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Abstract: Machine learning methods often improve their accuracy by using models with more parameters trained on large numbers of 

data sets. Building such models on a single machine is often impractical because of expansive measure of calculation required. In this 

paper, we focus on developing a general technique for parallel programming of some of the machine learning algorithms. Our work is 

in distinct to the tradition in machine learning of designing ways to speed up a single algorithm at a time .We show that algorithms that 

fit the Statistical Query model  can be composed in a certain “summation form,” which allows them to be effectively parallelized. The 

central idea of this approach  is  to allow a future programmer or user to accelerate machine learning applications. 
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1. Introduction 
 

Machine learning (ML) is becoming increasingly popular due 

to a confluence of factors: an abundance of data produced 

and captured in digital form [1]; an abundance of compute 

power and convenient access to it from various devices; and 

advances in the ML field, making it applicable to an ever 

growing number of situations [2]. The acceptance and 

success of ML, from natural language processing to image 

recognition to others, comes from the increasing accuracy 

achieved by ML applications. This accuracy is achieved 

partly through advances in ML algorithms, but also through 

using known algorithms with larger models trained on larger 

datasets [2]. Building these models on a single machine is 

often impractical because of the large amount of computation 

required, or may even be impossible for very large models 

such as those in state-of-the-art image recognition. 

 

2. A Taxonomy of the Machine Learning 

Algorithms 
 

While ML algorithms can be classified on many dimensions, 

the one we take primary interest in here is that of procedural 

character: the data processing pattern of the algorithm. Here, 

we consider single-pass, iterative and query-based learning 

techniques, along with several example algorithms and 

applications. 

 

2.1 Single-pass Learning 

 

Many machine learning applications make only one pass 

through a data set and extracts relevant statistics for later use 

during inference. This is generally used in natural language 

processing, from machine translation to information 

extraction to spam filtering. These applications often fit 

perfectly into the MapReduce abstraction, encapsulating the 

extraction of local contributions to the map task, then 

combining those contributions to compute relevant statistics 

about the dataset as a whole. Consider the following 

examples, illustrating common decompositions of these 

statistics. 

 

Estimating Language Model Multinomial: Extracting 

language models from a large corpus amounts to little more 

than counting n-grams, though some parameter smoothing 

over the statistics is also common. The map phase 

enumerates the n-grams in each training instance and the 

reduce function counts instances of n-grams. 

 

Feature Extraction for Naive Bayes Classifiers: 

Estimating parameters for a naive Bayes classifier, or any 

fully observed Bayes net, again requires counting occurences 

in the training data. In this case, however, feature extraction 

is often computation-intensive, perhaps involving small 

search or optimization problems for each datum. The reduce 

task, is a summation of each (feature, label) environment 

pair. 

 

Syntactic Translation Modeling: Generating a syntactic 

model for machine translation is an example of a research-

level machine learning application that involves only a single 

pass through a preprocessed training set. Each training datum 

consists of a pair of sentences in two languages, an estimated 

alignment between the words in each, and an estimated 

syntactic parse tree for one sentence. The per-datum feature 

extraction encapsulated in the map phase for this task 

involves search over these coupled data structures. 

 

2.2 Iterative Learning 

 

The class of iterative machine learning  algorithms can also 

be expressed within the framework of MapReduce by 

chaining together multiple MapReduce tasks [3]. While such 

algorithms vary widely in the type of operation they perform 

on each datum (or pair of data) in a training set, they share 

the common characteristic that a set of parameters is matched 

to the data set via iterative improvement. The update to these 

parameters across iterations must again decompose into per-

datum contributions.  In the examples below, the contribution 

to parameter updates from each datum (the map function) 

depends in a meaningful way on the output of the previous 

iteration. For example, the expectation computation of EM or 

the inference computation in an SVM or perceptron classifier 

can reference a large portion or all of the parameters 

generated by the algorithm. Hence, these parameters must 

remain available to the map tasks in a distributed 

environment. The information necessary to compute the map 

step of each algorithm is described below; the complications 
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that arise because this information is vital to the computation 

are investigated later in the paper. 

 

Expectation Maximization (EM): The well-known EM 

algorithm maximizes the likelihood of a training set given a 

generative model with latent variables. The E-step of the 

algorithm computes posterior distributions over the latent 

variables given current model parameters and the observed 

data. The maximization step adjusts model parameters to 

maximize the likelihood of the data assuming that latent 

variables take on their expected values. Projecting onto the 

MapReduce framework, the map task computes posterior 

distributions over the latent variables of a datum using 

current model parameters; the maximization step is 

performed as a single reduction, which sums the sufficient 

statistics and normalizes to produce updated parameters. 

 

We consider applications for machine translation and speech 

recognition. For multivariate Gaussian mixture models (e.g., 

for speaker identification), these parameters are simply the 

mean vector and a covariance matrix. For HMM-GMM 

models (e.g., speech recognition), parameters are also needed 

to specify the state transition probabilities; the models, 

efficiently stored in binary form, occupy tens of megabytes. 

For word alignment models (e.g., machine translation), these 

parameters include word-to-word translation probabilities; 

these can number in the millions, even after pruning 

heuristics remove the unnecessary parameters. 

 

Discriminative Classification and Regression: When 

fitting model parameters via a perceptron, boosting, or 

support vector machine algorithm for classification or 

regression, the map stage of training will involve computing 

inference over the training example given the current model 

parameters. Similar to the EM case, a subset of the 

parameters from the previous iteration must be available for 

inference. However, the reduce stage typically involves 

summing over parameter changes. Thus, all relevant model 

parameters must be broadcast to each map task. 

 

2.3 Query-based Learning with Distance Metrics 

 

Consider distance-based machine learning applications that 

directly reference the training set during inference, such as 

the nearest-neighbor classifier. In this setting, the training 

data are the parameters, and a query instance must be 

compared to each training datum.  

 

Multiple query instances can be processed simultaneously 

within a MapReduce  implementation of these techniques, the 

query set must be sent to all map tasks. Again, we have a 

need for the distribution of state information. The query 

information that must be distributed to all map tasks need not 

be processed concurrently – a query set can be broken up and 

processed over multiple MapReduce operations. In the 

examples below, each query instance tends to be of a 

manageable size. 

 

K-nearest Neighbors Classifier: The nearest-neighbor 

classifier compares each element of a query set to each 

element of a training set, and discovers examples with 

minimal distances from the queries. The map stage computes 

distance metrics, while the reduce stage tracks k examples for 

each label that have minimal distance to the query. 

 

Similarity-based Search: Finding the most similar instances 

to a given query has a similar character, sifting through the 

training set to find examples that minimize a distance metric. 

Computing the distance is the map stage, while minimizing it 

is the reduce stage. 

 

3. Distributed Machine Learning 
 

Machine learning algorithms generalize from data. Machine 

learning algorithms train over data to create a model 

representation that can predict outcomes (regression or 

classification) for new unseen data. More formally, given a 

training set {(x1, y1), (x2, y2),....., (xn, yn)}, the goal of model 

training is to determine the distribution function f such that y 

= f(x, w). The input x may consist of different features and 

the model consists of parameters w, representing the weights 

of individual features to compute y. The goal of model 

training is to estimate the values of model parameters w. 

During model testing, this model is tested using an unseen set 

of xt to compare against ground truth (already known yt), to 

determine the model accuracy. Thus, machine learning 

algorithms train to minimize the loss, which represents some 

function that evaluates the difference between estimated and 

true values for the test data. 

 

Model training algorithms are iterative, and the algorithm 

starts with an initial guess of the model parameters and learns 

incrementally over data, and refines the model every 

iteration, to converge to a final acceptable value of the model 

parameters. Model training time can last from minutes to 

weeks and is often the most time consuming aspect of the 

learning process. Model training time also hurts model 

refinement process since longer training times limit the 

number of times the model configuration parameters can be 

tuned through re execution. 

 

Machine learning algorithms can benefit from a scale-out 

computing platform support in multiple ways: First, these 

algorithms train on large amounts of data, which improves 

model accuracy. Second, they can train large models that 

have hundreds of billions of parameters or require large 

computation such as very large neural networks for large 

scale image classification or genomic applications [4]. 

Training with more data is done by data parallelism, which 

requires replicating the model over different machines with 

each model training over a portion of data. The replicas 

synchronize the model parameters after a fix number of 

iterations. Training large models requires the model to be 

split across multiple machines, and is referred to as model 

parallelism. 

 

4. Tailoring Machine Learning Algorithms for 

MapReduce 
 

In this section, we will briefly discuss the algorithms that can 

be expressed in summation form. In the following, x or xi 

denotes a training vector and y or yi denotes a training label. 
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Locally Weighted Linear Regression (LWLR) 

LWLR [5] is solved by finding the solution of the normal 

equations Aθ = b  where A = 


m

i 1

wi(xixi
T
) and b = 




m

i 1

wi(xiyi).  For the summation form, we divide the 

computation among different mappers. In this case, one set of 

mappers  can be used to compute ∑subgroup wi(xixi
T
) and 

another set to compute ∑subgroup wi(xiyi). Two reducers 

respectively sum up the partial values for A and b, and the 

algorithm finally computes the solution  θ = A
-1

b. Note  if wi 

= 1, the algorithm reduces to the case of ordinary least 

squares. 

 

Naive Bayes (NB): In NB [6], we have to estimate P(xj = j | y 

= 1), P(xjc= k | y =0), and P(y) from the training data. In 

order to estimate, we need to sum over xj= k for each  y  label 

in the training set to calculate P(x | y). We can  specify 

different set of mappers to calculate the following: ∑subgroup 

1{ xj = k| y = 1}, ∑subgroup 1{ xj = k | y=0 }, ∑subgroup 1 { y = 1 

}, ∑subgroup 1 { y = 0 }. The reducer then sums up 

intermediate results to get the final result for the parameters. 

 

Gaussian Discriminative Analysis (GDA): The classic 

GDA algorithm [7] needs to learn the following four statistics 

P(y); μ0; μ1 and ∑. For all the summation forms involved in 

these computations, we can leverage the map-reduce 

framework to parallelize the process. Each mapper will 

handle the summation (i.e. ∑ 1{ yi = 1 }, ∑ 1{ yi = 0}, ∑ 1{ 

yi = 0} xi, etc) for a subgroup of the training samples. Finally, 

the reducer can aggregate the intermediate sums and 

calculate the final result for the parameters. 

 

k-means: In k-means, the operation of computing the 

Euclidean distance between the sample vectors and the 

centroids can be parallelized by splitting the data into 

individual subgroups and clustering samples in each 

subgroup separately (by the mapper). To determine new 

centroid vectors, we can divide the sample vectors into 

subgroups, compute the sum of vectors in each subgroup in 

parallel, and finally the reducer can add up the partial sums 

and compute the new centroids. 

 

Neural Network (NN): We  can focus on back propagation 

[8] by defining a network structure (we use a three layer 

network with two output neurons classifying the data into two 

categories), each mapper propagates its set of data through 

the network. For each training data, the error is back 

propagated to calculate the partial gradient for each of the 

weights in the network. The reducer then sums the partial 

gradient from each mapper and does a batch gradient descent 

to update the weights of the network. 

 

Principal Components Analysis (PCA): PCA [9] computes 

the principle eigenvectors of the covariance matrix  ∑   




m

im 1

1
xixi

T
  --  μμ

T
 over the data. In the definition for ∑, 

the term 


m

i 1

xixi
T 

is already expressed in summation form. 

Further, we can also express the mean vector  μ as a sum, μ = 




m

im 1

1
xi. The sums can be mapped to separate mappers, 

and then the reducer will sum up the partial results to 

produce the final empirical covariance matrix. 

 

Independent Component Analysis (ICA): ICA [10] tries to 

identify the independent source vectors based on the 

assumption that the observed data are linearly transformed 

from the source data. In ICA, the objective is to compute the 

unmixing matrix W. We can use batch gradient ascent to 

optimize the W’s likelihood. In this, we can independently 

calculate the expression [ 1 - 2g (w1
T
x

(i) 
] x

(i)T
 in the 

mappers and sum them up in the reducer. 

 

5. Example 
 

The Netflix Problem 

Rating set: Over 100 million ratings by more than 480,000 

users on over 17,000 movies. 

 

Probe set:  Around 1.4 million movie and user ids for which 

predictions must be made. Actual ratings are provided, so we 

can calculate the RMSE (root mean square error) rate. 

 

Input Format: One text file containing data for a single 

movie. Each of these files contains the movie identification 

number of the movie as the first line. Every subsequent line 

contains comma separated values for a rater identification 

number, an integer rating greater than or equal to one and 

less than or equal to five given by that rater, and the date on 

which the movie was rated.  

 

For example, 11674 (The Name of a Rose): 

11674: 

1331154, 4, 02-08-2004 

551423, 5, 19-07-2004 

716091, 4, 18-07-2005 

 

Step 1: Data Preperation 

Convert data to one line per movie: 

movieID_D  rater_i:rating_i,rater_j:rating_j,rater_k:rating_k,  

movieID_E  rater_u:rating_u, rater_v:rating_v,..... 

For example the data for the movie "The Name of the Rose" 

will be transformed into the format: 

11674 1331154:4,551423:5,716091:4,1174530:3,... 

 

Step 2: Canopy Selection 

Distance metric: if a set of z number of people rate movie A 

and the same set of z number of people rate movie B, then 

movies A and B belong to the same canopy.  

 

Using this metric canopies may overlap, or in other words a 

movie may belong to multiple canopies. So far as each movie 

belongs to at least one canopy the necessary condition of 

canopy clustering will be met. Hence, in order for this to be 

true the value z must not be too large as the canopies may be 
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large and many data points may lie outside of canopies. If the 

value of z is too small then the number of canopies will be 

less and each canopy can have many data points. Hence, the 

eventual expensive data clustering may not be very good. 

Output is the canopy centers with their ratings data. 

 

Map Step: Every mapper maintains a set containing the 

canopy center candidates it has determined so far. During 

every map the mapper checks if each successive movie is 

within the distance threshold of any already determined 

canopy center candidate. If the mapped movie is within the 

minimum then it is discarded, otherwise it is added to the set 

of canopy center candidates. The intermediate output sent to 

the reducer has the movieID as the key and the list of 

raterID-rating pairs as the value. 

 

Reduce Step: The reducer repeats the same process. It takes 

the candidate canopy center movieIDs but removes those 

which are within the same threshold. In other words it 

removes duplicate candidates for the same canopy center. In 

order for this to work correctly the number of reducers is set 

to one. 

 

Step 3: Mark by Canopy 

Mark each movie from the full data set from Step 1 with the 

identification number of the canopies it belongs to. The two 

inputs used for this step are the output from Step 1 and the 

output from Step 2. The same distance metric from Step 2 is 

used to determine if the movie belongs to a particular 

canopy. The output will have the following format: 

movie_A:

 rater_i:rating_i,rater_j:rating_j,..;canopy_U,canopy_V,.. 

 

Map Step: Each mapper will load the canopy centers 

generated by Step 2. As each movie is received from the full 

data set the mapper determines the list of canopy centers that 

the movie is within, using the same distance metric from Step 

2. The intermediate output is the movieID as the key and its 

raterID-rating pairs and list of canopies as the value. 

Reduce Step: The reducers simply output the map output. 

 

Step 4: Expensive Clustering: k-Means 

The expensive clustering steps do not change the full movie 

data set. They merely move around the canopy centers so a 

more accurate clustering is determined. 

 

The K-means clustering is performed repeatedly until 

convergence is achieved. In simple terms this means until the 

k-centers no longer change. However, in practice this can 

take an incredible amount of time or never be achieved at all. 

So for testing purposes the algorithm can be run iteratively 

up to five times and the final result considered converged. 

The expensive distance metric used in this step is cosine 

similarity. The two input data sets for this step are taken from 

data sets marked with canopies created by Step 3 and initially 

the canopy centers created by Step 2. The output will be a list 

with the new cluster centers (movieID) as the key and 

raterID-rating pairs list as its values in the same format as the 

output of the canopy selection MapReduce (Step 2). 

 

Map Step: Each mapper takes the k-centers from the 

previous MapReduce into the memory. For the first iteration 

the canopy centers generated by Step 2 are used. Each movie 

that is mapped is also contains a list of the canopies it 

belongs to. Using the expensive distance metric the mapper 

determines which canopy the movie is closest to and outputs 

the chosen canopyID as the key and the mapped movie as the 

value. 

 

Reduce Step: This step must determine the new center for 

every canopyID that it receives from the mapper. The process 

to do this involves determining the theoretical average movie 

in a canopy, then finding the actual movie that is most similar 

to this average value. When finding the average movie one 

determines the set of raters that belong to a canopy. For each 

of these raters it can be determined how they scored movies 

on average. With this information we can use cosine 

similarity to determine the movie most similar to this average 

movie. 

 

Step 5: Inverse Indexer 

 

This phase outputs results that can be used. The aim is to 

map each movie with a cluster center in an inverted index 

format. Hence, the cluster center movie identification 

numbers are used as the keys and the associated movie 

identification numbers are used as the values. The two inputs 

used for this step are the list of centroids and the full movie 

set. The output has the following format: 

movieID_centroid 

movieID_A:similarityA,movieID_B:similarityB,... 

 

Map Step: The map loads the cluster centers determined by 

any one of the algorithms from Step 4. For each mapped 

movie that is within the cheap distance metric from Step 2 of 

any cluster center, the similarity is calculated for that movie 

to the cluster center using the appropriate distance metric. 

The intermediate output sent to the reducer will have the 

cluster center as the key and the mapped movieID and 

similarity as the value. 

Reduce Step: The reduce simply concatenates the movieID 

similarity pairs for each cluster center. 

 

Step 6: Data Prediction 

 

Map Step: The database can be queried to find several 

similar movies using the following procedure:   

a) If the movie is a cluster center then fetch several of the 

most similar to it. 

b) If the movie is not a cluster center: 

 Find the cluster center it is closest to. 

 Fetch several movies most similar to this cluster center. 

 

The intermediate output sent to the reduce is keyed by 

movieID and the value is a list of the similar movies. 

 

Reduce Step: The reduce simply concatenates the similar 

movies for a particular probe movie. 

 

6. Conclusion 
 

Because of its simplicity and fault tolerance, MapReduce 

proves to be an admirable gateway to parallelizing machine 
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learning applications. The benefits of easy development and 

robust computation will come at a price in terms of 

performance, which is negligible when compared to 

advantages in terms of computation. Existing map-reduce 

frameworks can be optimized for batch processing systems. 

In this paper, by taking advantage of the summation form in a 

map-reduce framework, we can parallelize a wide range of 

machine learning algorithms MapReduce represents a 

promising direction for future machine learning 

implementations. 
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