Hepatoprotective Activity of Ethanolic Extract of Peel of Punica Granatum

Bushra Hasan Khan¹, Farida Ahmad², Jameel Ahmad³, Syed Mobashir Yunus⁴

¹, ², ³Department of Pharmacology, JNMC, AMU, Aligarh
⁴Department of Anatomy, JNMC, AMU, Aligarh

Abstract: Objectives: To study the hepatoprotective activity of ethanolic extract of peel of Punica granatum. Materials and Methods: Present study was conducted on adult albino Wistar rats of either sex weighing 150-200 grams. Rats were divided into five groups (n=5) and hepatotoxicity was induced by carbon tetrachloride (CCl₄) 1ml/kg dissolved in olive oil (1:1) given intraperitoneally on day 1 and day 4 of the study. Silymarin in the dose of 50mg/kg/day was administered orally as a standard drug. Test groups were given ethanolic extract of peel of Punica granatum (PEE) at doses of 200 and 400mg/kg/day orally along with CCl₄. All animals were sacrificed on the 15th day. Hepatoprotective effect of PEE was assessed by the physical parameters, histopathological examination and biochemical parameters (Aspartate aminotransferase (AST), Alanine aminotransferase (ALT), Alkaline phosphatase (ALP) and Total serum bilirubin). Results: The administration of PEE of Punica granatum at doses of 200mg/kg/day and 400mg/kg/day orally, exhibited a highly significant decrease in the rise of mean serum AST, ALT, ALP and total bilirubin as compared to CCl₄ treated group (p<0.001). Hepatoprotective activity of PEE of Punica granatum was seen in the form of restoration of hepatic architecture towards normal. Decrease in the extent of centrilobular necrosis and congestion of sinusoids was also observed in PEE (200mg/kg and 400mg/kg) treated rats when compared to CCl₄ treated group. Conclusion: The study showed hepatoprotective activity of ethanolic extract of peel of Punica granatum against carbon tetrachloride induced liver injury in rats.

Keywords: Punica granatum, silymarin, peel ethanolic extract, hepatoprotective, carbon tetrachloride

1. Introduction

Liver is a vital organ for maintaining metabolic homeostasis in the body [1]. It plays a role as a principal organ for detoxification of endogenous as well as exogenous compounds; therefore it is often exposed to a variety of xenobiotics and therapeutic agents [2]. It is an important site for the metabolism of carbohydrates, proteins and lipids. It synthesizes many regulatory enzymes, hormones and stores many nutrients necessary for the daily housekeeping functions of the body [3].

Liver is also prone to many diseases including infectious, metabolic, autoimmune and drug toxicities which are a serious cause of concern. Exposure to toxic chemicals, environmental pollutants and drugs can cause cellular injury through metabolic activation of reactive oxygen species during metabolism by the liver resulting in liver damage [4]. Drug induced liver injury occurs in 5% of all hospital admissions and 50% of all acute liver failure cases [5]. Drug induced liver injury may manifest as acute hepatitis, cholestasis and cirrhosis [6]. The progression of liver injury to cirrhosis may occur over weeks to years. India is known to possess a huge burden of viral hepatitis which affects about 400 million people globally and is responsible for 1.4 million deaths annually [7]. The Integrated Disease Surveillance Program of India’s National Center for Disease Control reported 290,000 cases of acute viral hepatitis in India in 2013 [8]. Liver cirrhosis is a substantial cause of morbidity and mortality [9].

Treatment options for common liver diseases, including drug induced hepatitis are very few. These therapies become progressively less effective if chronic liver disease evolves into cirrhosis. Available pharmacotherapy offers a limited scope for providing effective cure for liver diseases and there is a need to get new drugs capable of treating toxic liver injury [10]. Liver protective drugs have been reported to contain a variety of chemical constituents like phenols, coumarins, lignins, essential oils, flavonoids, organic acids, lipids, alkaloids and xanthenes [11]. Many herbal drugs have been subjected to scientific study for hepatoprotective activity [12-16].

CCl₄ induced liver toxicity is one of the widely used and consistent model for inducing liver injury in rats because liver damage produced by CCl₄ is histopathologically similar to acute hepatitis. Liver damage is often assessed with the help of liver function tests and histopathological examination.

Punica granatum (Pomegranate) is a medium-sized deciduous tree found throughout India, commonly known as Anar. Its stem bark, flowers, fruits, peels, leaves and stems are employed in many disease states in indigenous systems of medicine. It is commonly used in folklore medicine as carminative and antihelminthic [17]. In Ayurveda, it is employed in the treatment of diarrhea, dysentery and worm infestations. Studies have reported that bark, roots, fruits and leaves of Punica granatum have medicinal benefit [18-20]. Therefore, Punica granatum was selected in this study for evaluation of its hepatoprotective effect in albino Wistar rats.

2. Materials and Methods

Plant material and preparation of extracts

Punica granatum was obtained from an orchard at Aligarh. The specimen was identified and authenticated by Mr. M. Badruzaman Siddiqui (Associate Professor), Department of Botany, Aligarh Muslim University, Aligarh and the voucher specimen (Vide Voucher number: 42931) was
submitted. Peels of fruits were gathered up, thoroughly washed, chopped, shade dried and powdered in an electric grinder. The powder thus obtained was extracted with absolute ethanol.

Animals
Adult albino Wistar rats of either sex weighing 150-200 grams were obtained from the Central Animal House, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India. Animals were housed in proper cages and standard laboratory conditions were maintained (temperature 27±3°C, 12 hour light/dark cycle) with relative humidity of 40-70% throughout the experimental period. All the animals were fed with commercial standard pellet diet and water ad libitum. They were acclimatized to the laboratory conditions for one week prior to the experiments.

Chemicals
Carbon tetrachloride (CCl₄) was from Thomas Baker Pvt. Ltd. Mumbai and Silymarin suspension was obtained from Micro Labs Ltd. Formalin, Ethanol, Xylene, Haematoxylin, Paraffin wax, Hydrochloric acid and all the other chemicals used in this study were of analytical grades.

Approval for the study protocol
The study protocol was approved by the Institutional Animal Ethics Committee of JNMC, AMU, Aligarh on 04.03.2015. All animal experiments were carried out as per the rules and regulations of CPCSEA under the ‘Guidelines for Care and Use of Animals in Scientific Research’.

Experimental design
Rats were randomly divided into five groups containing five animals each (Table 1). Group I received distilled water and served as normal control; Group II was administered with CCl₄ (Negative Control); Group III, served as Positive Control (Silymarin and CCl₄); Group IV and Group V were given PEE 200mg/kg/day and PEE 400mg/kg/day of Punica granatum along with CCl₄ respectively.

Table 1: Treatment schedule

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Groups (n=5)</th>
<th>Treatment given</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Normal Control</td>
<td>Distilled water</td>
<td>1ml/100g/day p.o.×14 days</td>
</tr>
<tr>
<td>2.</td>
<td>Negative control</td>
<td>CCl₄ in olive oil (1:1)</td>
<td>1ml/kg i.p. on day 1 and day 4</td>
</tr>
<tr>
<td>3.</td>
<td>Positive control</td>
<td>Silymarin</td>
<td>1ml/kg i.p. on day 1 and day 4</td>
</tr>
<tr>
<td>4.</td>
<td>PEE (200)</td>
<td>CCl₄, PEE</td>
<td>1ml/kg i.p. on day 1 and day 4, 200mg/kg/day p.o. x14 days</td>
</tr>
<tr>
<td>5.</td>
<td>PEE (400)</td>
<td>CCl₄, PEE</td>
<td>1ml/kg i.p. on day 1 and day 4, 400mg/kg/day p.o. x14 days</td>
</tr>
</tbody>
</table>

PEE= Peel ethanolic extract; CCl₄=Carbon tetrachloride; p.o.= per orum; i.p.= intraperitoneal

Collection of samples
Rats were anesthetized by method of Wellington et al., 2013 [21]. Blood withdrawal was performed according to the procedure described by Morton et al., 1993 [22]. Blood was withdrawn from the left ventricle with the help of 5 ml syringe, and with as little pressure as possible to avoid haemolysis. Blood was centrifuged at 5000 rpm for 10 minutes and plasma was extracted. After opening the abdomen, liver was visualized in the right upper quadrant and dissected out. Liver was kept in 10% formalin for histopathological examination.

Assessment of hepatoprotective activity

Determination of serum biochemical parameters
Blood samples were collected on 15th day of study and serum was analysed for biochemical parameters [Aspartate aminotransferase (AST), Alanine aminotransferase (ALT), Alkaline phosphatase (ALP) and Total serum bilirubin].

Histopathological examination
Dissected liver was grossly examined, preserved in 10% Formalin and processed in the Post Graduate Histology laboratory, Department of Anatomy, JNMC, AMU, Aligarh.

Statistical analysis
The results were presented as Mean ± Standard Error of Mean (SEM). The different groups were compared by One way analysis of variance (ANOVA) followed by Tukey HSD test to analyze statistical significance. P-value of less than 0.05 was considered to be significant.

3. Results & Discussion

The ethanolic extract of peel (PEE) of Punica granatum was prepared by soxhlet extraction using absolute ethanol and the yield obtained was 44.23%. The weight of rats, weight of liver and volume of liver in all groups were recorded on day 1 and day 15 of the study.

There was a significant increase in weight of the liver as well as volume of liver in the negative control group when compared with normal control group (p<0.001). Silymarin treated rats showed a decrease in weight of liver as well as volume of liver in comparison to CCl₄ group (p<0.05) (Table 2). Ethanolic extract of peel of Punica granatum (PEE), 200mg/kg/day showed a decrease in weight of the liver and volume of liver as compared to the negative control group, however the decrease was not statistically significant (p= 0.772; p= 0.783). PEEin dose of 400mg/kg/day also exhibited a decrease in weight and volume of liver but the decrease was not statistically significant (p= 0.104; p= 0.247). There was no observable change in the weight of rats during the study duration.

Table 2: Effect of ethanolic extract of peel of Punica granatum (PEE) on weight and volume of liver of rats

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Groups(n = 5)</th>
<th>Weight of liver (g)</th>
<th>Volume of liver (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Normal Control</td>
<td>3.86 ± 0.16</td>
<td>3.86 ± 0.16</td>
</tr>
<tr>
<td>2</td>
<td>Negative control</td>
<td>5.40 ± 0.30***</td>
<td>5.30 ± 0.30***</td>
</tr>
<tr>
<td>3</td>
<td>Positive control</td>
<td>4.31 ± 0.08*</td>
<td>4.30 ± 0.05*</td>
</tr>
<tr>
<td>4</td>
<td>PEE (200)</td>
<td>4.90 ± 0.24</td>
<td>4.82 ± 0.23</td>
</tr>
<tr>
<td>5</td>
<td>PEE (400)</td>
<td>4.54 ± 0.25</td>
<td>4.58 ± 0.23</td>
</tr>
</tbody>
</table>

All the values are expressed as Mean±SEM. Negative control group was compared with Normal control group and all other groups were compared with Negative control group, *p<0.05, **p<0.01 and ***p<0.001 were considered significant.

Volume 6 Issue 6, June 2017
www.ijisr.net
Licensed Under Creative Commons Attribution CC BY
Normal control group, given only distilled water served as baseline for biochemical parameters. A highly significant rise in serum AST, ALT, ALP and total serum bilirubin was observed in negative control group in comparison to normal control group (p<0.001).

Table 3: Effect of ethanolic extract of peel of Punica granatum (PEE) on biochemical parameters

<table>
<thead>
<tr>
<th>Groups (n = 5)</th>
<th>AST (IU/L)</th>
<th>ALT (IU/L)</th>
<th>ALP (KAU/dl)</th>
<th>Total Bilirubin (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal control</td>
<td>35.20 ± 4.45</td>
<td>32.00 ± 6.78</td>
<td>51.00 ± 4.04</td>
<td>0.27 ± 0.01</td>
</tr>
<tr>
<td>Negative control</td>
<td>120.00 ± 7.54***</td>
<td>133.60 ± 8.23***</td>
<td>89.40 ± 5.91***</td>
<td>0.42 ± 0.04***</td>
</tr>
<tr>
<td>Positive control</td>
<td>46.80 ± 4.75***</td>
<td>53.80 ± 3.53***</td>
<td>55.40 ± 3.12***</td>
<td>0.28 ± 0.01***</td>
</tr>
<tr>
<td>PEE (200)</td>
<td>49.00 ± 3.33***</td>
<td>53.60 ± 2.09***</td>
<td>60.60 ± 3.16***</td>
<td>0.28 ± 0.01***</td>
</tr>
<tr>
<td>PEE (400)</td>
<td>46.20 ± 3.02***</td>
<td>50.40 ± 2.29***</td>
<td>55.40 ± 3.17***</td>
<td>0.27 ± 0.01***</td>
</tr>
</tbody>
</table>

All values are expressed as Mean±SEM. Negative control group was compared with Normal control group and all other groups were compared with Negative control group, * p< 0.05, **p<0.01 and ***p<0.001 were considered significant.

Positive control group exhibited highly significant decrease in AST, ALT, ALP and total serum bilirubin when compared with negative control group (p< 0.001). PEE at the doses of 200 and 400mg/kg/day showed highly significant reduction in AST, ALT, ALP and total serum bilirubin when compared to CCl4 treated group (p< 0.001)/Table 3).

Table 4: Percentage of hepatoprotection of ethanolic extract of peel of Punica granatum (PEE)

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Groups (n = 5)</th>
<th>Percentage of Hepatoprotection (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AST</td>
<td>ALT</td>
</tr>
<tr>
<td>1</td>
<td>Positive control</td>
<td>86.32</td>
</tr>
<tr>
<td>2</td>
<td>PEE (200)</td>
<td>83.73</td>
</tr>
<tr>
<td>3</td>
<td>PEE (400)</td>
<td>87.03</td>
</tr>
</tbody>
</table>

Percentage of hepatoprotection offered by PEE against CCl4 induced liver injury was calculated [23,24]. PEE of Punica granatum in doses of 200 and 400mg/kg/day provided hepatoprotection against CCl4 induced liver injury (Table 4).

Osman et al (2011) showed hepatoprotective activity of ethanolic extract of peel of Punica granatum by administering orally to rats in the doses of 50mg/kg/day for a period of six weeks [25]. Similar hepatoprotective effect of PEE of Punica granatum in doses of 200mg/kg/day and 400mg/kg/day was also observed in the present study of fourteen days duration.

Histological study of liver of normal control group showed normal hepatic architecture having cords of hepatocytes with central vein and sinusoids (S) (Figure 1) whereas the liver section of CCl4 treated animals showed centrilobular necrosis, kupffer cells (K), damaged hepatocytes (H), with sinusoidal edema and loss of hepatic architecture (Figure 2). The section of liver tissue treated with silymarin alongwith CCl4 showed normal hepatocytes with few inflammatory cells and edema (E) of sinusoids, however maintaining normal hepatic architecture (Figure 3). Similar histopathological findings in liver of silymarin with CCl4 treated rats have also been reported previously [26-28].

The animals treated with different doses of the ethanolic extract of peel (PEE) of Punica granatum showed decrease in sinusoidal edema, reduced number of kupffer cells, few swollen hepatocytes and less components of portal triad showing dilatation.

Ellagitannins including punicalin, punicalagin, pedunculagrin, granatin, casuarinin, gallagylidilactone and numerous piperidine alkaloids were isolated from peels of Punica granatum [29-31]. Peels of Punica granatum have been reported to contain polyphenols including gallic acid, catechin, quercetin, rutin, flavonols, flavones, flavonones and anthocyanidins[32-34]. As antioxidants, polyphenols may provide protection against oxidative damage and therefore decrease the risk of development of diseases associated with oxidative stress [35-40]. Ethanolic extract of peel of Punica granatum in the doses of 200mg/kg/day and 400mg/kg/day exhibited hepatoprotective activity suggesting that peel of Punica granatum contains phytochemicals which are probably involved in hepatoprotection. Presence of these antioxidants in the peel of Punica granatum may be responsible for protection against CCl4 induced liver injury in rats.
4. Conclusion

This study showed hepatoprotective activity of ethanolic extract of peel of Punica granatum against carbon tetrachloride induced hepatic injury in rats.

References

Author Profile

Dr. Bushra Hasan Khan (Department of Pharmacology, JNMC, AMU, Aligarh)

Dr. Farida Ahmad, Professor (Department of Pharmacology, JNMC, AMU, Aligarh)

Dr. Jameel Ahmad, Assistant Professor (Department of Pharmacology, JNMC, AMU, Aligarh)

Dr. Syed mobashir Yunus, Professor (Department of Anatomy, JNMC, AMU, Aligarh)