

Test of mu = 0 vs not = 0 

 

Variable       N      Mean     StDev   SE Mean         95% CI            T     P 

SQRT(SBWNP)  100  0.989994  1.405621  0.140562  (0.711088, 1.268899)  7.04    0.00001 
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Appendix B 

 

Table 5.0: Analysis of SQRT(SBWNP) [Fitting AR(p, q) models without constant] 
 

ARMA(p, q) 

2p q   

Estimates )(kQ   
2̂  

 

AIC 

1̂  2̂  1̂  2̂  12k  24k  36k  48k  

AR(1) 0.2634 

(0.0970) 

   20.8 

(11) 

32.3 

(23) 

42.9 

(35) 

48.0 

(47) 

2.760 Correlated 

Residuals 

MA(1)   -0.1886 

(0.0987) 

 17.0 

(11) 

28.4 

(23) 

38.0 

(35) 

42.6 

(47) 

2.823 Correlated 

Residuals 

AR(2) 0.1961 

(0.0976) 

0.2564 

(0.0976) 

  25.6 

(10) 

32.8 

(22) 

45.0 

(34) 

53.9 

(46) 

2.605 Correlated 

Residuals 

MA(2)   -0.1647 

(0.1000) 

-0.1381 

(0.1000) 

20.5 

(10) 

28.4 

(22) 

39.4 

(34) 

46.5 

(46) 

2.770 Correlated 

Residuals 

ARMA(1,1) 1.0007 

(0.0034) 

 0.9854 

(0.0024) 

 9.7 

(10) 

17.9 

(22) 

26.2 

(34) 

31.1 

(46) 

2.025 Correlated 

Residuals 

ARMA(1,2) -0.9712 

(0.0321) 

 -1.1301 

(0.0001) 

-0.1195 

(0.0093) 

13.8 

(9) 

25.2 

(21) 

33.8 

(33) 

38.7 

(45) 

2.794 Correlated 

Residuals 

ARMA(2,1) 0.9025 

(0.1012) 

0.0975 

(0.1010) 

0.9801 

(0.0166) 

 8.2 

(9) 

15.7 

(21) 

23.4 

(33) 

28.4 

(45) 

2.014 175.59 

ARMA(2,2) 0.1581 

(0.3633) 

0.8413 

(0.3749) 

0.1821 

(0.3826) 

0.7763 

(0.4291) 

9.9 

(8) 

17.2 

(20) 

26.3 

(32) 

31.6 

(44) 

2.045 176.16 

 

Table 6: Analysis of SQRT(SBWNP) [Fitting AR(p, q) models with constant] 
 

ARMA(p, q) 

2p q   

Estimates     )(kQ   
2̂  

 

AIC 
̂  

1̂  2̂  1̂  2̂  12k  24k  36k  48k  

AR(1) 0.9918 

(0.1264) 

-0.1107 

(0.1006) 

   7.7 

(10) 

15.4 

(22) 

22.7 

(34) 

27.6 

(46) 

1.972 Correlated 

Residuals 

MA(1) 0.9920 

(0.1235) 

  0.1198 

(0.1006) 

 7.3 

(10) 

15.1 

(22) 

22.2 

(34) 

26.9 

(46) 

1.969 Correlated 

Residuals 

AR(2) 0.9922 

(0.1200) 

-0.1167 

(0.1016) 

-0.0574 

(0.1018) 

  6.6 

(9) 

14.9 

(21) 

21.5 

(33) 

25.7 

(45) 

1.986 176.20 

MA(2) 0.9922 

(0.1215) 

  0.1129 

(0.1018) 

0.0258 

(0.1021) 

7.0 

(9) 

15.0 

(21) 

21.9 

(33) 

26.3 

(45) 

1.988 176.16 

ARMA(1,1) 0.9921 

(0.1228) 

0.0952 

(0.8497) 

 0.2125 

(0.8348) 

 7.2 

(9) 

15.0 

(21) 

22.0 

(33) 

26.6 

(45) 

1.989 176.14 

ARMA(1,2) 0.9921 

(0.1221) 

-0.2171 

(3.1377) 

 -0.1039 

(3.1341) 

0.0556 

(0.3577) 

6.9 

(8) 

15.0 

(20) 

21.8 

(32) 

26.1 

(44) 

2.008 177.72 

ARMA(2,1) 0.9918 

(0.1319) 

0.7748 

(0.5176) 

0.0952 

(0.1279) 

0.8857 

(0.5046) 

 7.7 

(8) 

15.4 

(20) 

22.6 

(32) 

27.5 

(44) 

2.013 177.62 

ARMA(2,2) 0.9801 

(0.1301) 

0.0497 

(0.0618) 

-0.9227 

(0.0556) 

0.1736 

(0.0560) 

-0.9699 

(0.0457) 

4.1 

(7) 

14.4 

(19) 

18.8 

(31) 

21.2 

(43) 

1.885 182.47 
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