Estimation Of Correlation and Path Analysis for Quantitative Traits Associated with Drought Tolerance in Magic Lines of Chickpea (*Cicerarietinum*L.)

Heena Attri¹, B. S. Jamwal^{1,2}

¹Division of Plant Breeding and Genetics, FoA, Sher-e-Kashmir University of Agricultural Sciences and Technology-Jammu, Main Campus, Chatha (180009)J&K.

²Chief Scientist-cum-Professor, SKUAST-J, Pulses Research Sub-Station, Samba (184121) Jammu, J&K

Abstract: An investigation entitled "Estimation of correlation and path analysis for quantitative traits in MAGIC lines of Chickpea" wascarried out with 40 genotypes in F_4 derived F_5 MAGIC lines consisting of eight parents: ICC-4958, ICCV-10, JAKI-9218, JG-11, JG-130, JG-16, ICC97105, ICCV-00108, during rabi 2012-13 and 2013-14. The observations were recorded for quantitative traits namely, days to 50% flowering, days to maturity, plant height (cm), pods per plant, primary branches, secondary branches, pod length (cm), seed yield (g), 100 seed weight (g), seeds per pod, root length (cm), root weight-fresh and dry (g), relative water content of leaf and partitioning coefficient to roots, stem, leaves and pods. The information was derived on genotypic correlation and path. The values of correlation coefficient at genotypic level were higher than those for phenotypic counterpart. Plant height, primary branches, secondary branches, secondary branches, pod per plant, 100 seed weight and seed yield had direct and positive effect. Root length, relative water content, partitioning coefficient to root, stem, and leaves showed positive and significant correlation which were directly associated with the drought tolerance in chickpea. The developmental characters like days to 50% flowering and maturity contributed to grain yield indirectly via, plant height and 100 seed weight.

Keywords: Phenotypic correlation, genotypic correlation

1. Introduction

Chickpea is a diploid with 2n = 16 chromosomes and genome size of approximately750 Mbp (Arumuganathan and Earle, 1991). Cicergenus has 43 species (Van der Maesen, 1987). Eight of these share the annual growth habit with chickpea and are of particular interest to breeders (Arumuganathan and Earle, 1991).Two distinct forms of cultivated chickpeas are desi (small seeds, angular shape, and coloured seeds with a high percentage of fibre) and Kabuli types (large seeds, owl-head shape, beige coloured seeds with a low percentage of fibre). A third type, designated as intermediate or pea-shaped, is characterized by medium to small size, and round/pea-shaped seeds. Hair like structures on its stems leaves and pods secrete acids that provide the first line of defence against pests, reducing the need for chemical sprays (Yadavet al., 2007). Chickpea is an annual grain legume or pulse crop that is used extensively for human consumption. Chickpea seeds contain protein, fibre, calcium, potassium, phosphorus, iron, zinc and magnesium along with appreciable quantities of selenium, sodium and copper, which make it one of the nutritionally best composed edible dry legumes, for human consumption (Esha, 2010). Chickpea like most other beans is a good source of cholesterol lowering fibre (Pittawayet al., 2006

2. Materials and Methods

The experiment material comprised of 40 chickpea lines with susceptible check, were laid in RCBD design with three replications, at Pulses Research Sub-station, SKUAST-J, Samba, during 2012-13 and 2013-14. The experiment was sown late by 30 days (first week of December) in comparison to normal sowing date, for subjecting the material to terminal drought stress. The material was received from ICRISAT, as chickpea magic lines under ICAR-ICRISAT collaboration work. The genotypes were recorded for drought tolerance score on a1-9 scale on the basis of ICRISAT/ICARDA recommendation.

The material was received from ICRISAT, Hyderabad as F₄ bulk of MAGIC population by the A.I.C.R.P. on chickpea, Sub-Station Samba; under ICAR-ICRISAT collaborative work. MAGIC lines consisted of eight parents (ICC 4958, ICCV 10. JAKI 9218, JG 11, JG 130, JG 16, ICCV 97105, ICCV 00108).In this case of chickpea multi-parent advanced generation inter cross (MAGIC) populations are being developed to enhance the genetic base. Eight elite lines/cultivars (ICC 4958, ICCV 10, JAKI9218, JG11, JG130, JG16, ICCV97105, and ICCV00108) were selected by ICRISAT, Hyderabad from Ethiopia, Kenya and India for development of a MAGIC population for desichickpea. Twenty-eight two-way, fourteen four-way and seven eightway crosses were made to develop this MAGIC population. The seed was collected and sown at the said location, in rabi season of 2013-14 in plant to progeny row, under R.B.D. trial. Each plot consisted of four rows; in each row 10 seeds were sown. The seed was sown manually at an approximate depth of 5 cm below the soil. The data was recorded on different yield and yield contributing traits on 5 plants in each progeny.

Volume 6 Issue 6, June 2017 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

Correlation coefficient

The following formulae were used for estimating the phenotypic and genotypic correlation coefficients as suggested by Ai- Jibouri*et al.*,(1958)

1) Phenotypic correlation $[\{r_{xy}(p)\}] = \frac{Cov.xy(p)}{[V_x(p)XVy(p)]^{\frac{1}{2}}}$ 2) Genotypic correlation $[\{r_{xy}(g)\}] = \frac{Cov.xy(g)}{[V_x(p)XVy(p)]^{\frac{1}{2}}}$

Where,

Cov.xy (p) = phenotypic covariance between characters x and y and this was obtained as follows

Cov.xy(p) = Cov.xy(g) + Cov.xy(e)

Cov.xy (g) = genotypic covariance between characters x and y and this was obtained as follows

$$Cov.xy (g) = Cov.xy(p) - Cov.xy(e)$$

 $V_x(P)$ and $V_y(p)$ = phenotypic variances for the characters x and y, respectively

 $V_{\boldsymbol{x}}(g)$ and $V_{\boldsymbol{y}}(g)$ = genotypic variances for the characters \boldsymbol{x} and $\boldsymbol{y},$ respectively

Path analysis

The path coefficient is the ratio of standard deviation of effect to the total standard deviation when all causes are constant, except one in question, the variability of which was kept unchanged and was obtained by the simultaneous solution with the help of matrix algebra.

The direct effect of a character via another causal factor was obtained by multiplying the genotypic correlation coefficient between the two with direct effect (i.e., path coefficient) of the later upon effect.

3. Results and Discussion

The phenotypic and genotypic correlation of seed yield per plant and its components were worked out. These correlation studies revealed that, the genotypic correlation coefficients between most of the characters were higher in magnitude than the phenotypic correlation coefficients indicating strong inherent association between various characters studied and that the genotypic expression of the correlation was comparatively less influenced by the environmental conditions. The significant positive correlation was reported between seed yield per plant with number of secondary branches per plant, number of pods per plant and 100 seed weight this was due to the increased additive effect of the genes controlling pods per plant.Similar findings were also reported by Singh et al. (1994) and Sharma and Maloo (1987).Similarly strong association between primary and secondary branches per plant and number of pods per plant was noticed through the highly significant positive values of correlation coefficients. This indicates the simultaneous improvement of these characters through selection. The importance of this association was also reported by Singh et al. (1994) and Sandhu (1991). Similarly, days to 50 per cent flowering was strongly associated with days to maturity, plant height and number of primary branches per plant suggesting that maturity period can be predicted by days taken to 50 per cent flowering. A negative correlation of these characters observed with seed yield per plant, number of pods per plant will help in developing early maturity and high yielding varieties. The direct and indirect contributions of each character as revealed by path coefficient analysis indicated that 100 seed weight had highest direct effect on seed yield per plant followed by number of pods per plant and number of secondary branches per plant. These direct effects are mainly responsible for significant positive association of these characters with seed yield per plant. The number of secondary branches exerted its effect on seed yield through number of pods per plant and 100 seed weight through primary branches per plant which is similar to finding of Tagore and Singh (1990), Tripathiet al. (1995), Jeena and Arora (2002), Noor et al. (2003) and Talebiet al. (2007).

		1		0	1 0		1	0		
Traits	Seed	Days to 50%	Days	Plant	Primary	Secondary	Pods	Pod length	Seeds	100-seed
	yield	flowering	to	height	branches	branches	per	(cm)	per pod	weight (g)
	(g)		maturity	(cm)			plant			
Seed yield (g)	-	-0.31	-0.72	0.34**	1.10**	0.33**	-0.02	3.14**	0.00	0.38**
Days to 50% flowering		-	0.96**	0.09	-1.08	0.01	-0.18	-2.31	0.00	0.06
Daystomaturity			-	-0.31	-1.89	-0.44	0.39**	-3.48	0.00	-0.27
Plant height(cm)				-	0.46**	0.32**	0.53**	-0.31	0.00	0.18*
Primary branches					-	0.46**	0.42**	4.76**	0.00	0.44**
Secondary branches						-	0.33**	-0.90	0.00	0.29
Pods per plant							-	0.22*	0.00	-0.29
Pod length (cm)								-	0.00	0.75**
Seeds per pod									-	0.00
100-seed weight (g)										-

 Table 1: Genotypic correlation among ten morphological traits in Chickpea during 2013-14

*and ** indicate significance at 5% and 1% levels, respectively

Table 2: Genotypic correlation among eight physiological traits in Chickpea during 2013-14

Traits	Root	Root fresh	Root dry	Partitioning	Partitioning	Partitioning	Partitioning	Relative
	Length	weight (g)	weight(g)	Coefficient to	Coefficient	Coefficient	Coefficient	Water
	(cm)			roots (%)	to stem (%)	to leaves (%)	to pods (%)	content (%)
Root	-	-0.053	0.048	-0.114	0.197*	0.002	-0.138	-0.022
length(cm)								
Root fresh weight(g)		-	0.898**	-0.207	0.274**	0.149	-0.066	0.180*
Root dry weight(g)			-	-0.377	0.057	0.082	0.206*	-0.125
Partitioning Coefficient to roots (%)				-	0.257**	-0.175	-0.111	0.053

Volume 6 Issue 6, June 2017 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Partitioning Coefficient to stem(%)			-	-0.664	-0.590	0.021
Partitioning Coefficient to leaves(%)				-	-0.419	0.241**
Partitioning Coefficient to pods(%)					-	-0.278
Relative Water content (%)						-

*and ** indicate significance at 5% and 1% levels, respectively

Table 3: Phenotypic correlation among ten morphological traits in F₅ generation of Chickpea during 2013-14.

Traits	Seed	Days to 50%	Days to	Plant height	Primary	Secondary	Pods per	Pod length	Seeds	100-seed
	yield	flowering	maturity	(cm)	branches	branches	plant	(cm)	per pod	weight (g)
Seed yield	-	-0.172	-0.384	-0.183	0.176	0.205*	-0.029	0.346**	0.124	0.203*
Days to 50% flowering		-	-0.239	-0.003	-0.083	0.004	-0.109	-0.117	-0.166	-0.110
Daystomaturity			-	0.066	-0.199	-0.269	-0.128	-0.182	-0.182	-0.055
Plant height (cm)				-	0.029	0.258**	0.195*	0.353**	0.043	.046
Primary branches					-	0.094	-0.006	0.204*	0.071	0.043
Secondary branches						-	0.111	0.090	0.008	0.002
Pods per plant							-	-0.041	0.114	-0.241
Pod length (cm)								-	0.022	0.019
Seeds per pod									-	-0.264
100-seed weight(g)										-

*and ** indicate significance at 5% and 1% levels, respectively

Table 4: Phenotypic correlation among eight physiological traits in Chickpea during 2013-14

Traits	Root	Root	Root	Partitioning	Partitioning	Partitioning	Partitioning	Relative
	length	Iresn	ary	Coefficient	Coefficient to	Coefficient	Coefficient	water
	(cm)	weight (g)	weight(g)	to roots (%)	stem (%)	to leaves (%)	to pods (%)	content (%)
Root length (cm)	-	-0.015	0.012	0.021	0.094	-0.073	-0.034	-0.047
Rootfresh weight (g)		-	0.841**	0.179**	-0.054	-0.017	-0.071	0.110
Root dry weight(g)			-	0.123	-0.057	0.012	0.043	-0.025
Partitioning Coefficient to roots (%)				-	-0.244	-0.302	-0.274	0.021
Partitioning Coefficient to stem (%)					-	-0.244	-0.258	0.064
Partitioning Coefficient to leaves (%)						-	0.354**	0.127
Partitioning Coefficient to pods (%)							-	-0.165
Relative Water content (%)								-

*and ** indicate significance at 5% and 1% levels, respectively

Table 5: Phenotypic path coefficient in F₅ generation of Chickpea during 2013-14

						<u> </u>				50					0			
Traits	DF	DM	PH	PB	SB	PPP	PL	SPP	RL	RFW	RDW	PCR	PCS	PCL	PCP	RWC%	HSW	Cor. With SY
DF	0172	0591	.0000	0010	.0049	.0055	0212	0182	0013	.0147	0112	0044	0353	0075	0106	.0057	0157	1721
DM	0041	2474	0004	0025	0139	.0065	0329	0023	0042	1024	.0589	0204	.0097	0212	0059	.0056	0079	3846
PH	.0001	.0164	.0056	.0004	.0132	0099	.0636	.0048	.0040	.0378	.0015	.0121	0079	.0248	.0086	.0015	.0067	.1832
PB	.0014	.0492	.0002	.0123	.0049	.0003	.0369	.0079	.0015	.0447	0103	0027	0040	.0147	.0053	.0079	.0061	.1763
SB	0016	.0666	.0014	.0012	.0516	0056	.0162	.0009	.0024	.0777	0102	.0189	0599	.0361	.0030	.0066	.0003	.2054
PPP	.0019	.0317	.0011	0001	.0058	0506	0074	.0126	.0063	0208	.0288	.0012	0175	.0130	.0016	0023	0344	0292
PL	.0020	.0452	.0020	.0025	.0047	.0021	.1800	.0025	.0033	.0642	0296	.0259	0019	.0240	.0132	.0038	.0027	.3465
SPP	.0029	.0053	.0002	.0009	.0004	0058	.0041	.1095	.0019	.0240	.0100	.0145	0139	.0046	.0021	.0015	0377	.1243
RL	.0011	.0526	.0011	.0009	.0061	0160	.0295	.0104	.0200	.0066	.0036	0028	0189	.0175	0019	.0022	0008	.1113
RFW	.0006	0589	0005	0013	0093	0024	0269	0061	0003	4295	.2552	0235	.0110	.0043	0040	0050	.0052	2917
RDW	.0006	0480	.0000	0004	0017	0048	0176	.0036	.0002	3612	.3034	0160	.0116	.0030	0024	.0011	.0044	1332
PCR	0006	0387	0005	.0003	0075	.0005	0357	0122	.0004	0773	.0373	1305	.0490	.0723	0155	0010	.0044	1553
PCS	0030	.0120	.0002	.0002	.0154	0044	.0017	.0076	.0019	.0235	0175	.0319	2007	.0584	0146	0029	0108	1010
PCL	0005	0219	0006	0008	0078	.0028	0180	0021	0015	.0077	.0038	.0394	.0490	.2393	0200	0058	0260	2417
PCP	.0032	.0261	.0009	.0012	.0028	0014	.0421	.0041	0007	.0306	0131	.0358	.0520	.0847	.0564	.0075	.0271	.3592
RWC%	.0022	.0306	0002	0021	0075	0025	0150	0036	0010	0475	0076	0028	0130	.0305	0094	0452	0162	1714
HSW	.0019	.0136	.0003	.0005	.0001	.0122	.0035	0290	0001	0157	.0031	0040	.0152	.0437	.0107	.0051	.1426	.2037
Under	lined .	hore	dimon	t offoo	4			Do	aid not		tion -	0 540						

Underlined shows direct effect

Residual variation = 0.568

Table 6: Genotypic path coefficient in F₅ generation of chickpea during 2013-14

Traits	DF	DM	PH	PB	SB	PPP	PL	SPP	RL	RFW	RDW	PCR	PCS	PCL	PCP	RWC%	HSW	Cor. with SY
DF	.1757	1420	0185	2255	0021	.0208	.2575	1	0085	3392	.1561	0061	0118	.0113	1418	0597	.0145	3193
DM	.1704	1464	.0605	3923	.1241	.0459	.3878	-	1225	3791	.1446	.0229	.0071	1508	2947	1431	0577	7234
PH	.0169	.0461	1922	.0971	0902	0610	.0348	-	.0330	.3855	2220	0147	.0008	.0784	.2606	0689	.0389	.3430
PB	1921	.2773	0901	.2072	1280	0489	5350	-	.0361	2.0728	-1.1299	0449	.0349	.1761	.5850	2092	.0927	1.1093
SB	.0013	.0656	0626	.0957	2771	0384	.1006	-	.0214	0120	.3716	.0254	0107	.1533	0508	1121	.0617	.3330
PPP	0317	.0583	1019	.0881	0925	1151	0251	-	.1156	2002	.2657	0196	0064	0025	.0672	.0414	0625	0211

Volume 6 Issue 6, June 2017 www.ijsr.net Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

PL	4065	.5103	.0601	.9878	.2505	0259	1113	-	.1686	.3865	5507	0446	.0855	.0326	1.3675	.2695	.1579	3.1470
SPP	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	.0000
RL	0064	.0769	0272	.0321	0254	0570	0805	-	.2332	.0494	.0456	0070	0063	0006	0638	0088	0007	.1533
RFW	.0641	0597	.0796	4616	0036	0248	.0466	-	0124	9306	.8378	0128	0088	0317	0306	.0700	0806	5589
RDW	.0294	0227	.0458	2510	1104	0328	.0657	-	.0114	8359	.9327	0233	0018	0175	.0948	0485	0603	2243
PCR	0174	0543	.0458	1509	1139	.0366	.0805	-	0266	.1926	3521	.0617	0082	.0372	0514	.0609	.0052	2541
PCS	.0649	.0327	.0049	2268	0927	0231	.2983	-	.0461	2558	.0535	.0159	0319	.1405	2718	.0083	0212	2580
PCL	0094	1044	.0713	1726	.2008	0014	.0171	-	.0007	1395	.0771	0108	.0212	2115	1930	.0936	0676	4285
PCP	0541	.0938	1088	.2634	.0306	0168	3306	-	0323	.0619	.1922	0069	.0188	.0887	.4603	1082	.0746	.6263
RWC%	0270	.0540	.0341	1116	.0800	0123	0772	-	0053	1678	1166	.0097	0007	0510	1282	.3884	0666	1980
HSW	.0122	.0405	0358	.0921	0819	.0344	0842	-	0008	.3596	2693	.0015	.0032	.0685	.1644	1239	.2087	.3894

Underlined shows direct effect

At genotypic level, root fresh weight exhibited positive and significant correlation with root dry weight, partitioning coefficient to stem, relative water content of leaf. High positive direct effect at phenotypic level on seed yield by plant height, primary branches, secondary branches, pod length, seeds per pod, root length, root dry weight, partitioning coefficient to pods and 100 seed weight were observed.100 seed weight had maximum positive direct effect which was followed by pods per plant, plant height and relative water content of leaf. Indirect positive effects of partitioning coefficient to pods on seed yield via partitioning coefficient to roots and partitioning coefficient to stem was observed. Similar results were in accordance with those reported by Ermanet al. (1997).Direct positive effect on seed yield per plant, at genotypic level, was displayed by primary branches, root length, partitioning coefficient to pods and 100 seed weight. The direct negative effect was also noted for days to maturity, plant height, secondary branches and pods per plant on seed yield. Several physiological, morphological and phenological traits may play a significant role in crop adaptation to drought stress during soil drying (Serrajet al., 2004).

References

- [1] Arumuganathan, K. and Earle, E.D. (1991) Nuclear DNA content of some important plant species *Plant Molecular Biology Reporter* **9**: 208–218.
- [2] Erman, M. V ift i and HHGe it.(1997). Nohut (Cicerarietinum L.)Õta .zelliklerarasÝilißkilerve path katsayÝsÝanalizi .zerindebiraraßtÝrma.A...ZiraatFak.ltesiTarÝmBilimleri Dergisi3: 43-46.
- [3] Esha.food data base (2010) ESHA Foundation, Salem, Oregon, USA. (In: *The world'shealthiest foods*. www.whfoods.org)
- [4] Jeena, A.S and Arora, P.P.(2002). Heterosis in chickpea (*CicerarietinumL.*).*Agriculture ScienceDigest.*,**20**(2): 71-74.
- [5] Maloo, S.R and Khedar, O.P. (1999).Correlation and path analysis in chickpea.*Agricultural Science Digest*.19 (2): 109-111.
- [6] Noor, F., Ashraf, M.andGhafoor A. (2003). Path analysis and relationship among quantitative traits in chickpea (*CicerarietinumL.*). *Pakistan Journal of Biological Science*, 6(6):551-555.
- [7] Pittaway JK Ahuja KD Cehun M Chronopoulos A Robertson IK Nestel PJ and Ball MJ.(2006) Dietary supplementation with chickpeas for at least 5 weeks results in small but significant reductions in serum total

Residual Variation: 0.5030

and low-density lipoprotein cholesterols in adult women and men. *Annals of Nutrition and Metabolism* **50**: 512–518.

- [8] Sandhu TS Gumber RK and Bhullar BS. 1991. Correlated response to grain yield and protein content in chickpea (*Cicerarietinum*L.). *Legume Research*, **4** (1): 45-49.
- [9] Serraj RBuhariwalla HK Sharma KK Gaur PM and Crouch JH.(2004). Crop improvement of drought resistance in pulses: A holistic approach. *Indian Journal Pulses Research*, **17**(1): 1-13.
- [10] Tagore KR and Singh TS. 1990. Character association and path analysis under two levels of management in chickpea. *Crop Improvement*.**17(1):** 41-44.
- [11] Talebi R Faydz F and Jelodar A. 2007.Correlation and path coefficient analysis of yield and yield components of chickpea under dryland condition in west of Iran.
- [12] Tripathi AK Pathak MM Singh KP and Singh RP. 1995. Path coefficient analysis in chickpea. *Indian Journal of Pulses Research*, 8:1, 71-72.
- [13] Yadav SS Redden R Chen Wand Sharma B. (2007). *Chickpea breeding and management*. CABI Publication, pp. 638.