
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 6, June 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Machine Learning using MapReduce

Satwik Kumar Shiri
1
, Satyam Thusu

2

1, 2RV College of Engineering, Mysore Road, Bengaluru - 560059, India

Abstract: Machine learning methods often improve their accuracy by using models with more parameters trained on large numbers of

data sets. Building such models on a single machine is often impractical because of expansive measure of calculation required. In this

paper, we focus on developing a general technique for parallel programming of some of the machine learning algorithms. Our work is

in distinct to the tradition in machine learning of designing ways to speed up a single algorithm at a time .We show that algorithms that

fit the Statistical Query model can be composed in a certain “summation form,” which allows them to be effectively parallelized. The

central idea of this approach is to allow a future programmer or user to accelerate machine learning applications.

Keywords: MapReduce, Machine Learning, Large Data Sets, Algorithms

1. Introduction

Machine learning (ML) is becoming increasingly popular due

to a confluence of factors: an abundance of data produced

and captured in digital form [1]; an abundance of compute

power and convenient access to it from various devices; and

advances in the ML field, making it applicable to an ever

growing number of situations [2]. The acceptance and

success of ML, from natural language processing to image

recognition to others, comes from the increasing accuracy

achieved by ML applications. This accuracy is achieved

partly through advances in ML algorithms, but also through

using known algorithms with larger models trained on larger

datasets [2]. Building these models on a single machine is

often impractical because of the large amount of computation

required, or may even be impossible for very large models

such as those in state-of-the-art image recognition.

2. A Taxonomy of the Machine Learning

Algorithms

While ML algorithms can be classified on many dimensions,

the one we take primary interest in here is that of procedural

character: the data processing pattern of the algorithm. Here,

we consider single-pass, iterative and query-based learning

techniques, along with several example algorithms and

applications.

2.1 Single-pass Learning

Many machine learning applications make only one pass

through a data set and extracts relevant statistics for later use

during inference. This is generally used in natural language

processing, from machine translation to information

extraction to spam filtering. These applications often fit

perfectly into the MapReduce abstraction, encapsulating the

extraction of local contributions to the map task, then

combining those contributions to compute relevant statistics

about the dataset as a whole. Consider the following

examples, illustrating common decompositions of these

statistics.

Estimating Language Model Multinomial: Extracting

language models from a large corpus amounts to little more

than counting n-grams, though some parameter smoothing

over the statistics is also common. The map phase

enumerates the n-grams in each training instance and the

reduce function counts instances of n-grams.

Feature Extraction for Naive Bayes Classifiers:

Estimating parameters for a naive Bayes classifier, or any

fully observed Bayes net, again requires counting occurences

in the training data. In this case, however, feature extraction

is often computation-intensive, perhaps involving small

search or optimization problems for each datum. The reduce

task, is a summation of each (feature, label) environment

pair.

Syntactic Translation Modeling: Generating a syntactic

model for machine translation is an example of a research-

level machine learning application that involves only a single

pass through a preprocessed training set. Each training datum

consists of a pair of sentences in two languages, an estimated

alignment between the words in each, and an estimated

syntactic parse tree for one sentence. The per-datum feature

extraction encapsulated in the map phase for this task

involves search over these coupled data structures.

2.2 Iterative Learning

The class of iterative machine learning algorithms can also

be expressed within the framework of MapReduce by

chaining together multiple MapReduce tasks [3]. While such

algorithms vary widely in the type of operation they perform

on each datum (or pair of data) in a training set, they share

the common characteristic that a set of parameters is matched

to the data set via iterative improvement. The update to these

parameters across iterations must again decompose into per-

datum contributions. In the examples below, the contribution

to parameter updates from each datum (the map function)

depends in a meaningful way on the output of the previous

iteration. For example, the expectation computation of EM or

the inference computation in an SVM or perceptron classifier

can reference a large portion or all of the parameters

generated by the algorithm. Hence, these parameters must

remain available to the map tasks in a distributed

environment. The information necessary to compute the map

step of each algorithm is described below; the complications

Paper ID: ART20174894 2467

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 6, June 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

that arise because this information is vital to the computation

are investigated later in the paper.

Expectation Maximization (EM): The well-known EM

algorithm maximizes the likelihood of a training set given a

generative model with latent variables. The E-step of the

algorithm computes posterior distributions over the latent

variables given current model parameters and the observed

data. The maximization step adjusts model parameters to

maximize the likelihood of the data assuming that latent

variables take on their expected values. Projecting onto the

MapReduce framework, the map task computes posterior

distributions over the latent variables of a datum using

current model parameters; the maximization step is

performed as a single reduction, which sums the sufficient

statistics and normalizes to produce updated parameters.

We consider applications for machine translation and speech

recognition. For multivariate Gaussian mixture models (e.g.,

for speaker identification), these parameters are simply the

mean vector and a covariance matrix. For HMM-GMM

models (e.g., speech recognition), parameters are also needed

to specify the state transition probabilities; the models,

efficiently stored in binary form, occupy tens of megabytes.

For word alignment models (e.g., machine translation), these

parameters include word-to-word translation probabilities;

these can number in the millions, even after pruning

heuristics remove the unnecessary parameters.

Discriminative Classification and Regression: When

fitting model parameters via a perceptron, boosting, or

support vector machine algorithm for classification or

regression, the map stage of training will involve computing

inference over the training example given the current model

parameters. Similar to the EM case, a subset of the

parameters from the previous iteration must be available for

inference. However, the reduce stage typically involves

summing over parameter changes. Thus, all relevant model

parameters must be broadcast to each map task.

2.3 Query-based Learning with Distance Metrics

Consider distance-based machine learning applications that

directly reference the training set during inference, such as

the nearest-neighbor classifier. In this setting, the training

data are the parameters, and a query instance must be

compared to each training datum.

Multiple query instances can be processed simultaneously

within a MapReduce implementation of these techniques, the

query set must be sent to all map tasks. Again, we have a

need for the distribution of state information. The query

information that must be distributed to all map tasks need not

be processed concurrently – a query set can be broken up and

processed over multiple MapReduce operations. In the

examples below, each query instance tends to be of a

manageable size.

K-nearest Neighbors Classifier: The nearest-neighbor

classifier compares each element of a query set to each

element of a training set, and discovers examples with

minimal distances from the queries. The map stage computes

distance metrics, while the reduce stage tracks k examples for

each label that have minimal distance to the query.

Similarity-based Search: Finding the most similar instances

to a given query has a similar character, sifting through the

training set to find examples that minimize a distance metric.

Computing the distance is the map stage, while minimizing it

is the reduce stage.

3. Distributed Machine Learning

Machine learning algorithms generalize from data. Machine

learning algorithms train over data to create a model

representation that can predict outcomes (regression or

classification) for new unseen data. More formally, given a

training set {(x1, y1), (x2, y2),....., (xn, yn)}, the goal of model

training is to determine the distribution function f such that y

= f(x, w). The input x may consist of different features and

the model consists of parameters w, representing the weights

of individual features to compute y. The goal of model

training is to estimate the values of model parameters w.

During model testing, this model is tested using an unseen set

of xt to compare against ground truth (already known yt), to

determine the model accuracy. Thus, machine learning

algorithms train to minimize the loss, which represents some

function that evaluates the difference between estimated and

true values for the test data.

Model training algorithms are iterative, and the algorithm

starts with an initial guess of the model parameters and learns

incrementally over data, and refines the model every

iteration, to converge to a final acceptable value of the model

parameters. Model training time can last from minutes to

weeks and is often the most time consuming aspect of the

learning process. Model training time also hurts model

refinement process since longer training times limit the

number of times the model configuration parameters can be

tuned through re execution.

Machine learning algorithms can benefit from a scale-out

computing platform support in multiple ways: First, these

algorithms train on large amounts of data, which improves

model accuracy. Second, they can train large models that

have hundreds of billions of parameters or require large

computation such as very large neural networks for large

scale image classification or genomic applications [4].

Training with more data is done by data parallelism, which

requires replicating the model over different machines with

each model training over a portion of data. The replicas

synchronize the model parameters after a fix number of

iterations. Training large models requires the model to be

split across multiple machines, and is referred to as model

parallelism.

4. Tailoring Machine Learning Algorithms for

MapReduce

In this section, we will briefly discuss the algorithms that can

be expressed in summation form. In the following, x or xi

denotes a training vector and y or yi denotes a training label.

Paper ID: ART20174894 2468

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 6, June 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Locally Weighted Linear Regression (LWLR)

LWLR [5] is solved by finding the solution of the normal

equations Aθ = b where A =

m

i 1

wi(xixi
T
) and b =

m

i 1

wi(xiyi). For the summation form, we divide the

computation among different mappers. In this case, one set of

mappers can be used to compute ∑subgroup wi(xixi
T
) and

another set to compute ∑subgroup wi(xiyi). Two reducers

respectively sum up the partial values for A and b, and the

algorithm finally computes the solution θ = A
-1

b. Note if wi

= 1, the algorithm reduces to the case of ordinary least

squares.

Naive Bayes (NB): In NB [6], we have to estimate P(xj = j | y

= 1), P(xjc= k | y =0), and P(y) from the training data. In

order to estimate, we need to sum over xj= k for each y label

in the training set to calculate P(x | y). We can specify

different set of mappers to calculate the following: ∑subgroup

1{ xj = k| y = 1}, ∑subgroup 1{ xj = k | y=0 }, ∑subgroup 1 { y = 1

}, ∑subgroup 1 { y = 0 }. The reducer then sums up

intermediate results to get the final result for the parameters.

Gaussian Discriminative Analysis (GDA): The classic

GDA algorithm [7] needs to learn the following four statistics

P(y); μ0; μ1 and ∑. For all the summation forms involved in

these computations, we can leverage the map-reduce

framework to parallelize the process. Each mapper will

handle the summation (i.e. ∑ 1{ yi = 1 }, ∑ 1{ yi = 0}, ∑ 1{

yi = 0} xi, etc) for a subgroup of the training samples. Finally,

the reducer can aggregate the intermediate sums and

calculate the final result for the parameters.

k-means: In k-means, the operation of computing the

Euclidean distance between the sample vectors and the

centroids can be parallelized by splitting the data into

individual subgroups and clustering samples in each

subgroup separately (by the mapper). To determine new

centroid vectors, we can divide the sample vectors into

subgroups, compute the sum of vectors in each subgroup in

parallel, and finally the reducer can add up the partial sums

and compute the new centroids.

Neural Network (NN): We can focus on back propagation

[8] by defining a network structure (we use a three layer

network with two output neurons classifying the data into two

categories), each mapper propagates its set of data through

the network. For each training data, the error is back

propagated to calculate the partial gradient for each of the

weights in the network. The reducer then sums the partial

gradient from each mapper and does a batch gradient descent

to update the weights of the network.

Principal Components Analysis (PCA): PCA [9] computes

the principle eigenvectors of the covariance matrix ∑

m

im 1

1
xixi

T
 -- μμ

T
 over the data. In the definition for ∑,

the term

m

i 1

xixi
T

is already expressed in summation form.

Further, we can also express the mean vector μ as a sum, μ =

m

im 1

1
xi. The sums can be mapped to separate mappers,

and then the reducer will sum up the partial results to

produce the final empirical covariance matrix.

Independent Component Analysis (ICA): ICA [10] tries to

identify the independent source vectors based on the

assumption that the observed data are linearly transformed

from the source data. In ICA, the objective is to compute the

unmixing matrix W. We can use batch gradient ascent to

optimize the W’s likelihood. In this, we can independently

calculate the expression [1 - 2g (w1
T
x

(i)
] x

(i)T
 in the

mappers and sum them up in the reducer.

5. Example

The Netflix Problem

Rating set: Over 100 million ratings by more than 480,000

users on over 17,000 movies.

Probe set: Around 1.4 million movie and user ids for which

predictions must be made. Actual ratings are provided, so we

can calculate the RMSE (root mean square error) rate.

Input Format: One text file containing data for a single

movie. Each of these files contains the movie identification

number of the movie as the first line. Every subsequent line

contains comma separated values for a rater identification

number, an integer rating greater than or equal to one and

less than or equal to five given by that rater, and the date on

which the movie was rated.

For example, 11674 (The Name of a Rose):

11674:

1331154, 4, 02-08-2004

551423, 5, 19-07-2004

716091, 4, 18-07-2005

Step 1: Data Preperation

Convert data to one line per movie:

movieID_D rater_i:rating_i,rater_j:rating_j,rater_k:rating_k,

movieID_E rater_u:rating_u, rater_v:rating_v,.....

For example the data for the movie "The Name of the Rose"

will be transformed into the format:

11674 1331154:4,551423:5,716091:4,1174530:3,...

Step 2: Canopy Selection

Distance metric: if a set of z number of people rate movie A

and the same set of z number of people rate movie B, then

movies A and B belong to the same canopy.

Using this metric canopies may overlap, or in other words a

movie may belong to multiple canopies. So far as each movie

belongs to at least one canopy the necessary condition of

canopy clustering will be met. Hence, in order for this to be

true the value z must not be too large as the canopies may be

Paper ID: ART20174894 2469

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 6, June 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

large and many data points may lie outside of canopies. If the

value of z is too small then the number of canopies will be

less and each canopy can have many data points. Hence, the

eventual expensive data clustering may not be very good.

Output is the canopy centers with their ratings data.

Map Step: Every mapper maintains a set containing the

canopy center candidates it has determined so far. During

every map the mapper checks if each successive movie is

within the distance threshold of any already determined

canopy center candidate. If the mapped movie is within the

minimum then it is discarded, otherwise it is added to the set

of canopy center candidates. The intermediate output sent to

the reducer has the movieID as the key and the list of

raterID-rating pairs as the value.

Reduce Step: The reducer repeats the same process. It takes

the candidate canopy center movieIDs but removes those

which are within the same threshold. In other words it

removes duplicate candidates for the same canopy center. In

order for this to work correctly the number of reducers is set

to one.

Step 3: Mark by Canopy

Mark each movie from the full data set from Step 1 with the

identification number of the canopies it belongs to. The two

inputs used for this step are the output from Step 1 and the

output from Step 2. The same distance metric from Step 2 is

used to determine if the movie belongs to a particular

canopy. The output will have the following format:

movie_A:

 rater_i:rating_i,rater_j:rating_j,..;canopy_U,canopy_V,..

Map Step: Each mapper will load the canopy centers

generated by Step 2. As each movie is received from the full

data set the mapper determines the list of canopy centers that

the movie is within, using the same distance metric from Step

2. The intermediate output is the movieID as the key and its

raterID-rating pairs and list of canopies as the value.

Reduce Step: The reducers simply output the map output.

Step 4: Expensive Clustering: k-Means

The expensive clustering steps do not change the full movie

data set. They merely move around the canopy centers so a

more accurate clustering is determined.

The K-means clustering is performed repeatedly until

convergence is achieved. In simple terms this means until the

k-centers no longer change. However, in practice this can

take an incredible amount of time or never be achieved at all.

So for testing purposes the algorithm can be run iteratively

up to five times and the final result considered converged.

The expensive distance metric used in this step is cosine

similarity. The two input data sets for this step are taken from

data sets marked with canopies created by Step 3 and initially

the canopy centers created by Step 2. The output will be a list

with the new cluster centers (movieID) as the key and

raterID-rating pairs list as its values in the same format as the

output of the canopy selection MapReduce (Step 2).

Map Step: Each mapper takes the k-centers from the

previous MapReduce into the memory. For the first iteration

the canopy centers generated by Step 2 are used. Each movie

that is mapped is also contains a list of the canopies it

belongs to. Using the expensive distance metric the mapper

determines which canopy the movie is closest to and outputs

the chosen canopyID as the key and the mapped movie as the

value.

Reduce Step: This step must determine the new center for

every canopyID that it receives from the mapper. The process

to do this involves determining the theoretical average movie

in a canopy, then finding the actual movie that is most similar

to this average value. When finding the average movie one

determines the set of raters that belong to a canopy. For each

of these raters it can be determined how they scored movies

on average. With this information we can use cosine

similarity to determine the movie most similar to this average

movie.

Step 5: Inverse Indexer

This phase outputs results that can be used. The aim is to

map each movie with a cluster center in an inverted index

format. Hence, the cluster center movie identification

numbers are used as the keys and the associated movie

identification numbers are used as the values. The two inputs

used for this step are the list of centroids and the full movie

set. The output has the following format:

movieID_centroid

movieID_A:similarityA,movieID_B:similarityB,...

Map Step: The map loads the cluster centers determined by

any one of the algorithms from Step 4. For each mapped

movie that is within the cheap distance metric from Step 2 of

any cluster center, the similarity is calculated for that movie

to the cluster center using the appropriate distance metric.

The intermediate output sent to the reducer will have the

cluster center as the key and the mapped movieID and

similarity as the value.

Reduce Step: The reduce simply concatenates the movieID

similarity pairs for each cluster center.

Step 6: Data Prediction

Map Step: The database can be queried to find several

similar movies using the following procedure:

a) If the movie is a cluster center then fetch several of the

most similar to it.

b) If the movie is not a cluster center:

 Find the cluster center it is closest to.

 Fetch several movies most similar to this cluster center.

The intermediate output sent to the reduce is keyed by

movieID and the value is a list of the similar movies.

Reduce Step: The reduce simply concatenates the similar

movies for a particular probe movie.

6. Conclusion

Because of its simplicity and fault tolerance, MapReduce

proves to be an admirable gateway to parallelizing machine

Paper ID: ART20174894 2470

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 6, June 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

learning applications. The benefits of easy development and

robust computation will come at a price in terms of

performance, which is negligible when compared to

advantages in terms of computation. Existing map-reduce

frameworks can be optimized for batch processing systems.

In this paper, by taking advantage of the summation form in a

map-reduce framework, we can parallelize a wide range of

machine learning algorithms MapReduce represents a

promising direction for future machine learning

implementations.

References

[1] M. Hilbert and P. L´opez, The worlds technological

capacity to store, communicate, and compute

information Science, 332(6025):60–65, 2011.

[2] A. Halevy, P. Norvig, and F. Pereira, "The unreasonable

effectiveness of data", IEEE Intelligent Systems, 24(2),

pp. 8–12, 2009.

[3] Cheng-Tao Chu, "Map-Reduce for machine learning on

multicore", In NIPS, 2007.

[4] T. Chilimbi, Y. Suzue, J. Apacible, and K.

Kalyanaraman. "Project Adam: Building an Efficient and

Scalable Deep Learning Training System", In USENIX

OSDI, 2014.

[5] R. E. Welsch and E. KUH, "Linear regression

diagnostics", In Working Paper 173, Nat. Bur. Econ.

Res.Inc, 1977.

[6] David Lewis, "Naive (bayes) at forty: The independence

asssumption in information retrieval", In ECML98:

Tenth European Conference On Machine Learning, 1998

[7] T. Hastie and R. Tibshirani, "Discriminant analysis by

gaussian mixtures", Journal of the Royal Statistical

Society, pages 155–176, 1996.

[8] R. J. Williams D. E. Rumelhart, G. E. Hinton, "Learning

representation by back-propagating errors", In Nature,

volume 323, pages 533–536, 1986.

[9] K. Esbensen Wold, S. and P. Geladi, "Principal

component analysis", In Chemometrics and Intelligent

Laboratory Systems, 1987.

[10] Sejnowski TJ. Bell AJ, "An information-maximization

approach to blind separation and blind deconvolution",

In Neural Computation, 1995.

[11] Jeffrey Dean and Sanjay Ghemawat, "MapReduce:

Simplified data processing on large clusters", In ACM

OSDI, 2004.

[12] Jim Gray "Scientific data managing in the coming

decade", Technical Report MSR-TR- 2005-10,

Microsoft Research, 2005.

[13] L. Bottou. Stochastic gradient descent tricks. In Neural

Networks: Tricks of the Trade, pages 421–436. Springer,

2012.

[14] A. Cotter, O. Shamir, N. Srebro, and K. Sridharan,

"Better mini-batch algorithms via accelerated gradient

methods", In NIPS, 2011.

[15] Y. Koren, R. Bell, and C. Volinsky, "Matrix

factorization techniques for recommender systems",

IEEE Computer, 42(8):30– 37, 2009.

[16] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis,

"Largescale matrix factorization with distributed

stochastic gradient descent", In ACM KDD, 2011.

[17] M. Li, T. Zhang, Y. Chen, and A. J. Smola, "Efficient

minibatch training for stochastic optimization", In ACM

KDD, 2014.

[18] H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A. Kumar, J.

Wei, W. Dai, G. R. Ganger, P. B. Gibbons, "Exploiting

bounded staleness to speed up big data analytics", In

USENIX ATC, 2014.

[19] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M.

Mc- Cauley, M. J. Franklin, S. Shenker, and I. Stoica,

"Resilient distributed datasets: A fault-tolerant

abstraction for in memory cluster computing", In

USENIX NSDI, 2012.

[20] H. Yun, H.-F. Yu, C.-J. Hsieh, S. Vishwanathan, and I.

Dhillon, "NOMAD: Non-locking, stOchastic Multi

machine algorithm for Asynchronous and Decentralized

matrix completion", In ACM VLDB, 2014.

Paper ID: ART20174894 2471

