On The Identification of the Simple Bilateral White Noise Process

Arimie, C. O. 1, Biu, E. O. 2

1, 2 Department of Mathematics and Statistics, University of Port Harcourt

Abstract: Moments of the squares of simple bilateral process were determined under second order analysis for the purpose of identification and discriminating between bilateral process and linear white noise process. We showed how the variance of the bilateral white noise process can be used to distinguish it from the linear white noise process. The simulation results showed that the squared data of the bilateral white noise series fitted the ARMA(2, 1) model better than ARMA(1, 1) and MA(1) models respectively.

Keywords: Linear White Noise Process, Bilinear Stochastic Model, Bilinear White Noise Process, Second Order Analysis, Covariance Analysis.

1. Introduction

Over the years, much attention has been given to the issue of identification of the simple bilateral white noise process. Many works have been published on ways to discriminate between linear and bilateral time series models (see Granger and Andersen, 1978; Subba Rao, 1981; Pham and Tran, 1981; Hannan, 1982; Akamnam, 1983; Subba Rao and Gabr, 1984; Akamnam et al., 1986; de Goosier and Heuts, 1987; Iwute, 1991; Iwute and Subba Rao, 1991; Subba Rao and da Silva, 1992; Martins, 1999; Goncalves et al., 2005; Okemara, 2008; Iwute and Johnson, 2011). Granger and Andersen (1978) suggests that one way to distinguish between linear and the nonlinear time series models is to do a second order analysis on the squares of the series. Some authors, including Granger and Andersen (1978), have shown that for a time series X_t that is normally distributed (and therefore linear),

$$
\rho_k (X_t^2) = \left[\rho_k (X_t) \right]^2
$$

where ρ_k is the lag k autocorrelation.

A white noise process $X_t = \varepsilon_t$, $t \in \mathbb{Z}$, $\varepsilon_t \sim N(0, \sigma^2)$ is essentially, a time series. It is an independent and identically distributed (iid) random sequence usually assumed to be Gaussian distributed with zero mean and variance $\sigma^2 < \infty$. According to Granger and Andersen (1978) the bilateral white noise process is a bilinear stochastic model formed by adding a bilinear form to linear ARMA model as shown in (1.2) below:

$$
X_t = \sum_{i=1}^{\infty} \phi_i X_{t-i} + \sum_{j=1}^{\infty} \theta_j \varepsilon_{t-j} + \sum_{i=1}^{r} \sum_{j=1}^{s} \phi_{ij} X_{t-i} \varepsilon_{t-j} + \varepsilon_t
$$

where, ε_t, $t \in \mathbb{Z}$, $t = (-\infty, -1, 0, 1, \ldots)$ is a sequence of independent and identically distributed random variables with $E(\varepsilon_t) = 0$; $E(\varepsilon^2_t) = \sigma^2 < \infty$; and $\phi_i, \phi_j, \theta_h, \theta_j, \ldots, \phi_{ij}$, $1 \leq i \leq r$, $1 \leq j \leq s$ are real constants.

In this paper, we considered higher order moments of the bilateral white noise process and how the variance of the powers of the process can be used to distinguish between the linear and simple bilateral white noise process.

2. Moments of the Simple Bilinear White Noise Process (SBWNP)

Consider the bilateral white noise process

$$
X_t = (\theta_1 X_{t-3} + \theta_2 X_{t-2}) \varepsilon_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma^2)
$$

(2.1)

where, θ_1 and θ_2 are real constants and $[\varepsilon_t]$, $t \in \mathbb{Z}$ is a sequence of independent and identically distributed random variables with zero mean and variance, $\sigma^2 > 0$.

Assuming normality of ε_t, $t \in \mathbb{Z}$, we define the nth central moment of the process as

$$
E(\varepsilon^n) = \begin{cases} (2a - 1)!! \sigma^{2a}, & b = 2a, \ b \text{ even} \\ 0, & \text{b odd} \end{cases}
$$

(2.2)

where $(2a - 1)! = \prod_{i=1}^{2a - 1}(2c - 1)$ (Ibrahim, 2013)

Then, the even moments are $E(\varepsilon^2_t) = \sigma^2$, $E(\varepsilon^4_t) = 3\sigma^4$, $E(\varepsilon^6_t) = 15\sigma^6$, $E(\varepsilon^8_t) = 105\sigma^8$. E($\varepsilon^{10}_t$) = 945$\sigma^{10}$, etc. For the bilateral white noise model (2.1), with $\varepsilon_t \sim N(0, \sigma^2)$ it can be easily shown that

$$
E(X_t) = E(\theta_1 X_{t-3} \varepsilon_{t-1} + \theta_2 X_{t-2} \varepsilon_{t-1}) + E(\varepsilon_t) = 0
$$

(2.3)

$$
Var(X_t) = E(X_t^2) - [E(X_t)]^2 = E(X_t^2)
$$

(2.4)

$$
X_t = (\theta_1 X_{t-3} + \theta_2 X_{t-2}) \varepsilon_{t-1} + \varepsilon_t
$$

(2.5)

$$
X_t^2 = (\theta_1 X_{t-3} + \theta_2 X_{t-2})^2 \varepsilon_{t-1}^2 + \varepsilon_t^2 + 2(\theta_1 X_{t-3} + \theta_2 X_{t-2}) \varepsilon_{t-1} \varepsilon_t
$$

(2.6)

$$
= \theta_1^2 X_{t-3}^2 \varepsilon_{t-1}^2 + \theta_2^2 X_{t-2}^2 \varepsilon_{t-1}^2 + 2\theta_1 \theta_2 X_{t-3} X_{t-2} \varepsilon_{t-1} \varepsilon_t + \varepsilon_t^2 + 2\theta_1 X_{t-3} \varepsilon_{t-1} \varepsilon_t
$$

(2.7)
\[E(X_i^2) = \theta_1^2 E(X_{i-1}^2) E(e_{i-1}^2) + \theta_2^2 E(X_{i-2}^2) E(e_{i-1}^2) + \theta_1 E(X_{i-1}^2) + \theta_2 E(X_{i-2}^2) E(e_{i-1}^2) + 2 \sigma \theta_1 E(e_{i-1}) E(e_i) + 2 \sigma \theta_2 E(e_{i-2}) E(e_i) \]

\[+ 2 \sigma_1 E(e_{i-1}) E(e_i) + 2 \sigma_2 E(e_{i-2}) E(e_i) + \sigma^2 \]

Since \(X_t \) and \(e_t \) are assumed to be stationary and \(E(X_t) = E(e_t) = 0 \),

\[E(X_i^2) = \theta_1^2 E(X_{i-1}^2) E(e_{i-1}^2) + \theta_2^2 E(X_{i-2}^2) E(e_{i-1}^2) + \theta_1 E(X_{i-1}^2) + \theta_2 E(X_{i-2}^2) E(e_{i-1}^2) + \sigma^2 \]

\[= \sigma^2 \theta_1^2 E(X_{i-1}^2) + \sigma^2 \theta_2^2 E(X_{i-2}^2) + \sigma^2 \]

(1 - \(\sigma^2 \theta_1^2 - \sigma^2 \theta_2^2 \)) \(E(X_i^2) = \sigma^2 \)

\[\therefore E(X_i^2) = \frac{\sigma^2}{1 - \sigma^2 \theta_1^2 - \sigma^2 \theta_2^2} = \frac{\sigma^2}{1 - (\theta_1 + \theta_2)^2} \]

\[\Rightarrow Var(X_t) = \sigma^2 \frac{\theta_1^2 + \theta_2^2}{1 - \sigma^2 \sum \theta_i^2} \]

\[\sigma^2 \sum \theta_i^2 < 1 \quad (2.5) \]

\[R(k) = E[\{X_t - E(X_t)\}^2] = E[X_t X_{t-k}] \]

\[R(t) = E[X_t X_{t-1}] \]

\[X_t X_{t-1} = (\theta_1 X_{t-3} e_{t-1} + \theta_2 X_{t-2} e_{t-1} + e_t) X_{t-1} \]

\[= \theta_1 X_{t-3} X_{t-1} e_{t-1} + \theta_2 X_{t-2} X_{t-1} e_{t-1} + X_{t-1} e_t \]

\[E[X_t X_{t-1}] = \theta_1 E(X_{t-3} X_{t-1} e_{t-1}) + \theta_2 E(X_{t-2} X_{t-1} e_{t-1}) + E(X_{t-1} e_t) \]

By the assumption of stationarity,

\[E[X_t X_{t-1}] = \sigma^2 \theta_1 \theta_2 + \sigma^2 \theta_1 + \sigma^2 \theta_2 \]

\[\Rightarrow R(k) = \frac{\sigma^2 \theta_1 \theta_2}{1 - \sigma^2 \sum \theta_i^2} \]

\[\sigma^2 \sum \theta_i^2 < 1, \quad k = 0 \quad (2.6) \]

\[\text{otherwise} \]

This is a white noise structure.

2.1 Mean and Variance of the Squares of the Simple Bilinear Model

We have shown that the simple bilinear white noise process has the covariance structure of a linear white noise process, what is left is to determine the mean and variance of the squares of the simple bilinear model (1.2). We assumed that \(e_t \sim N(0, \sigma^2) \), \(E(e_t) = 0 \) and \(E(e_t^2) = \sigma^2 < \infty \). We also assumed that the process, \(\{Y_t\} \) is stationary.

Let,

\[Y_t = X_t^2 = [\theta_1 X_{t-3} + \theta_2 X_{t-2} e_{t-1} + e_t]^2 \]

(2.8)

We have shown in section 1 above that

\[E(Y_t) = E(X_t^2) = \frac{\sigma^2}{1 - \sigma^2 \sum \theta_i^2} \]

(2.9)

\[\text{Var}(Y_t) = E(Y_t^2) - [E(Y_t)]^2 \]

\[Y_t^2 = X_t^4 = [X_t^2]^2 \]

\[= (\theta_1 X_{t-3} e_{t-1} + \theta_2 X_{t-2} e_{t-1} + e_t)^2 (\theta_1 X_{t-3} e_{t-1} + \theta_2 X_{t-2} e_{t-1} + e_t) \]

\[E(Y_t^2) = E[X_t^2 X_t^2] \]

Since the process is assumed to be stationary, and \(E(X_t^3) = E(X_t^4) = 0 \) then,

\[E(X^4) = \theta_1^4 E(X_{t-3}^4) + \theta_2^4 E(X_{t-2}^4) + 6 \theta_1^2 \theta_2^2 E(X_{t-3}^2 X_{t-2}^2) + 6 \theta_1^2 \theta_2 E(X_{t-3}^2 X_{t-2}^2 e_{t-1}) + 6 \theta_1 \theta_2^3 E(X_{t-3}^2 X_{t-2} e_{t-1}^2) + 6 \theta_1^3 \theta_2 E(X_{t-3}^2 e_{t-1}^2) + 6 \theta_1^2 \theta_2^2 E(X_{t-2}^2 e_{t-1}^2) \]

\[+ 6 \theta_1^3 \theta_2 E(X_{t-2}^2) + 3 \sigma^4 \theta_1^4 E(X_{t-3}^2) + 3 \sigma^4 \theta_2^4 E(X_{t-2}^2) + 18 \sigma^4 \theta_1^2 \theta_2^2 E(X_{t-3}^2 X_{t-2}^2) + 18 \sigma^4 \theta_1^2 \theta_2 E(X_{t-3}^2 X_{t-2}^2 e_{t-1}) + 18 \sigma^4 \theta_1 \theta_2^3 E(X_{t-3}^2 X_{t-2} e_{t-1}^2) + 18 \sigma^4 \theta_1^3 \theta_2 E(X_{t-3}^2 e_{t-1}^2) + 18 \sigma^4 \theta_1^2 \theta_2^2 E(X_{t-2}^2 e_{t-1}^2) + 18 \sigma^4 \theta_1^3 \theta_2 E(X_{t-2}^2) + 3 \sigma^4 \theta_1^4 + 3 \sigma^4 \theta_2^4 + 3 \sigma^4 \theta_1^2 \theta_2^2 + 3 \sigma^4 \theta_1^3 \theta_2 + 3 \sigma^4 \theta_1 \theta_2^3 + 3 \sigma^4 \theta_1^3 \theta_2 + 3 \sigma^4 \theta_1 \theta_2^3 + 3 \sigma^4 \theta_1^2 \theta_2^2 + 3 \sigma^4 \theta_1^3 \theta_2 + 3 \sigma^4 \theta_1 \theta_2^3 + 3 \sigma^4 \theta_1^2 \theta_2^2 \]

\[+ 3 \sigma^4 \theta_1^3 \theta_2 + 3 \sigma^4 \theta_1 \theta_2^3 + 3 \sigma^4 \theta_1^2 \theta_2^2 + 3 \sigma^4 \theta_1^3 \theta_2 + 3 \sigma^4 \theta_1 \theta_2^3 + 3 \sigma^4 \theta_1^2 \theta_2^2 \]

\[= 3 \sigma^4 \left(\theta_1^4 + \theta_2^4 \right) + 18 \sigma^4 \left(\theta_1^2 \theta_2^2 + \theta_1^3 \theta_2 + \theta_1 \theta_2^3 + \theta_1^2 \theta_2^2 + \theta_1^3 \theta_2 + \theta_1 \theta_2^3 + \theta_1^2 \theta_2^2 \right) + 3 \sigma^4 \]
\[
\left(1 - 3\alpha^4 \theta_1^4 - 3\alpha^4 \theta_2^4\right)E(Y_i^2) = 18\alpha^4 \theta_1^2 \theta_2^2 \left(\frac{\sigma^2}{1 - \alpha^2 \theta_1^2 - \alpha^2 \theta_2^2}\right)^2
\]

\[+ 6\alpha^4 \left(\theta_1^2 + \theta_2^2\right) \left(\frac{\sigma^2}{1 - \alpha^2 \theta_1^2 - \alpha^2 \theta_2^2}\right) + 3\alpha^4\]

\[\Rightarrow E(Y_i^2) = \left[18\alpha^8 \theta_1^2 \theta_2^2 + 6\alpha^6 \left(\theta_1^2 + \theta_2^2\right) \left(1 - \alpha^2 \theta_1^2 - \alpha^2 \theta_2^2\right) + 3\alpha^4 \left(1 - \alpha^2 \theta_1^2 - \alpha^2 \theta_2^2\right)^2\right]
\]

\[= \frac{12\alpha^8 \theta_1^2 \theta_2^2 - 3\alpha^8 \theta_1^4 - 3\alpha^8 \theta_2^4 + 3\alpha^4}{\left(1 - \alpha^2 \theta_1^2 - \alpha^2 \theta_2^2\right)^2} - \frac{\sigma^4}{\left(1 - \alpha^2 \theta_1^2 - \alpha^2 \theta_2^2\right)^2}\]

\[\Rightarrow Var(Y_i) = \frac{12\alpha^8 \theta_1^2 \theta_2^2 - 3\alpha^8 \theta_1^4 - 3\alpha^8 \theta_2^4 + 3\alpha^4}{\left(1 - \alpha^2 \theta_1^2 - \alpha^2 \theta_2^2\right)^2} + \frac{\sigma^4}{\left(1 - \alpha^2 \theta_1^2 - \alpha^2 \theta_2^2\right)^2}
\]

3. Method of Identification of the Bilinear White Noise Process

Simulation studies were performed to illustrate how the variance of the bilinear white noise can be used to distinguish it from the linear white noise process. Realization of \(\{X_t\}\) and \(\{Y_t = X_t^2\}\), of length 100 respectively were constructed considering \(\{e_t\}\) as a sequence of i.i.d. symmetrically distributed random variable with zero mean and, \(e_t \sim N(0, 1)\). The experiment was repeated 100 times using values of \(\theta\) in the interval \(-0.7 \leq \theta \leq 0.7\) where, \(\theta\) is assumed to be \((\theta_1 + \theta_2)\). For simplicity, \(\theta_1\) was assigned the value zero. The values of \(\theta\) were chosen to satisfy the stationary condition for model (2.10) i.e., \((\sigma^4 \theta_1^4 + \sigma^4 \theta_2^4) < \frac{1}{\sqrt{3}}\) or \(\sigma^4 \theta_1^4 < \frac{1}{\sqrt{3}}\). The Chi-square test for variance (Snedecor and Cochran, 1989) was used to test the hypothesis:

\(H_0 : Var(X_t^2) = 2(\sigma_0^2)^2\) Vs \(H_1 : Var(X_t^2) \neq 2(\sigma_0^2)^2\)

The decision rule was to reject the null hypothesis \(H_0\) at level \(\alpha = 5\%\) if \(X_{cal}^2\) is less than \(\alpha/2\) quartile of the Chi-square distribution with \(n - 1\) degrees of freedom (that is, reject \(H_0\) if \(X_{cal}^2 \leq X_{a/2,(n-1)}\) or if \(X_{cal}^2 > X_{1-a/2,(n-1)}\)).

In section 2, we stated that \(\hat{E}(\varepsilon_i^2) = \sigma^2\) so, if \(X_i = \varepsilon_i\) then, it can be easily shown that \(\hat{Var}(X_i^2) = 2\sigma^4\).

3.1 Fitting MA (1), ARMA (1, 1) and ARMA (2, 1) Models

To fit the above mentioned models, we let \(\theta_1 = 0\) thus reducing Model 2.1 to

\(X_i = \theta_2 X_{i-2} \varepsilon_{i-1} + \varepsilon_i, \quad \varepsilon_i \sim N\left(0, \sigma^2\right)\)

Model (3.1) is the simple bilinear white noise process (SBWNP). Iwuzie (1988) asserts that the covariance structure of the square of the simple bilinear white noise process is the same as that of linear ARMA (2, 1). To confirm this assertion, we simulated the simple bilinear white noise process

\(X_i = 0.7 X_{i-2} \varepsilon_{i-1} + \varepsilon_i, \quad \varepsilon_i \sim N\left(0, \sigma^2\right)\)

and fitted the simulated data, using various ARMA Models and compared the results to identify the suitable ARMA(p, q) Model as alternative for SBWNP.

4. Results

The results of the test to discriminate between the linear and bilinear white noise processes are shown in Table 1.0 below. However, results for only one of the series are given here for illustration for want of space. From Table 1.0, it is shown that the null hypothesis, \(H_0\) was not rejected for values of \(\theta\) in the interval \(-0.3 \leq \theta \leq 0.5\) thus, implying that the bilinear white noise process is identified as linear white noise for these values of \(\theta\) otherwise, the process is bilinear white noise.

Volume 6 Issue 6, June 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: ART20174926

DOI: 10.21275/ART20174926 2817
4.1 Test for the Identification of the SBWNP Parameters

Table 1: Result of Test for the identification of the bilinear White Noise Process

<table>
<thead>
<tr>
<th>Value of Bilinear coefficient</th>
<th>True value of variance</th>
<th>Estimated values of Variance</th>
<th>Estimate of test statistic</th>
<th>Decision at 5% L.O.S</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta)</td>
<td>(\sigma^2)</td>
<td>(\sigma^2 = S_{X_t}^2)</td>
<td>(\sigma^2 = S_{X_t}^2)</td>
<td>(n-1) (\sum_{t=1}^{n} \sigma^2_{X_t})</td>
</tr>
<tr>
<td>-0.7</td>
<td>1.0000</td>
<td>1.4887</td>
<td>4.2164</td>
<td>42.4931</td>
</tr>
<tr>
<td>-0.6</td>
<td>1.0000</td>
<td>1.3236</td>
<td>2.9623</td>
<td>47.7757</td>
</tr>
<tr>
<td>-0.5</td>
<td>1.0000</td>
<td>1.1984</td>
<td>2.2520</td>
<td>54.0464</td>
</tr>
<tr>
<td>-0.4</td>
<td>1.0000</td>
<td>1.1077</td>
<td>1.9183</td>
<td>63.0715</td>
</tr>
<tr>
<td>-0.3</td>
<td>1.0000</td>
<td>1.0466</td>
<td>1.8014</td>
<td>74.3177</td>
</tr>
<tr>
<td>-0.2</td>
<td>1.0000</td>
<td>1.0106</td>
<td>1.7980</td>
<td>85.3253</td>
</tr>
<tr>
<td>-0.1</td>
<td>1.0000</td>
<td>0.9958</td>
<td>1.8602</td>
<td>93.6432</td>
</tr>
<tr>
<td>0.1</td>
<td>1.0000</td>
<td>1.0230</td>
<td>2.1574</td>
<td>97.5064</td>
</tr>
<tr>
<td>0.2</td>
<td>1.0000</td>
<td>1.0686</td>
<td>2.4438</td>
<td>93.3983</td>
</tr>
<tr>
<td>0.3</td>
<td>1.0000</td>
<td>1.1363</td>
<td>2.9183</td>
<td>86.4849</td>
</tr>
<tr>
<td>0.4</td>
<td>1.0000</td>
<td>1.2402</td>
<td>3.7498</td>
<td>78.4597</td>
</tr>
<tr>
<td>0.5</td>
<td>1.0000</td>
<td>1.3928</td>
<td>5.2801</td>
<td>69.4532</td>
</tr>
<tr>
<td>0.6</td>
<td>1.0000</td>
<td>1.6189</td>
<td>8.1977</td>
<td>59.0768</td>
</tr>
<tr>
<td>0.7</td>
<td>1.0000</td>
<td>1.9666</td>
<td>13.9319</td>
<td>46.1054</td>
</tr>
</tbody>
</table>

When more than one model is selected from the process enumerated in Equation (4.1), the Akaike’s Information Criterion is then used to select the more suitable model amongst them. The Akaike’s Information Criterion is most commonly given as:

\[
AIC = -n \log \left(\frac{RSS}{n} \right) + 2r \quad (4.2)
\]

Where \(r \) is the number of model parameters, \(N \) = Effective number of data point used in the estimation procedure and RSS is the estimated residual sum of squares of the model. (Akaike, 1974; Biu and Iwueze, 2011).

The simulated comprises of 100 data points and its series plot is shown as Figure 1.0.

4.2 Numerical Analysis

This section deals with the simulated data analysis of the squared simple bilinear white noise process, compare the results obtained and state the most effective or suitable model. If the time series data, \(X_t, t = 1, 2, ..., n \), admits the \(SQRT(SBWNP) \), we achieve stationarity and fit an autoregressive moving average process of order \(p \) and \(q \)

\[
Y_t = \mu + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \ldots + \phi_p Y_{t-p} + \theta_1 e_{t-1} + \theta_2 e_{t-2} + \ldots + \theta_q e_{t-q} + e_t \quad (4.1)
\]

where \(Y_t \) is the transformed series, \(\mu \) is a constant and \(e_t \sim N(0, \sigma^2) \).

4.2.1 Model Selection Criteria (AIC)

Figure 1.0: SQRT (SBWNP) “\(Y_t \)”

Examining Figure 1.0, we notice that the series is stationary and the variance is constant. We now fit the best \(ARMA(p, q) \) model to the transformed series [represented by (3.1)].

ARMA Modelling of the Series (3.1)

Volume 6 Issue 6, June 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: ART20174926 DOI: 10.21275/ART20174926 2818
However, suitable ARMA(p, q) models \((p + q \leq 2)\) may also be appropriate. On the other hand, a test is appropriate, to test if the constant mean “\(\mu\)” is involved in the models. In this case, the hypothesis of interest is given as

\[H_0 : \mu = 0 \text{ against } H_0 : \mu \neq 0 \quad (4.3) \]

The test statistics for testing \(H_0 : \mu = 0 \text{ against } H_0 : \mu \neq 0\) is

\[t = \frac{\bar{Y}}{std(Y)} \quad (4.4) \]

The computed \(t\)-value using Minitab 16 statistical software is \(t = 7.04\) with \(p\)-value = 0.0001 is shown in Appendix A. It can be seen that the \(p\)-value is less than the appropriate critical value 0.05; therefore we rejected \(H_0\) and concluded that \(\mu \neq 0\). That is, \(\mu\) is in the models.

Various ARMA(p, q) models were fitted to the series (3.1) with respective residuals as white noise (Appendix B) and is summarized in Table 2.0. The model selection criteria used to select the best model is Akaike’s Information Criterion (AIC) [Equation (4.2)]. This is also shown in Table 2.0.

Table 2.0: AIC Values for ARMA(p, q) models \((p + q \leq 2)\) with constant Computation (3.1)

<table>
<thead>
<tr>
<th>Model</th>
<th>(k)</th>
<th>(\sigma^2)</th>
<th>(N)</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR(2) with constant</td>
<td>3</td>
<td>1.986</td>
<td>100</td>
<td>176.20</td>
</tr>
<tr>
<td>MA(2) with constant</td>
<td>3</td>
<td>1.988</td>
<td>100</td>
<td>176.16</td>
</tr>
<tr>
<td>ARMA(1, 1) with constant</td>
<td>3</td>
<td>1.989</td>
<td>100</td>
<td>176.14</td>
</tr>
<tr>
<td>ARMA(1, 2) with constant</td>
<td>4</td>
<td>2.008</td>
<td>100</td>
<td>177.72</td>
</tr>
<tr>
<td>ARMA(2, 1)</td>
<td>3</td>
<td>2.014</td>
<td>100</td>
<td>175.59</td>
</tr>
<tr>
<td>ARMA(2, 1) with constant</td>
<td>4</td>
<td>2.013</td>
<td>100</td>
<td>177.62</td>
</tr>
<tr>
<td>ARMA(2, 2)</td>
<td>4</td>
<td>2.045</td>
<td>100</td>
<td>176.16</td>
</tr>
<tr>
<td>ARMA(2, 2) with constant</td>
<td>5</td>
<td>1.885</td>
<td>100</td>
<td>182.47</td>
</tr>
</tbody>
</table>

The model identified using Akaike’s Information Criterion in Table (2.0) is

ARMA(2, 1) with constant

\[Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \theta_1 \varepsilon_{t-1} + \varepsilon_t \quad (4.5) \]

Estimation Parameters of the Identified ARMA(2, 1) Model with Constant for (3.1)

Estimates were obtained using Minitab 16.0 software and the results are tabulated in Table (3.0).

Table 3.0: Parameter Estimates of AR(2, 1) Models for (3.1)

<table>
<thead>
<tr>
<th>AR(2, 1) Model</th>
<th>(\phi_1)</th>
<th>(\phi_2)</th>
<th>(\theta_1)</th>
<th>(\sigma^2)</th>
<th>(RSS = \sigma^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.9025 ± 0.1012</td>
<td>0.0975 ± 0.1010</td>
<td>0.9801 ± 0.0166</td>
<td>2.014</td>
<td></td>
</tr>
</tbody>
</table>

Footnote: values after (±) are their standard errors

By Substitution; Equation (4.5) becomes

\[Y_t = 0.90Y_{t-1} + 0.10Y_{t-2} + 0.98\varepsilon_{t-1} + \varepsilon_t \quad (4.6) \]

The residuals ACF and PACF in Figures (2.0) and (3.0) reveal that the models are adequate for (3.1). The adequacies of the models were also checked by the use of Ljung-Box (1978) Chi-square statistics and the results are summarized in Table 4.0.

Table 4.0: (Ljung-Box) Chi-square Statistic for Adequacy of (4.6)

<table>
<thead>
<tr>
<th>(k)</th>
<th>(df)</th>
<th>(Q(k)) for AR(2,1)</th>
<th>Chi-square Table (X^2)</th>
<th>(Z(\alpha))</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>9</td>
<td>8.2</td>
<td>14.7</td>
<td>5.07</td>
</tr>
<tr>
<td>24</td>
<td>21</td>
<td>15.7</td>
<td>30.1</td>
<td>6.70</td>
</tr>
<tr>
<td>36</td>
<td>33</td>
<td>23.4</td>
<td>44.8</td>
<td>10.64</td>
</tr>
<tr>
<td>48</td>
<td>45</td>
<td>28.4</td>
<td>65.7</td>
<td>10.44</td>
</tr>
</tbody>
</table>

From Table (4.0), comparing \(Q(k)\) with \(X^2\) \((\alpha)\), [i.e. \(Q(k) < X^2(\alpha)\), \(k = 12, 24, 36, 48\)], it is obvious that the models are adequate and they can be used for forecasting the simple bilinear white noise process.

5. Conclusion

This results of the analysis show that the ARMA(2, 1) model fitted the squared data of the simple bilinear white noise process better than ARMA(1, 1) and MA(1) models respectively thus, agreeing with theory. We therefore,
conclude that the suggested model in this research work \([\text{ARMA}(2, 1)]\) is a better alternative for modelling and forecasting a simple bilinear white noise series (SBWNP).

The results of the test to discriminate between the linear and bilinear white noise processes showed that the values \(\theta\) should lie in the interval \(-0.3 \leq \theta \leq 0.5\) for identification.

References

Appendix A

One-Sample T: SQRT(SBWNP)

Test of mu = 0 vs not = 0

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>StDev</th>
<th>SE Mean</th>
<th>95% CI</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQRT(SBWNP)</td>
<td>100</td>
<td>0.989994</td>
<td>1.405621</td>
<td>0.140562</td>
<td>(0.711088, 1.268899)</td>
<td>7.04</td>
<td>0.00001</td>
</tr>
</tbody>
</table>
Appendix B

Table 5.0: Analysis of SQRT(SBWNP) [Fitting AR(p, q) models without constant]

<table>
<thead>
<tr>
<th>ARMA(p, q)</th>
<th>Estimates</th>
<th>$Q(k)$</th>
<th>σ^2</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p+q \leq 2$</td>
<td>$\hat{\phi}_1$</td>
<td>$\hat{\phi}_2$</td>
<td>$\hat{\theta}_1$</td>
<td>$\hat{\theta}_2$</td>
</tr>
<tr>
<td>AR(1)</td>
<td>0.2634(0.0970)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA(1)</td>
<td>-0.1886(0.0987)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR(2)</td>
<td>0.1961(0.0976)</td>
<td>0.2564(0.0976)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA(2)</td>
<td>-0.1647(0.1000)</td>
<td>-0.1381(0.1000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARMA(1,1)</td>
<td>1.0007(0.0034)</td>
<td>0.9854(0.0024)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARMA(1,2)</td>
<td>-0.9712(0.0321)</td>
<td>-1.1301(0.0001)</td>
<td>-0.1195(0.0093)</td>
<td></td>
</tr>
<tr>
<td>ARMA(2,1)</td>
<td>0.9025(0.1012)</td>
<td>0.9975(0.0101)</td>
<td>0.9781(0.0166)</td>
<td></td>
</tr>
<tr>
<td>ARMA(2,2)</td>
<td>0.1581(0.3633)</td>
<td>0.8413(0.3749)</td>
<td>0.1821(0.3826)</td>
<td>0.7763(0.4291)</td>
</tr>
</tbody>
</table>

Table 6: Analysis of SQRT(SBWNP) [Fitting AR(p, q) models with constant]

<table>
<thead>
<tr>
<th>ARMA(p, q)</th>
<th>Estimates</th>
<th>$Q(k)$</th>
<th>σ^2</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p+q \leq 2$</td>
<td>$\hat{\mu}$</td>
<td>$\hat{\phi}_1$</td>
<td>$\hat{\phi}_2$</td>
<td>$\hat{\theta}_1$</td>
</tr>
<tr>
<td>AR(1)</td>
<td>0.9918(0.1264)</td>
<td>-0.1107(0.1006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA(1)</td>
<td>0.9920(0.1235)</td>
<td>-0.1167(0.1016)</td>
<td>-0.0574(0.1018)</td>
<td></td>
</tr>
<tr>
<td>AR(2)</td>
<td>0.9922(0.1200)</td>
<td>-0.1167(0.1016)</td>
<td>-0.0574(0.1018)</td>
<td></td>
</tr>
<tr>
<td>MA(2)</td>
<td>0.9922(0.1215)</td>
<td>0.1129(0.1018)</td>
<td>0.0258(0.1021)</td>
<td></td>
</tr>
<tr>
<td>ARMA(1,1)</td>
<td>0.9921(0.1228)</td>
<td>0.0952(0.8497)</td>
<td>0.2125(0.8348)</td>
<td></td>
</tr>
<tr>
<td>ARMA(1,2)</td>
<td>0.9921(0.1221)</td>
<td>-0.2171(3.1377)</td>
<td>-0.1039(3.1341)</td>
<td>0.0556(3.5777)</td>
</tr>
<tr>
<td>ARMA(2,1)</td>
<td>0.9918(0.1319)</td>
<td>0.7748(0.5176)</td>
<td>0.0952(0.1279)</td>
<td>0.8857(0.5046)</td>
</tr>
<tr>
<td>ARMA(2,2)</td>
<td>0.9801(0.1301)</td>
<td>0.0497(0.0618)</td>
<td>-0.9227(0.0556)</td>
<td>-0.9699(0.0457)</td>
</tr>
</tbody>
</table>