
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 6, June 2017

Paper ID: ART20174486 www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Bug Triage Using Data Reduction with Priority and

Security

Vijay N. Kukre
1
, Shyam Gupta

2

1, 2Department of Computer Engineering, Siddhant College of Engineering, Sudumbare Pune - 412109, India

Abstract: Many Open Source Software Development organizations pay quite 45 % of expense in solving bugs. Bug triaging is

significant phase in procedure of bug solving. The purpose of bug triaging is to allocate coming bugs to appropriate developer. The

current bug triaging methodologies are initiated on algorithms, which form classifiers from the training data sets of bug report into

training, these methods are suffering from huge scale and low quality training set. Here, the training sets reduction with feature

selection method Chi Square Statistic (CH) and instance selections method Iterative Case Filter (ICF) for bug triaging are suggested.

Feature selection and instance selections methods are used to get better the correctness of CHI, instance selections algorithm Iterative

Case Filters (ICF) are premeditated. The training sets reduction by the bug records is calculated. For training sets, 70% words and 50%

bugs report are separated after training sets lessening. The outcome illustrates that novel and minor training data sets deliver improved

correctness than unique one. The next advantage is, it provides priority according to severity of bug so that bug can be solved on the

priority basis and security using AES algorithm so that no another developer can access it.

Keywords: Bug data reduction, feature selection, instance selection, bug triage

1. Introduction

Most of the Open Source Software Development Companies

pays lot of the money for fixing the bugs. They have bug

repository that collects all the knowledge associated with

bugs. In bug depository, every software package bug

incorporates a bug report. The bug report includes matter

info concerning the bug and updates related with standing of

bug fixing. Once a bug report is made, a person who is called

as bug triager assigns this bug to a developer and developer

fix this bug. The assigned bug may have allotted to a

different developer if the current assigned developer cannot

fix this bug. The method of assigning an accurate developer

for fixing the bug is termed as a bug triage. Bug sorting is

one among the foremost time consuming step in handling of

bugs in software package comes. Manual bug sorting by a

person called as triager is time consuming process as the

quantity of daily bugs is massive and lack of information in

developers regarding all bugs. That is why, bug fixing

becomes up in costly time loss, high price and low accuracy.

The information keep in bug reports has 2 main challenges.

First, the massive scale information and second low quality

of knowledge because of sizable amount of daily reported

bugs, the number of bug reports is scaling up within the

repository. Noisy and redundant bug’s is degrading the

standard of bug reports. In this paper an efficient automated

bug fixing system is projected which will save lots of the

labor cost of developers and time by creating a top quality set

of bug data by removing the redundant and non-informative

bug reports. Beside this, it provides priority according to

severity of bug so that bug can be solved on the priority basis

and security using AES algorithm so that no another

developer can access it.

2. Related Work

A lengthy step of handling software bugs is called as bug

triage, which is used to allocate a accurate developer to

repair a new bug. In usual software development, new bugs

are manually triaged by an specialist developer, i.e., a human

being triager. Due to the huge number of every day bugs and

the not have of expertise of all the bugs, manual bug triage is

costly by time and low down the accuracy. In manual bug

triage in Eclipse, 44% of bugs are allocated by mistake

whereas the time cost involving opening one bug and its first

triaging is 19.3 days on standard. To avoid the high-priced

cost of manual bug triage, existing work [1] has projected an

automatic bug triage technique, which uses text classification

techniques to expect developers for bug reports. In this

technique, a bug report is plotted to a document and a

associated developer is plotted to the label of the document.

Then, bug triage is transformed into a problem of text

classification and is automatically solved with mature text

classification techniques, e.g., Naive Bayes. Depends on the

results of text classification, a human triager allocates a new

bugs to expertise. But, large-scale and low-quality bug data

in bug repositories obstruct the techniques of automatic bug

triage. So,, data reduction for bug triage is introduced, i.e.,

how to decrease the bug data to save the labour cost of

developers and get better the quality to make easy the method

of bug triage. Data reduction for bug triage plans to construct

a small-scale and high-quality set of bug data by eliminating

bug reports and words, which are redundant or non-

informative.

Bug triaging is imperfect, tiresome and time consuming task

so going with Revisiting Bug fixing and determination

Practices [2]. Bug triaging and fixing exercise as well as bug

reassignments and re-openings are considered, within the

perspective of the Mozilla and Firefox, which is measured to

be representative example of a large-scale open source

software development. As well they require consider to

perform qualitative and qualitative testing of the bug

assignment exercises. They have an interest in providing

insights into a number of areas: categorization exercises,

reconsider and endorsement processes; source reason

investigation of bug reassignments and reopens in open

Paper ID: ART20174486 1939

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 6, June 2017

Paper ID: ART20174486 www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

source software code projects; and suggestion for

enhancement/reform of bug tracking systems.

Markov chains which supports a graph model detain bug

moving record [3] is introduced and has many interesting

merits. First, it exposes developer network and to investigate

appropriate specialist for a substitute assignment. Secondly,

it assists to higher allocate developers to bug reports. A

experiment with 445,000 bug reports, this method compacts

bug moving records up to seventy two additionally; the

model amplifies the prediction accurateness up to twenty

three percentages as compared to earliest bug triaging

approaches.

Latest study shows that optimizing proposal accuracy

negative aspect and proposes a solution of an instance of

content-based recommendation (CBR) [4]. However, CBR is

popular to source overspecialization, recommending

exclusively the group of bugs that every developer have

resolved earlier. This problem is ruthless in apply, as some

experienced developers may be over loaded which will slow

down the bug fixing speed. The two ways are specified to

finger out this problem, first authors have a propensity to

develop the substance as an optimization problem of every

accuracy and outlay. Secondly, they accept a content-boosted

cooperative filtering (CBCF), merges an existing CBR with a

cooperative filtering (CF), which improves the advice quality

of either approach alone.

Techniques given in [5] uses either data repossession and

machine learning to look for the principal same bugs

previously predetermined and propose knowledgeable

developers, or examine the change in data stemming from

ASCII text file to suggest professional bug solvers. This

scheme does not merge matter likeness with modification set

analysis and not make a use of the probable of the difficult

between bug reports and alter words in bug data within the

designed system, the combination of instance choice and

have selection is employed. The designed systems are

imposed in java language thus, it will be platform freelance.

As there is no constraint on the scope of bug’s info, a tester

will insert large number of bugs within the system which will

be the biggest benefits of the planned system. While the

entire bugs info is accessible all the developers, which will,

takes a smaller amount time for the developer to need the

choice. Developer will rapidly choose. For the bug to repair.

As bug categorization mean to expect the developers who

will fix the bugs, hence there is an affinity to track the nearby

work to get clear knowledge of unsettled bug reports, e.g.,

the new bug reports or not fixed bug reports. Furthermore, in

bug repositories, various developers have exclusively settled

only a few bugs. Such dormant developers might not offer

enough info for predicting accurate developers. Hence here

have a tendency to take away the developers, who have

mounted but ten bugs.

A semi-supervised text classification method used for bug

triaging [6] is recommended to avoid the absence of labeled

bug reports in previous text supervised methods which

merges Naive Bayes classifier and probability maximization

to obtain benefit of labeled and unlabeled bug reports. Such

approach prepares a classifier with a component of labeled

bug reports and then iteratively labels a number of unlabeled

bug reports and set up a new classifier with labels of all the

bug reports. A subjective opinion record is also used to

increase the performance by daunting the burden of several

developers in training the classifier. Investigational outcome

on bug reports of Eclipse demonstrate that new method is

superior to the existing supervised methods compare to

classification accuracy of bug triage increases up to 6% but

does not offer fully automatic bug triage with a bug

repository.

The five term selection methods are used for the correctness

of bug task to decrease time and expenditure of bug triaging

and also rebalance the workload between developers based

on their knowledge [7] so, they carry out testing on four

factual datasets. The first term selection method, Log Odds

Ratio (LOR) counts the odds of the word available in the

positive set stabilized by the negative set. The second term

selection method, Chi-Square (X2) test is employ to monitor

dependence of two measures. The third term selection

method, Term Frequency Relevance Frequency (TFRF) is

used to choose further tall frequency for instances in the

positive group than in the negative group. The fourth term

selection method, Mutual Information (MI) is used to counts

the common reliance of two random variables. The fifth term

selection method, Distinguishing Feature Selector (DFS)

provides discriminatory control of the features above the

complete text set quite than being set particular. The result of

investigation shows the F-score can be considerably

enhanced by selecting a little number of selective terms.

The both feature and instance selection methods are used in

proposed to get better the accurateness of bug triage to

estimate the training bug data set reduction on the bug data of

Eclipse [8]. As a result, 70% words and 50% bug reports are

detached following the training bug data set reduction. The

investigational results prove that the novel and little training

sets be able to give enhanced correctness than the unique

one. The drawbacks of their approach are low precision rate

and cannot be directly used in other projects because results

are based on the bug data from the Eclipse only.

3. Proposed System Architecture

The main purpose of proposed system is to keep watch the all

the bugs in the project and construct the project user friendly

to all users and bugs free system. The developed products,

Bugs and Bug Triage (bug history) are preserved by the

system. It has benefit of maintaining bug history it stores all

the particulars from bug source to bug resolution i.e. from

origin of bug to solution of bug. Every product may have

versions for trouble-free maintenance of the product, for easy

difference making and all the client of the product is

accumulated in the database. It provides the benefit of

maintaining users to the bugs and decree provided by them.

Proposed System offers the search based on status (idle or

active), priority (by providing numbering) and operating

system. It offers user and bug ladder, which is useful to know

the relation between bugs and users selected to the bug. It

provides a fully secured system with password encryption

using AES encryption algorithm with priority given to bug to

Paper ID: ART20174486 1940

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 6, June 2017

Paper ID: ART20174486 www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

be fixed and facilitate to store attachment files for a bug

Track of the bug in a product can be monitored with lower

cost and with very less efforts. Maintaining log reports which

are help full to know any errors, bugs or mistreat of the

system by another users is an additional advantage of this

system.

The new bug reports acts as the input to system for fixing the

bug from appropriate developer as shown in Figure 1 of the

proposed system architecture. Each bug for fixing sends to

developer in authority and details of one that makes who

have worked on that separate bug for fixing. Bugs for fixing

go to developer in authority is mainly separated in two parts,

manager and admin.

Basically actual data normally consists of noise and

redundancy where noisy data may provide the incorrect

meaning about the data investigation techniques and the

redundant data may increase the expenditure of data

processing. In bug data repositories, the bug reports are

entered by developers in normal languages. The low class

bugs reside in bug data repositories with the increase in scale.

Such extensive and low-class bug data may decline the

usefulness of fixing up bugs.

Figure 1: Proposed System Architecture

Figure 2 shows, how the bug data is reduced which is used to

prepare training data set for bug triaging hence combination

of instance and feature selection is used to eliminate definite

bug reports and words. The reduced training set which is

used to replace the original training set of bug triage. To

differentiate the groupings, we two phases i.e. FS→IS means

first applying FS and then IS. Then next, IS→FS means first

applying IS and then FS.

Figure 2: Bug Data Reduction

Proposed system provides predicted results in form of output.

Basically, there are two types of users in proposed system.

First is developer and second is tester. Developer will get

software bugs for fixing which is given to him. Another that

can work on only one software bugs for fixing at a time.

Tester can link new bugs for fixing to system.

4. Training Set Reduction for bug triage

Now, we will see how to use combination of feature selection

algorithm Chi Square Statistic (CH and an instance selection

algorithm Iterative Case Filter (ICF) for data reduction for

bug triage to minimize noisy or duplicate data in the training

data set for bug triage.

4.1 CHI Feature Selection Algorithm (CF)

CHI (χ
2
statistic) feature selection algorithm is used to

quantity of the dependence between bug report words and

software developers. In this paper we are using following

mathematical model to find dependence between bug report

words and software developers.

CHI(w)=. χ
2
(w,dn))=)

Where,

ⅅ = Set of Developer

dn = n
th

 Developer in set of Developer

w = Bug word

A = No. of times co-occures of w and dn

B = No. of times occure of w without dn

C = No. of times occure of dn without w

D = No. of times co-occures neither w and dn

4.2 ICF Instance Selection Algorithm

The ICF (Iterative Case Filter) instance selection algorithm

based on the k-Nearest Neighbor algorithm (k-NN) used

reduces the number of instances and to improve the quality of

Paper ID: ART20174486 1941

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 6, June 2017

Paper ID: ART20174486 www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

training data set in the term of data space required and less

response time

4.3 Support Vector Machine (SVM) Classifier

Support Vector Machine (SVM), which is a supervised

machine-learning algorithm and mostly used in classification.

The advantages of support vector machines are competent in

high dimensional spaces, competent where number of

dimensions is more than the number of samples, uses a subset

of training points in the decision making function called

support vectors, so it is also memory competent. Here SVM

is used to predict appropriate developer.

4.4 Advanced Encryption Standard (AES) Algorithm for

Security

The universally adopted and largely used symmetric

encryption algorithm now a days is the Advanced Encryption

Standard (AES), which is at least six times quicker than triple

DES. AES completes all its calculations on bytes rather than

bits. Hence, AES gives the 128 bits of a plaintext block as 16

bytes and arranged in four columns and four rows for

processing as a matrix. The number of rounds in AES is

variable and determined by on the length of the key, hence

AES practices 10 rounds for 128-bit keys.

A set of specially derived keys called round keys is used in

the AES encryption process and applied on an array of data

that holds exactly one block of data to be encrypted along

with other operations, which is called as the state array.

AES steps of encryption for a 128-bit block are given below:

1) Obtain the set of round keys from the cipher key.

2) Initialize the state array with the block data i.e. plaintext.

3) Add the primary round key to the starting state array.

4) Complete nine rounds of state manipulation.

5) Complete the tenth and last round of state manipulation.

6) Copy the last state array out as the encrypted data i.e

ciphertext.

5. Algorithms for Bug triage with AES for

security

The algorithm as given below is used to shrink the bug data

using FSIS. In this bug data set, the output of bug data

reduction is a recently reduced bug data set. To achieve this,

FS and IS algorithms are applied sequentially. During feature

selection in step 2, some of bug reports may be blank, due to

all the words in a bug report are removed and in the feature

selection, such blank bug reports are removed. FSIS and

ISFS are analyzed as two orders of bug data reduction.

Instance selection method is used to reduce the number of

instances by deleting noisy and redundant instances. Hence

by deleting non-representative instances; it can offer a

reduced data set. Feature selection is a pre-processing for

selecting a condensed set of features for large-scale data sets.

The reduced bug data set is considered as the representative

features of the novel feature set. Based on feature selection,

words in bug reports are arranged as per said feature values

and a given quantity of words with large values are selected

as representative features.

Algorithm 1 Data Reduction using Feature and Instance

Selection

Input:

T - Bug Training Set having N words and

M bug reports,

FSIS -Data Reduction flow

NF - Total count of words,

MI -Total count of bug reports

 TFI - Reduced bug data set for bug triaging

Dn – Appropriate Developer

Output:

Step 1: Use FS to N words of Bug Training Set T

and estimate objective values for all the

words;

Step 2: Choose the top NF words of T and create a

training set TF ;

Step 3: Use IS to MI bug reports of TF ;

Step 4: Stop IS if the number of bug reports is ≤ MI

and create the concluding training set TFI

Step 5: Use SVM to predict appropriate developer

Dn using training set TFI

Step 6: Assign priority depending on severity of bug

MI

Step 7: Apply AES encryption to bug MI

Step 8: Assign encrypted bug MI to appropriate

developer Dn

6. Results and Discussion

The outcome of data reduction for bug triage can be

calculated in two aspects, i.e. the scales of data sets and the

quality of bug triage. Based on Algorithm 1, the scales of

data sets (including the number of bug reports and the

number of words) are configured as input parameters. The

superiority of bug triage calculated with the accurateness,

precision and recall of bug triage, which is defined as

To examine the accuracy decrease by instance selection,we

define the loss from origin to ICF as

where the recommendation list size is k. We arrange

developers by the number of their fixed bugs in descending

order in a data set. That is, we sort classes by the number of

instances in classes. Then a new data set with s developers is

built by selecting the top-s developers. For one bug data set,

we construct new data sets by varying s from 2 to 30. To

balance the precision and recall, the F1-measure is defined as

Paper ID: ART20174486 1942

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 6, June 2017

Paper ID: ART20174486 www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The outcome of data reduction for bug triage considered in

two parts, firstly the size of data sets and secondly the quality

of bug triage. The size of data sets includes the number of

bug reports and words are treated as input given in Algorithm

1. The accuracy of instance and feature selection for a bug

triage algorithm 1 is shown in Table 1 and Figure 3 shows

graph which shows accuracy.

Table 1: Accuracy of training set of eclipse

Figure 3: Precision and recall after combining CHI and ICF

Here, Whole System taken many more attribute for the input

purpose but here we mainly focuses on the Time and

performance of system as given in Table 2 and shown in

Figure 4 graphically.

Table 2: Proposed System

Algorithms Accuracy Searching time in ms

Instance Selection 3.6 2.4

Feature Selection 2.5 3.4

SVM 3.5 2.8

AES 4.5 2.8

Figure 3: Accuracy and Searching Time

7. Conclusion

Bug triaging is step of software maintaining projected

systems that aims to perform reduction and high superiority

bugs information in software development and maintenance.
Bug triage is expensive for software maintenance in both labor

and time. The feature selection with instance selection has been

merged to reduce the quantity of bug data sets as well as get

enhanced the data quality. The projected system is used for any

open supply comes that generate immense bug knowledge.

Various software corporations engaged on comes like banking,

food chain management will use the applying of the projected

system. The advantage of proposed system is, it uses the

combination of feature and instance selection to minimize the

level of bug data sets and improve the data quality. The next

advantage is, it provide priority according to severity of bug and

security so that no another developer can access

Acknowledgement

I would like to articulate my profound thankfulness and deep

stare to my guide Prof. Shyam Gupta for his excellent

direction, valuable advice and regular support all the way

through the period of the project. His precious advices were

of enormous help all the way through my project effort. His

sensitive analysis kept me operational to build this project in

a much enhanced way. Working with him was an

tremendously knowledgeable experience for me. Also I am

very much thankful to our HOD Computer Engineering,

SCOE, Sudumbare, Pune.

References

[1] J. Xuan, H. Jiang, Y Hu, Z Ren, W. Zou, Z. Luo, and X.

Wu, “Towards Effective Bug Triage with Software

Data Reduction Techniques”, IEEE transactions on

Knowledge and Data Engineering,, 2015

[2] Holmes, R., Godfrey, M. W. & Baysal, O., “Revisiting

bug triage and resolution practice” In User Evaluation

for Software Engineering Researchers (USER), 2012

IEEE.

[3] Zimmermann T., Jeong, G. & Kim, S., “Improving bug

triage with bug tossing graphs” in proceedings of the

the 7th joint meeting of the European software

engineering conference and the ACM SIGSOFT

symposium on The foundations of software engineering

ACM.

[4] S. Christian Muller, T. Fritz, K. Katja, and Harald C.

Gall. "Collaborative bug triaging using textual

similarities and change set analysis", In Cooperative

and Human Aspects of Software Engineering (CHASE),

6th International Workshop on, IEEE, 2013

[5] H. Jiang, Z. Ren, J. Yan, and Z. Luo, Xuan, Jifeng,

"Automatic Bug Triage using Semi- Supervised Text

Classification" in SEKE, , 2010..

[6] Z. Ren, J. Yan, and Z. Luo, Xuan, Jifeng, He Jiang,

"Automatic Bug Triage using Semi- Supervised Text

Classification" in SEKE, 2010.

[7] K. Magel, and S. Banitaan, Alenezi, Mamdouh,

"Efficient bug triaging using text mining." Journal of

Software (2013): 2185-2190.

Paper ID: ART20174486 1943

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 6, June 2017

Paper ID: ART20174486 www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[8] Y. Hu, J. Xuan, and H. Jiang, Zou, Weiqin, "Towards

training set reduction for bug triage." In Computer

Software and Applications Conference (COMPSAC),

IEEE 35th Annual, IEEE, 2011.

[9] E. Giger, A. Lamkanfi, S. Demeyer, and B. Goethals,

“Predicting the severity of a reported bug,” in Proc. 7th

IEEE Working Conf. Mining Softw. Repositories, May

2010.

[10] T. Xie, J. Anvik, X. Wang, L. Zhang, and J. Sun, “An

approach to detecting duplicate bug reports using

natural language and execution information,” in Proc.

30th Int. Conf. Softw. Eng., May 2008.

Author Profile

Vijay N Kukre received the BE in Computer

Technology from Nagpur University in 1993 and

pursuing ME degree in Computer Engineering from

Siddhant College of Engineering Pune

Prof. Shyam S. Gupta received the BE, ME and pursuing PhD

Degree in Computer Science and Engineering. He is Associate

Professor in Computer Engineering Department of Siddhant

College of Engineering, Sudumbare, Pune affiliated to Savitribai

Phule Pune University India

Paper ID: ART20174486 1944

