
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 6 Issue 6, June 2017 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

An Alternative Approach for Selecting Ridge 

Parameter for Ordinary Ridge Regression Estimator 

 

Hazim Mansoor Gorgees
1
, Fatimah Assim Mahdi

2 

 
1, 2Department of Mathematics, College of Education for Pure Science, Ibn-Al-Haitham, University of Baghdad, Iraq 

 

 

Abstract: In the presence of multicollinearity, the parameter estimation method based on the ordinary least squares procedure is 

unsatisfactory. In 1970, Hoerl and Kennard introduced alternative method distinguished as ridge regression estimator. In such 

estimator, ridge parameter or biasing constant plays an important role in estimation. Various methods were suggested by many 

researchers for choosing the ridge parameter. In this article we employed the concept of condition number to suggest a new method for 

selecting the ridge parameter. The performance of the proposed method is assessed and compared with other traditional methods 

through simulation study in terms of mean square error (MSE). The method developed in this paper seems to be reasonable since it has 

smaller MSE than the other stated methods. 
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1. Introduction 
 

In this article we deal with classical linear regression model: 

𝑦 = 𝑋𝛽 + 𝜀         …         (1) 

where 

y is(n1)vector of response variable, 

X is (np)matrix of explanatory variables and n > p, 

is(p 1)vector of unknown parameters, 

is(n 1)vector of unobservable random errors and 

𝐸 𝜀 = 0   ,    𝑣𝑎𝑟 𝜀 = 𝜎2𝐼 
 

Currently, a considerable attention is focused on biased 

estimation of the regression model. This attention is due to 

the inability of ordinary least squares to provide reasonable 

point estimates when the matrix of explanatory variables is 

ill conditioned. Despite possessing the very desirable 

property of being minimum variance in the class of linear 

unbiased estimators under the usual conditions imposed on 

the model, the ordinary least squares estimators can 

nevertheless, have extremely large variances when the data 

are inter correlated which is one form of ill conditioning. 

Much researches; therefore, on obtaining biased estimators 

with better overall performance than the ordinary least 

squares estimators were conducted. This paper states the 

ridge regression estimators as an alternative to the ordinary 

least squares estimators with multicollineardata. In contrast 

to ordinary least squares, these estimators allow a small 

amount of bias in order to achieve a major reduction in the 

variance. 

 

2. The Case of Multicollinearity 
 

The problem of multicollinearity occurs when there exists an 

exact linear relationship or an approximate linear 

relationship among two or more explanatory variables, two 

types of multicollinearity may be faced in regression 

analysis, exact and near multicollnearity. During regression 

calculations, the exact linear relationship causes a division 

by zero which in turncauses the calculations to be aborted. 

When the relationship is not exact, the division by zero does 

not occur and the calculations will not abort. However, the 

division by a very small quantity still distorts the results. 

Hence, one of the first steps in regression analysis is to 

determine if multicollinearity is a problem. 

 

Multicollinearity can be thought of as a situation where two 

or more explanatory variables in the data set move together, 

as a consequence it is impossible to use this data set to 

decide which of the explanatory variables is producing the 

observed change in the response variable. 

 

Some multicollinearty is nearly always present, but the 

important point is whether it is serious enough to cause 

appreciable damage to the regression analysis. Indicators of 

multicollineaity include a low determinant of the information 

matrix X'X, a very high correlation among two or more 

explanatory variables, very high correlation among two or 

more estimated coefficients, a very small (near zero) eigen 

values of the correlation matrix of the explanatory variables 

and the too large condition number. Relationship is existing 

between two or more independent variables. 

 

3. The Class of Shrinkage Estimators  
 

Applying the singular value decomposition technique we can 

decompose the matrix X as follows [1] 

𝑋 = 𝐻 Λ
1

2 𝐺′          …        (2) 

where H is(𝑛 × 𝑝)matrix satisfying 𝐻′𝐻 = 𝐼𝑝 , Λ
1

2is a 

(𝑝 × 𝑝)diagonal matrix of ordered singular values of X. 

λ1

1

2  ≥ λ2

1

2 ≥ ⋯ ≥ λ𝑝

1

2 > 0, G is a(𝑝 × 𝑝)orthogonal matrix 

whose columns represent the normalized eigenvectors of 

X'X. 

 

Consequently, the ordinary least squares estimator of the 

regression parameters vector  can be rewritten as: 

𝑏𝑂𝐿𝑆 =  𝑋′𝑋 −1 𝑋′ 𝑌 

=  𝐺 Λ 𝐺 ′ −1 𝐺 Λ
1

2𝐻′ 𝑌 

= 𝐺 Λ
−1

2 𝐻′𝑌 = 𝐺 𝐶 

Where𝐶 = Λ
−1

2 𝐻′𝑌 = 𝐺 ′  𝑏𝑂𝐿𝑆  is the vector of uncorrelated 

components of𝑏𝑂𝐿𝑆 . 
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This can be noticed by considering the variance-covariance 

matrix of C that can be easily shown to equal the diagonal 

matrix𝜎2Λ−1. 

 

The generalized shrinkage estimators denoted by SHb can be 

defined as: 

𝑏𝑆𝐻 = 𝐺 ∆ 𝐶 =  𝑔 𝑗𝛿𝑗𝐶𝑗
𝑝
𝑗=1       …      (3) 

Where: 

𝑔 𝑗 is the 𝑗𝑡ℎcolumn of the matrix G. 

𝛿𝑗 is the 𝑗𝑡ℎdiagonal element of the shrinkage factorsdiagonal 

matrix∆,0 ≤ 𝛿𝑗 ≤ 1, 𝑗 = 1, 2, … , 𝑝, and𝐶𝑗 is the 𝑗𝑡ℎelement 

of the uncorrelated components vector C. 

 

4. Ordinary Ridge Regression Estimators 
 

The most popular method that has been proposed to deal 

with multicollinearity problem is the ordinary ridge 

regression. 

 

This method is the modification of ordinary least squares 

method to allow biased estimators of regression coefficients. 

The ridge estimators depend crucially upon an exogenous 

parameter, say k, called the ridge parameter or the biasing 

parameter of the estimator. For any k 0 , the corresponding 

ordinary ridge estimator denoted by𝑏𝑅𝑅 is defined as: 

𝑏𝑅𝑅 =  𝑋′𝑋 + 𝑘 𝐼 −1  𝑋′ 𝑌    …        (4) 

Where𝑘 ≥ 0is a constant selected by the statistician 

according to some intuitively plausible criteria put forward 

by Hoerl and Kennard [2]. 

It can be shown that the ridge regression estimator given in 

equation (4) is a member of the class of shrinkage estimators 

as follows: 

By using matrix algebra and singular value decomposition 

approach we get: 

𝑏𝑅𝑅 =  𝑋′𝑋 + 𝑘 𝐼 −1 𝑋′ 𝑌 

=  𝐺 Λ + 𝑘 𝐼  𝐺′ −1  𝐺 Λ
1

2𝐻′ 𝑌 

= 𝐺  Λ + 𝑘 𝐼  −1  𝐺′𝐺 Λ
1

2𝐻′ 𝑌 

= 𝐺  Λ + 𝑘 𝐼  −1Λ
1

2𝐻′ 𝑌 

= 𝐺   Λ + 𝑘 𝐼  −1Λ Λ
−1

2 𝐻′𝑌 = 𝐺 ∆ 𝐶  …     (5) 

Where: ∆ =  Λ + 𝑘 𝐼  −1Λ 

Equivalently, the shrinkage factors δj,j = 1,2, … , pof the 

ridge estimator has the form: 

𝛿𝑗 =
λ𝑗

λ𝑗 +𝐾
              …     (6) 

Where λ𝑗 is the 𝑗𝑡ℎ  element (eigenvalue) of the diagonal 

matrixΛ, and K is the ridge parameter. 

The mean square error of ordinary ridge regression estimator 

can easily demonstrated to be[2]. 

𝑀𝑆𝐸 𝑏𝑅𝑅 = 𝜎2  
λ𝑖

 λ𝑖+𝐾 2 + 𝐾2𝛽′ 𝑋′𝑋 + 𝑘 𝐼 −2𝛽
𝑝
𝑖=1 …(7) 

The first term can be shown to be the sum of variances(total 

variance) of the parameter estimates and the second term can 

be considered to be the square of the bias introduced when 

𝑏𝑅𝑅  is used instead of𝑏𝑂𝐿𝑆 . 

 

5. Choice of Ridge Parameter 
 

The ordinary ridge regression estimator does not provide a 

unique solution to the multicollinearity problem, but provide 

a family of solutions. These solutions depend upon the value 

of k (the ridge parameter). No explicit optimum value can be 

found for k. Yet, several stochastic choices have been 

proposed for this ridge parameter. Some of these choices 

may be summarized as follows 

 

Hoerl and Kennard (1970).Suggested graphical method 

called ridge traceto select the value of the ridge parameter k. 

When viewing the ridge trace, the analyst picks the value of 

k for which the regression coefficients have stabilized. 

 

Often, the regression coefficients will vary widely for small 

values of k and then stabilize. We have to choose the 

smallest value of k(which introduces the smallest bias) after 

which the regression coefficients have seem to remain 

constant. 

 

Hoerl, Kennard and Baldwin in (1975),proposed another 

method to select a single value of K given as[3] 

𝐾 𝐻𝐾𝐵 =
𝑝  𝑆2

𝑏𝑂𝐿𝑆 ′   𝑏𝑂𝐿𝑆
       …        (8)  

Where p is the number of explanatory variables, 𝑆2is the 

OLS estimator of𝜎2and 𝑏𝑂𝐿𝑆 is the OLS estimator of the 

vector of regression coefficients 𝛽. 

 

Lawless and Wang (1976)proposed selecting the value of K 

by using the formula [4] 

𝐾 𝐿𝑊 =
𝑝  𝑆2

𝑏𝑂𝐿𝑆 ′  𝑋′𝑋 𝑏𝑂𝐿𝑆
       …        (9) 

 

Assuming that the regression coefficients vector has certain 

prior distribution srivastava followed Bayesian approach to 

estimate the ridge parameter. He concluded that [5] 

𝐾 𝐵𝑎𝑦𝑒𝑠 = 𝑀𝑎𝑥  0,
𝑡𝑟 (𝑋′𝑋)

 
𝑛−𝑝−3

𝑛−𝑝−1
 
𝑏𝑂𝐿𝑆 ′  𝑋′𝑋 𝑏𝑂𝐿𝑆

𝑆2  − 𝑝 
  

…(10) 

Where 𝑡𝑟 (𝑋′𝑋) denote the trace of the matrix 𝑋′𝑋. 

 

6. Proposed Method 
 

Our contribution in this topic represented by utilizing the 

concept of condition number in order to select the ridge 

parameter. The condition number is defined to be the ratio of 

the largest to the smallest singular value of the matrix of the 

explanatory variables X. 

 

The suggested estimator denoted as𝐾 𝐶𝑁  is defined as: 

𝐾 𝐶𝑁 = 𝑀𝑎𝑥  0,
𝑝  𝑆2

𝑏𝑂𝐿𝑆 ′  𝑏𝑂𝐿𝑆
−

1

𝐶𝑁
     …      (11) 

Where CN referred to condition number. 

 

Our proposed estimator is the modification ofK HKB . 

The small amount
1

CN
 is subtracted fromK HKB . 

This amount, however, varies with the strength of 

multicollinearity in the model. 

 

If the condition number is too large, thenK CN  would coincide 

withK HKB  since in such case, the fraction
1

CN
 would approach 

to zero. 
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On the other hand if the condition number is too small 

(approximately equal to 1) then the possibility 

that 
𝑝  𝑆2

𝑏𝑂𝐿𝑆 ′  𝑏𝑂𝐿𝑆
−

1

𝐶𝑁
 be negative is too large. 

 

In this case we chooseK CN  to be equal to zero which means 

that the ridge regression estimator would coincide with the 

ordinary least squares estimator and the data set is not 

influenced by the multicollinearity problem. 

 

7. Generalized Ridge Regression 
 

Again, using the singular value decomposition technique in 

order to derive the generalized ridge regression, we can 

rewrite the linear regression model as 

𝑦 = 𝑋 𝛽 + 𝜖 =  𝐻Λ
1

2  𝐺′𝛽 + 𝜖 

Or 

𝑦 = 𝑍 𝛼 + 𝜖         …         (12) 

Where: 

𝑍 = 𝐻Λ
1

2     ,    𝛼 = 𝐺 ′𝛽 

The model in equation (12) is called the canonical model or 

uncorrelated components model. The OLS estimator of𝛼is 

given as 

𝛼𝑂𝐿𝑆 =  𝑍′𝑍 −1𝑍′𝑦 = Λ−1𝑍′𝑦    …      (13) 

And𝑉𝑎𝑟 𝛼𝑂𝐿𝑆 = 𝜎2 𝑍′𝑍 −1 = 𝜎2Λ−1 which is diagonal.  

 

This shows the important property of this parameterization 

since the elements of𝛼𝑂𝐿𝑆 , namely, 𝛼1, 𝛼2, … , 𝛼𝑝 𝑂𝐿𝑆
are 

uncorrelated. 

The generalized ridge estimator for𝛼is given by: 

𝛼𝐺𝑅𝑅 =  𝑍′𝑍 + 𝐾 −1𝑍′𝑦 =  Λ + K −1𝑍′𝑦   …   (14) 

=  Λ + K −1𝑍′𝑍 𝛼𝑂𝐿𝑆 =  I + K Λ−1 −1 𝛼𝑂𝐿𝑆  

𝑊𝐾  𝛼𝑂𝐿𝑆 = 𝑑𝑖𝑔  
λ𝑖

λ𝑖 + 𝐾𝑖

  𝛼𝑂𝐿𝑆      ,      𝑖 = 1, 2, … , 𝑝 

Where 𝐾 = 𝑑𝑖𝑔  𝐾1 , 𝐾2 , … , 𝐾𝑝  and: 

𝑊𝐾 =  I + K Λ−1 −1 = 𝑑𝑖𝑔  
λ𝑖

λ𝑖 + 𝐾𝑖

    ,   𝑖 = 1,2, … , 𝑝 

The mean square error of𝛼𝐺𝑅𝑅 is given by: 

𝑀𝑆𝐸 𝛼𝐺𝑅𝑅 = 𝑣𝑎𝑟 𝛼𝐺𝑅𝑅 +  𝑏𝑖𝑎𝑠 𝛼𝐺𝑅𝑅  𝑏𝑖𝑎𝑠 𝛼𝐺𝑅𝑅 ′ 
= 𝜎2 𝑡𝑟 𝑊𝐾Λ

−1𝑊𝐾
′  +  𝑊𝐾 − 𝐼  𝛼𝑂𝐿𝑆  𝛼𝑂𝐿𝑆 𝑊𝐾 − 𝐼 ′ 

= 𝜎2  
λ𝑖

 λ𝑖+𝐾𝑖 
2

𝑝
𝑖=1 +  

K𝑖
2+𝛼2

𝑖 𝑂𝐿𝑆  

 λ𝑖+𝐾𝑖 
2

𝑝
𝑖=1    …     (15) 

To obtain the value of𝐾𝑖 that minimize𝑀𝑆𝐸 𝛼𝐺𝑅𝑅  

We differentiate equation (15) with respect to𝐾𝑖and equating 

the resultant derivative to zero. Thus 

𝜕𝑀𝑆𝐸 𝛼𝐺𝑅𝑅 

𝜕𝐾𝑖

= −𝜎2  
λ𝑖

 λ𝑖 + 𝐾𝑖 
3

𝑝

𝑖=1

+  
λ𝑖K𝑖𝛼

2
𝑖 𝑂𝐿𝑆 

 λ𝑖 + 𝐾𝑖 
3

𝑝

𝑖=1

= 0 

Solving for𝐾𝑖  we obtain 𝐾𝑖 =
𝜎2

𝛼2
𝑖 𝑂𝐿𝑆  

 

Since the value of 𝜎2is usually unknown, we use the 

estimated value𝜎 2. Therefore, when the matrix K satisfies 

𝐾 𝑖 =
𝜎 2

𝛼2
𝑖 𝑂𝐿𝑆 

= 𝑑𝑖𝑔  
𝜎 2

𝛼2
1 𝑂𝐿𝑆 

,
𝜎 2

𝛼2
2 𝑂𝐿𝑆 

, … ,
𝜎 2

𝛼2
𝑝 𝑂𝐿𝑆 

  

Then the MSE of generalized ridge regression attains the 

minimum value. 

 

The original form of generalized ridge regression estimator 

can be converted back from the canonical form by 

𝑏 𝐺𝑅𝑅 = 𝐺 𝛼𝐺𝑅𝑅          …       (16) 

8. The Simulation Results 
 

To exhibit multicollinearity in the simulated data, we use 

different degrees of correlation between the variables 

included in the model. Specifically, we assume correlation 

values to be𝜌 = 0.70, 0.90 𝑎𝑛𝑑 0.95four predictor variables 

have been generated. Since the performance of different 

estimators is influenced by the sample size, we have used 

three types of samples, small of size 10, median of size 40 

and large of size 100. The standard deviations of the error 

terms are taken as𝜎 = 5, 10 𝑎𝑛𝑑 20. Ordinary ridge 

estimates are computed using different ridge parameters 

given in equations (8) to (11) and the generalized ridge 

estimate is obtained from equation (16). 

 

The mean square error (MSE) is used as a criterion in order 

to assess the performance of the stated methods. This 

experiment is repeated 1000 times. And the results are 

presented in tables below 

 

Table 1: The values of MSE at𝜌 = 0.70 

n 
Method 

 

Standard deviation 𝜎 

5 10 20 

10 

𝐺𝑅𝑅  0.0197 0.0227 0.0233 

𝐾 𝐻𝐾𝐵  0.0229 0.0238 0.0235 

𝐾 𝐿𝑊 0.0024 0.0024 0.0024 

𝐾 𝐵𝑎𝑦𝑒𝑠  0.0039 0.0039 0.0039 

𝐾 𝐶𝑁  7.3728e-017 7.3728e-017 7.3728e-017 

40 

𝐺𝑅𝑅  0.0126 0.0125 0.0125 

𝐾 𝐻𝐾𝐵  0.0764 0.0747 0.0742 

𝐾 𝐿𝑊 0.0031 0.0031 0.0031 

𝐾 𝐵𝑎𝑦𝑒𝑠  0.1128 0.1134 0.1136 

𝐾 𝐶𝑁  0.0037 5.7051e-018 7.5922e-017 

100 

𝐺𝑅𝑅  0.0078 0.0078 0.0078 

𝐾 𝐻𝐾𝐵  0.0355 0.0303 0.0273 

𝐾 𝐿𝑊 4.3631e-004 4.3625e-004 4.3623e-004 

𝐾 𝐵𝑎𝑦𝑒𝑠  0.0436 0.0438 0.0439 

𝐾 𝐶𝑁  0.0012 3.8272e-004 3.9968e-017 

 

Table 2: The values of MSE at𝜌 = 0.90 

n 
Method 

 

Standard deviation 𝜎 

5 10 20 

10 

𝐺𝑅𝑅  0.0192 0.0226 0.0232 

𝐾 𝐻𝐾𝐵  0.0227 0.0238 0.0235 

𝐾 𝐿𝑊 0.0024 0.0024 0.0024 

𝐾 𝐵𝑎𝑦𝑒𝑠  0.0039 0.0039 0.0039 

𝐾 𝐶𝑁  1.0533e-017 6.6706e-017 6.6706e-017 

40 

𝐺𝑅𝑅  0.0126 0.0125 0.0125 

𝐾 𝐻𝐾𝐵  0.0766 0.0748 0.0742 

𝐾 𝐿𝑊 0.0031 0.0031 0.0031 

𝐾 𝐵𝑎𝑦𝑒𝑠  0.1127 0.1134 0.1136 

𝐾 𝐶𝑁  0.0042 2.7648e-017 4.9591e-017 

100 

𝐺𝑅𝑅  0.0078 0.0078 0.0078 

𝐾 𝐻𝐾𝐵  0.0359 0.0307 0.0274 

𝐾 𝐿𝑊 4.3632e-004 4.3625e-004 4.3623e-004 

𝐾 𝐵𝑎𝑦𝑒𝑠  0.0435 0.0438 0.0439 

𝐾 𝐶𝑁  0.0013 4.7300e-004 2.8866e-017 
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Table 3: The values of MSE at𝜌 = 0.95 

n 
Method 

 

Standard deviation 𝜎 

5 10 20 

10 

𝐺𝑅𝑅  0.0185 0.0225 0.0232 

𝐾 𝐻𝐾𝐵  0.0225 0.0237 0.0235 

𝐾 𝐿𝑊 0.0024 0.0024 0.0024 

𝐾 𝐵𝑎𝑦𝑒𝑠  0.0039 0.0039 0.0039 

𝐾 𝐶𝑁  1.0533e-016 0 0 

40 

𝐺𝑅𝑅  0.0126 0.0125 0.0125 

𝐾 𝐻𝐾𝐵  0.0768 0.0749 0.0743 

𝐾 𝐿𝑊 0.0031 0.0031 0.0031 

𝐾 𝐵𝑎𝑦𝑒𝑠  0.1126 0.1134 0.1136 

𝐾 𝐶𝑁  0.0047 5.3979e-017 4.8713e-017 

100 

𝐺𝑅𝑅  0.0078 0.0078 0.0078 

𝐾 𝐻𝐾𝐵  0.0363 0.0311 0.0276 

𝐾 𝐿𝑊 4.3633e-004 4.3625e-004 4.3623e-004 

𝐾 𝐵𝑎𝑦𝑒𝑠  0.0435 0.0438 0.0439 

𝐾 𝐶𝑁  0.0013 5.5274e-004 1.7764e-017 

 

9. Conclusions 
 

Our proposed method for estimating the ridge parameter 

depends upon the level of multicollinearity between the 

explanatory variables. This method shows the importance of 

the condition number as an indicator of the presence of 

multicollinearity problem. 

 

Moreover, the simulation results imply that the proposed 

method performs well in the sense of MSE. It seems to be 

better than other studied methods in all conditions of 

multicollinearity levels, sample sizes and the standard 

deviations of the error terms. 
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