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Abstract: This paper presents calculations of ground state total energy of InGaN alloy carried out in a disordered quasirandom 

structure for a triclinic super cell. This structure replicates the disorder and composition effect in the alloy. First principle calculations 

within the density functional theory with the local density approximation approach are employed to accurately determine the lattice 

constants for different concentration ratios of the alloy. We provide precise results of quasirandom structures of the alloy and their 

lattice constants with the total energy of the system for the entire range of compositions with their respective parameters. 
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1. Introduction 
 

The late 1990s marked the entrance of group-III nitride 

compounds and their alloys to the physics of optical and 

electronic devices. Recent technological breakthrough in 

InGaN epitaxial growth has attracted attention in LED 

application and fabrication [1]. This material has a wide 

spectrum of emission frequency, making it highly efficient 

light emitters in green, blue, white and UV light emitting 

diodes and laser diodes [2]. The emitted wavelength 

depending on the material band gap can be controlled by 

InN/GaN composition ratios; studies based on device 

simulation have shown that it could be possible to increase 

InGaN LEDs efficiency using bandgap engineering [3]. Due 

to their technological importance, an approximate prediction 

of electronic properties of InGaN alloys is desirable.  

 

To find the ground state energy of any system, a palatable 

way would be to solve the time independent Schrodinger 

equation for the system (many body problem) which reads 

 
Where  and  are position vectors of electrons and 

nuclei. 

 

Although the time independent Schrodinger equation 

appears comprehensible for a single electron (single body 

problem) the consideration of nuclei along with electrons in 

the many body problem increases the computational 

complexity of the problem. To go about this problem we 

implement Born-Oppenheimer (BO) approximation [4] 

which attempts to decouple the dynamics of electrons and 

nuclei by treating electrons as an inhomogeneous cloud in a 

static potential field due to fixed set of nuclei.  

 
The many body Schrodinger equation now involves solving 

the Schrodinger equation to calculate the wave function for 

electrons in a static potential V(r). 

 

Where N is the number of electrons and  is the 

columbic intra electronic interactions. The BO 

approximation may have reduced the number of variables to 

simplify the problem to some extent, however this is not an 

instigative solution to any real materials; for instance, a lead 

nano cluster of 100 atoms have 8200 electrons and solving 

the many body Schrodinger equation becomes a 24600 

dimensional problem. To overcome this issue, a 

computational quantum mechanical modeling method called 

density functional theory (DFT) mainly used in investigating 

ground state properties of many body systems has been 

implemented. DFT provides a way to systematically map the 

many body problem with potential U, onto a single body 

problem, without U [5]. The key variable here is the electron 

density , and that instead of dealing with a function of 

3N variables, we can instead deal with a function of only 3 

variables (the density). For  Electron system we define the 

electronic density 

 

The scheme presented in this paper can be a reasonably 

reliable method for investigating electronic properties and as 

a guide for designing new materials, not yet discovered in 

the laboratory. In the following, we give a brief description 

of DFT with Local Density Approximation and provide the 

reader with a complete description of calculations required 

and identify the approximations involved. Here we have 

only included steps that are crucial to make approximations 

and refer the reader to the original works for more detailed 

derivations. 

 

2. Essential Background Literature 
 

2.1 Hohenberg-Kohn theorem 

 

This theorem establishes the relationship between ground 

state energy and electron density and also describes the 

process of calculating it [6]. 
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The first theorem states that the external potential  

(and hence the total energy) is uniquely determined by the 

corresponding ground state density. 

 
 

For all densities  which are ground state densities for 

some external potential, the functional F  is unique 

and well defined. This functional defined as  

 
 

is a universal functional of the density which includes all the 

quantum mechanical interactions of the system and is 

explicitly independent of the external potential. 

 

Now a functional for an arbitrary external potential  

unrelated to the  determined by  can be 

defined as 

 
 

The second theorem states that the functional that delivers 

the ground state energy of the system gives the lowest 

energy if and only if the input density is the true ground state 

density. 

 

For N electrons in potential , the HK functional 

 obtains its minimal value. 

 
 

Where  is now the ground state density for potential 

. 

 

The existence of the universal functional  

independent of the external potential is the remarkable 

results of DFT since instead of dealing with a function of 3N 

variables (many body problem) we can instead deal with a 

function of 3 variables (density). However, the exact form of 

the universal function  is unknown. Remarkably, it 

is possible to make some approximations for the Exchange-

Correlation energy [7], and the simplest approximation 

adopted in this work is the Local Density Approximation 

(LDA). 

 

For electron gas, a system of many interacting particles, the 

effects of exchange and correlation are crucial to an accurate 

description of its behavior. In such a system, exchange and 

correlation effects are caused by the repulsion of particles 

and their motion [8]. 

 

2.2 The LDA Concept 

 

In the LDA, the contribution to the exchange-correlation 

energy from each infinitesimal volume  is taken to be the 

value it would have if the whole space were filled with a 

homogeneous electron gas with the same density found in 

. This was originally introduced by Kohn and Sham [9]. 

i.e: 

 
  

Where  is the exchange-correlation energy per 

electron in homogeneous electron cloud of density  . 

They also suggested that  can be written as the 

sum of exchange and correlation parts. For the details on 

exchange and correlation energies, we refer reader to the 

original works. 

 
 

Where   

and  [10]. 

 

The exchange energy in a system where the density is not 

homogeneous is obtained by applying the homogeneous 

electron gas results point wise, giving [11]. 

 
 

3. Methodology 
 

3.1 Material Modeling  

 

Our choice of material is  alloy which has a 

hexagonal closed packed structure and is a direct band gap 

semiconducting material. It has a band gap span from 0.69 

eV to 3.4 eV, depending upon the composition ratio of InN 

and GaN in the alloy [12]. 

 

We proceed by generating triclinic supercell structure for the 

alloy for different concentration ratios of InN and GaN 

compound (namely seven). Despite ideal periodicity being 

the most available methods to explore solid-state materials, 

such periodicity does not exist in this type of materials. The 

supercell approximation is a way to imply periodicity to a 

disordered system while still preserving disordered 

properties at the local level [13]. Alloy Theoretic Automated 

Toolkit (ATAT) which contains the first principle 

calculation code was used for the input FORTRAN script to 

generate the output file for the alloys structure [14], 

(POSCAR file) which contains the information about the 

geometry of the cell. From this file 3D visualization for 

structural models was done by Visualization for Electronic 

and Structural Analysis (VESTA) from which all the lattice 

parameters were obtained too.  (Fig 1 a-g) and Table 1. 
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3.2 Computational Algorithm 

 
 

3.3 Self Consistent Scheme 

 

To calculate the ground state energy, one has to now solve 

the Kohn-Sham equation for a non-interacting system [9], 

with interactions explicitly being accounted in the potential. 

 

 
 

 

Where, the first term is the kinetic energy of the electrons, 

second term is the effective potential from the BO 

approximation, third term is the Hartree-Fock potential 

resulting from approximation from many body to single 

body, and the fourth term is the Exchange Correlation 

potential resulting from LDA approximation. 

Here since the Hartee term and XC term depends on , 

which depends on , which in turn depends on  the sum 

of all three potentials, the Kohn-Sham equation has to be 

solve in an iterative (self-consistent) way. One starts with an 

initial trial for , then calculates the corresponding  

and solves the Kohn-Sham equation. From the wave 

function resulting from the solution, one calculates a new 

density and starts again. This process is repeated until a 

convergence is reached. We have used Quantum Espresso, 

an integrated suite of Open-Source computer codes for 

electronic structure calculation based on DFT for our Self 

Consistent Field calculations of our system. 

 

 

 

 

 

 

 

 

 

 

3.4 Computational Algorithm 

 
 

 

4. Results and Discussion 
 

We were successfully able to generate the quasirandom 

super cell for seven different concentration ratios of 

 alloy namely, , 

, , , 

,  and 

. 
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Figure 1: Super cell structure of  as viewed by 

VESTA 

 

The values of lattice parameters for all the systems were 

noted from their structural models viewed in VESTA. 

 

Table 1: Lattice Parameters retrieved from VESTA 
Materials a(Å) b (Å) c (Å) alpha 

(α) 

beta 

(β) 

gamma 

(γ) 

Unit-cell 

volume ( ) 

In0.125Ga0.875N 7.65229 8.30376 13.50018 83.2557 76.8172 64.4834 753.583952 

In0.250Ga0.750N 8.41380 8.41380 11.14447 92.4316 92.4316 84.5666 784.102245 

In0.375Ga0.625N 7.85391 8.52384 13.85196 83.3615 76.9197 64.5496 815.432563 

In0.500Ga0.500N 8.63388 8.63388 12.76645 109.2979 109.2979 84.6524 847.585791 

In0.625Ga0.375N 8.99721 8.99721 12.92492 84.2928 75.706 76.1527 880.573247 

In0.750Ga0.250N 8.85397 8.85397 13.08340 109.2139 109.2139 84.7340 914. 04721 

In0.875Ga0.125N 8.25720 8.96401 14.55554 83.5575 77.1096 64.6721 949.091073 

 

Lattice Constant Optimization 

We have calculated the total energy for seven different 

concentration ratios of . The lattice constants 

were chosen around the value that was predicted by 

Vegard’s Law [15], which is an empirical formula that 

roughly estimates the lattice constant for an alloy. The 

optimized lattice constant for each system are noted for 

which the total energy of the system was minimum (Ground 

State). 
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Appendix 

Table 2: Total energy of the  system at different 

lattice constants. 

 
Lattice Constant (Bohr) Total Energy  (Ry) 

 5.20 -1305.81634853 

5.30 -1306.11509488 

5.40 -1306.33107282 

5.50 -1306.47757037 

5.55 -1306.52834074 

5.60 -1306.56599577 

5.65 -1306.59164874 

5.70 -1306.60626934 

5.75 -1306.61109149 

5.76 -1306.61096278 

5.80 -1306.60692208 

5.90 -1306.57486012 

6.00 -1306.51611902 

6.10 -1306.43571896 

6.20 -1306.22661666 

a. For x=0.125:  

Lattice Constant 

(Bohr) 

Total Energy 

(Ry) 

4.70 -1331.54835884 

4.80 -1331.76486688 

4.90 -1331.90312640 

5.00 -1331.97831725 

5.09 -1332.00297792 

5.10 -1332.00356025 

5.11 -1332.00377683 

5.12 -1332.00358413 

5.15 -1332.00064715 

5.20 -1331.98883471 

5.30 -1331.94264863 

b. For x=0.25:  

Lattice Constant 

(Bohr) 

Total Energy 

(Ry) 

4.50 -1357.66520100 

4.60 -1358.03475448 

4.70 -1358.29611057 

4.80 -1358.46965917 

4.90 -1358.57260107 

5.00 -1358.61854456 

5.03 -1358.62299333 

5.05 -1358.62383733 

5.07 -1358.62304886 

5.10 -1358.61854456 

5.40 -1358.43909492 

5.70 -1358.11726351 

c. For x=0.375:  

 
Lattice Constant 

(Bohr) 

Total Energy 

(Ry) 

5.00 -1385.41462230 

5.10 -1385.77254575 

5.20 -1386.03522057 

5.30 -1386.21862521 

5.40 -1386.33587554 

5.49 -1386.39424872 

5.50 -1386.39830831 

5.58 -1386.41517779 

5.59 -1386.41546719 

5.60 -1386.41537505 

5.70 -1386.39520019 

5.80 -1386.34476333 

5.90 -1386.26990572 

6.00 -1386.17547296 

d. For x=0.5:  
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Lattice Constant 

(Bohr) 

Total Energy 

(Ry) 

5.20 -1412.75538721 

5.30 -1412.90027609 

5.40 -1412.98456599 

5.50 -1413.01915874 

5.51 -1413.02023994 

5.52 -1413.02092793 

5.53 -1413.02123557 

5.54 -1413.02114715 

5.55 -1413.02068585 

5.56 -1413.01987354 

5.57 -1413.01868241 

5.58 -1413.01713690 

5.59 -1413.01524835 

5.60 -1413.01303163 

5.70 -1412.97341673 

5.80 -1412.90667495 

5.90 -1412.81834489 

e. For x=0.625:  

 
Lattice Constant 

(Bohr) 

Total Energy 

(Ry) 

5.10 -1439.27268663 

5.20 -1439.44950661 

5.30 -1439.55892739 

5.40 -1439.61310527 

5.49 -1439.62279238 

5.50 -1439.62187777 

5.51 -1439.62059417 

5.60 -1439.59374888 

5.70 -1439.53565445 

5.80 -1439.45357048 

5.90 -1439.35244248 

6.00 -1439.23658640 

f. For x=0.75:  

 
Lattice Constant 

(Bohr) 

Total Energy 

(Ry) 

4.50 -1464.86345126 

4.70 -1465.10543057 

4.75 -1465.12537410 

4.79 -1465.13221489 

4.80 -1465.13273434 

4.81 -1465.13282532 

4.82 -1465.13245351 

4.90 -1465.11512106 

5.40 -1464.65516857 

5.50 -1464.52771866 

5.60 -1464.39688741 

g. For x=0.875:  

 

6. Discussion  
 

The use of DFT in LDA approximation to theoretically 

calculate the ground state total energy of the system has 

made remarkable progress in the past few decades. One can 

go even further to calculate the band gaps by taking the 

values of optimized lattice constants and number of Kohn-

Sham orbitals however, the problem of accurate calculation 

of band gap for semiconductors by LDA approach remains a 

major theoretical challenge.  

 

The imprecision of DFT/LDA approach in accounting 

electronic excitation properties can be addressed by Hedin’s 

GW approximation [16]. This has been proven very 

successful. Nevertheless, the GW method requires 

significant additional computational effort as it involves 

computation of Green’s function and dielectric function, and 

relies on the solution of Dyson equation. This is 

computationally more demanding than the single particle 

Kohn-Sham equation in DFT/LDA approach. 

 

Consequently from practical view point, it is desirable to 

have a simple, efficient and reasonably accurate scheme for 

calculating lattice constants and ground state energies 

without extensive computational rigor beyond that required 

for DFT/LDA calculations.  
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