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Abstract: In this paper, we have discussed Bayesian estimation of the parameter of an Inverse Maxwell Distribution. Bayes estimators 

of the scale parameter ‘θ’ of the Inverse Maxwell Distribution using quasi-prior under squared error, precautionary, entropy and 

another two loss functions have been obtained and the corresponding risk functions of these estimators relative to squared error loss 

function have also been calculated for the sake of comparison. The relevant graphs have been plotted. 
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1. Introduction 
 

There has been increased interest shown in the application of 

Bayesian methodology in the last four decades and a number 

of methods have been proposed for Bayesian inference. 

More generally, Bayesian methods are data analysis tools 

that are derived from the principles of Bayesian inference. In 

addition to their formal interpretation as a means of 

induction, Bayesian methods provide (Hoff, Peter D (2009)): 

 

 Parameter estimates with good statistical properties; 

 Parsimonious descriptions of observed data; 

 Predictions for missing data and forecasts of future data; 

 A computational framework for model estimation, 

selection and validation.  

  

Let f y   θ  ; θ ∈ Θ be the probability density function of 

lifetime distribution of a component or an animate, where 

the parameter space Θ is known but the true value of θ is 

unknown. Let g (θ) is the prior density function of the 

random variable θ. Let 𝑦 = (𝑦1 , … , 𝑦𝑛 ) be an n independent 

observations from f(y; θ). Then using Bayes‟ theorem (1763) 

the posterior distribution f  θ  
 y   of θ is given by 

 f  θ  
 y  =

f y 
 θ  g(θ)

 f y 
 θ  g(θ)dθ

Θ

 .                       (1.1) 

where f  y  
 θ   is the joint probability density function of 

 y = (y1 , … , yn). For a given sample 𝑦, the posterior p.d.f. 

f  θ  
 y   Bayes theorem. In order to define Bayes estimators 

we must specify a loss function 

L θ , θ ≥ 0, for all 𝜃  and θ ; 

The corresponding Bayes risk is defined as the expected 

value of the risk R θ , θ  with respect to the prior distribution 

g (θ) on Θ and is given as, 

 R θ , θ = E[r θ , θ ] =  r θ , θ  g θ dy
Θ

 

where the risks function r θ , θ  is defined as  

 r θ , θ =  L θ , θ  f  y  
 θ  dy

χ

 

where χ stands for the sample space of 𝑦. The fundamental 

problems in Bayesian analysis is that of the choice of prior 

distribution g(θ) and loss function L θ , θ  which may be 

appropriate for the situation at hand. 

 

Singh, Kusum Lata & Srivastava, R.S., (2014 a,b) have 

defined an Inverse Maxwell distribution, obtained its pdf 

and established it as a survival model also discussed the 

estimation of the parameter of size-biased Inverse Maxwell 

distribution. The Inverse Maxwell distribution is chosen to 

be used in the study of the propagation time of Dark Matter, 

Geoffry Blewitt(2016) university of Nevada, Reno, USA. 

Let Y is a random variable having pdf 

 f (y; θ) = 
4

 𝜋𝜃
3
2

  
1

𝑦4.e
− 

1

𝜃𝑦 2  . y>0, θ>0                (1.2)  

where θ is a scale parameter, the raw moment of IMD is 

given by  

E(X
r
) =  =  𝑦𝑟∞

0
𝑓(𝑦)𝑑𝑦 

 = 
2

 𝜋𝜃
𝑟
2

 Ґ (
−𝑟+3

2
)                              (1.3) 

The mean, variance and harmonic mean are obtained as :- 

Mean ( ) = 
𝟐

 𝝅𝜽
 , Variance( )= 

𝟐(𝝅−𝟐)

𝜽𝝅
 , and Harmonic 

Mean (H)= 
1

2
 

𝜋

𝜃
 . (Singh, Kusum Lata & Srivastava, R.S., 

(2014 a))  

 

2. Prior Distribution 
 

The prior distribution should be specific to the situation. We 

often have prior information on the sign of parameters, on 

the relative or approximate magnitude of parameters, and 

even on (sometimes complex) functions of parameters. 

 

In Bayesian analysis the fundamental problem are that of the 

choice of prior distribution g(𝜃) and a loss function L (.;.). 

Let us consider a suitable prior (e.g. quasi – prior) for 𝜃 to 

obtain the bayes estimator‟s in this case assuming 

independent among the parameters is: 

 g (𝜃) = 
1

𝜃𝑑 ; θ > 0, d > 0                             (2.1) 
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3. Various Loss function  
 

Let θ be an unknown parameter of some distribution 

f x  θ   and suppose we estimate θ by some statistic θ . Let 

L θ , θ  represent the loss incurred when the true value of the 

parameter is θ and we are estimating θ by the statistic 𝜃 . 
 

(a)  Squared error loss function (SELF) 

L(𝜃 , 𝜃) = (𝜃 − 𝜃)2                                      (3.1) 

The Bays estimator under the above loss function, say is 𝜃   

the posterior mean, i.e. 

 𝜃 𝐵= 𝐸𝜋 (𝜃)                                     (3.2) 

The risk function is given by: 

𝑅𝐵(𝜃 ) = 𝐸𝜃 (𝜃 )2 − 2𝜃𝐸𝜃 𝜃   + 𝜃2 .           (3.3) 

 

(b) Precautionary Loss Function : 

Norstrom (1996) introduced an alternative asymmetric 

precautionary loss function and also presented a general 

class of precautionary loss functions with quadratic loss 

function as a special case (Srivastava, R.S.,et al. (2004)). A 

very useful and simple asymmetric precautionary loss 

function is given as 

 𝐿 𝜃 , 𝜃  =  
 𝜃 −𝜃 

2

𝜃 
 .                            (3.4) 

The posterior expectation of loss function in (6) is 

𝐸𝜋 [L(𝜃 −  𝜃)] = 𝐸𝜋  
θ

2

θ 
 + 𝐸𝜋 𝜃   − 𝐸𝜋 𝜃         (3.5) 

The value of 𝜃  that minimize (7), denoted by 𝜃 𝑝  is obtained 

by solving the following equation  
𝑑

𝑑𝜃
𝐸𝜋 [L(𝜃 −  𝜃))] = 0 

 𝜃 𝑃 =   𝐸𝜋 𝜃2  
1

2 .                              (3.6) 

 

(c) Entropy Loss Function : 

In many practical situations, it appears to be more realistic to 

express the loss iSn terms of the ratio 
𝜃 

𝜃
. In this case, 

Calabria and Pulcini (1994) points out that a useful 

asymmetric loss function is the entropy loss given by 

 L(δ) =  𝛿𝑝 −  𝑝𝑙𝑜𝑔𝑒 𝛿 −  1                    (3.7) 

where  

δ = 
𝜃 

𝜃
 , 

The posterior expectation of loss function in (9) is 

 𝐸𝜋 [L(𝛿)] = b 𝐸𝜋  
𝜃 

𝜃
  −  𝐸𝜋  𝑙𝑜𝑔𝑒  

𝜃 

𝜃
    − 1       (3.8) 

The value of 𝜃  that minimum (10), denoted by 𝜃 𝑒  is obtained 

by solving the following equation  

 
𝑑

𝑑𝜃
𝐸𝜋  [L(∆)] = 0  

 𝜃 𝑒 =   𝐸𝜋  
1

𝜃
  

−1

                              (3.9) 

(d) Loss function-L1 : 

Consider the loss function given by  

L1(𝜃 , 𝜃) =  
𝜃 

𝜃
 −  1 

2

                       (3.10) 

The Bayes estimator under loss function- L1, say 𝜃 1 using 

the value of f(θ|𝑦), 

𝜃 1 =  
𝐸𝜋 

1

𝜃
 

𝐸𝜋 
1

𝜃2 
                                (3.11) 

(e) Loss function-L2 : 

Consider the loss function given by  

L2(𝜃 , 𝜃) =  
𝜃

𝜃 
 −  1 

2

                               (3.12) 

The Bayes estimator under loss function- L2 , say 𝜃 2 using 

the value of f(θ|𝑦), 

 𝜃 2 =  
𝐸𝜋  𝜃2 

𝐸𝜋  𝜃 
                                        (3.13) 

In this paper, we have discussed Bayesian estimation of the 

parameter of an Inverse Maxwell Distribution. Bayes 

estimators of the scale parameter „θ‟ of the Inverse Maxwell 

distribution (IMD) using quasi-prior under squared error, 

precautionary, entropy and another two loss functions have 

been obtained and the corresponding risk functions of these 

estimators relative to squared error loss function have been 

obtained for the sake of comparison. The relevant graphs 

have also been plotted. 

 

4. Bayesian Estimation under g(θ) 
 

Under g(θ), the posterior distribution is defined by  

 f  θ  
 y  =

f y 
 θ  g(θ)

 f y 
 θ  g(θ)dθ

Θ

 (4.1) substituting the value of 

g(θ) and f  y  
 θ   in (4.1) 

 

In order to carry out the estimation procedure, let us suppose 

that very small information is available about the parameter 

(the suitable prior for this case (Singh, Kusum Lata & 

Srivastava, R.S., (2014 c)). Assuming independence among 

the parameters, consider a quasi prior (2.1), 

 g(𝜃) = 
1

𝜃𝑑  .  

 

The joint density function of IMD is given by 

 f(𝑦|𝜃) =  
4

𝜃
3
2 𝜋

 

𝑛

 
1

𝑦𝑖
4  𝑒

  
1

𝑦𝑖
2  

1

𝜃
 

𝑛
𝑖=1                  (4.2) 

 where  

𝑇𝑛  =   
1

𝑦𝑖
2 . 

 

Now using the Bayes theorem, the joint density function 

(4.2) along with the prior (2.1), we obtain the following joint 

posterior density function of IMD is 

 f(θ | 𝑦) = 
f(y|θ)g(θ)

 f(y|θ)g(θ)dθ
∞

0

 ,                              (4.3)  

which on substituting the value of g(θ) and f(y|θ) gives 

 f(θ | 𝑦) = 
  

1

𝜃
 

3𝑛
2 +𝑑

 𝑇𝑛  
3𝑛
2 +𝑑−1

𝑒
− 

𝑇𝑛
𝜃

 

𝛤(
3𝑛

2
+𝑑−1)

 .                 (4.4) 

(a) Squared error loss function : the Bayes estimator 

under squared error loss function is the posterior mean 

given by 

 𝜃 𝑆 =  𝜃 f  θ y 
∞

0
𝑑𝜃                             (4.5) 

Substituting the value of f(θ | 𝑦) from equation (4.4) in 

equation (4.5) and solving it, we get 

 𝜃 𝑆 =   𝜃 
  

1

𝜃
 

3𝑛
2 +𝑑

 𝑇𝑛  
3𝑛
2 +𝑑−1

𝑒
− 

𝑇𝑛
𝜃

 

𝛤(
3𝑛

2
+𝑑−1)

 
∞

0
 .                 (4.6) 

Solving equation (4.6), we get 

 𝜃 𝑆 =  
𝑇𝑛

3𝑛

2
+𝑑−2

 .                                (4.7) 

 

 

Paper ID: ART20174323 682 



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 6 Issue 6, June 2017 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

(b) Precautionary loss function: The Bayes estimator 

under precautionary loss function 

 𝜃 𝑃 =   𝐸𝜋 𝜃2  
1

2 =   𝜃2∞

0
 f(θ | 𝑦) dθ 

1

2
              (4.8) 

which on simplification leads to  

 𝜃 𝑃 =  
𝑇𝑛

  
3𝑛

2
+𝑑−2 (

3𝑛

2
+𝑑−3) 

1
2

 .                     (4.9) 

(c) Entropy loss function: The Bayes estimator under 

entropy loss function  

 𝜃 𝑒 =   𝐸𝜋  
1

𝜃
  

−1

 =   
1

𝜃

∞

0
 f(θ | 𝑦) dθ 

−1

             (4.10) 

Which on simplification comes out to be  

 𝜃 𝑒 =  
𝑆

 
3𝑛

2
+𝑑−1 

 .                                (4.11) 

(d)  Other loss function-L1 : 

 Consider the loss function given by  

L1(𝜃 , 𝜃) =  
𝜃 

𝜃
 −  1 

2

 

The Bayes estimator under loss function- L1 say 𝜃 1 using the 

expression of f (θ|𝑦) in equation (4.4) is the solution of 

equation given  

 𝜃 1 =  
𝐸𝜋 

1

𝜃
 

𝐸𝜋  
1

𝜃2 
 = 

 
1

𝜃

∞

0  f(θ | 𝑦) dθ

 
1

𝜃2
∞

0  f(θ | 𝑦) dθ
                       (4.12) 

 Or 𝜃 1 =  
𝑇𝑛

 
3𝑛

2
+𝑑 

 (4.13) 

(e) Other loss function- L2 : 

 Consider the loss function given by  

L(𝜃 , 𝜃) =  
𝜃

𝜃 
 −  1 

2

. 

 

The Bayes estimator under loss function-L2, say, 𝜃 2 using 

the value of f(θ|𝑦) from equation (4.4) is the solution of 

equation given by 

 𝜃 2 =  
𝐸𝜋  𝜃2 

𝐸𝜋  𝜃 
 = 

 𝜃2∞

0  f(θ | 𝑦) dθ

 𝜃
∞

0  f(θ | 𝑦) dθ
 ,                      (4.14) 

 or 𝜃 2 =  
𝑇𝑛

 
3𝑛

2
+𝑑−3 

 .                              (4.15) 

 

4.1 The Risk Functions Under The Squared Error Loss 

Function 

 

(i) The risk function of 𝜃 𝑆 , relative to squared error loss 

function is denoted by 𝑅𝑆(𝜃 𝑆 ) and accordance with (5), 

is given by 

𝑅𝑆(𝜃 𝑆 ) =  𝐸𝜃  𝜃 𝑆 
2
 − 2𝜃𝐸𝜃 (𝜃 𝑆 ) + 𝜃2.          (5.1) 

Substituting the value of 𝜃 𝑆 from (4.7) and evaluating 

various expectations in (5.1), we get 

𝑅𝑆(𝜃 𝑆 ) =  𝜃2  
(

3𝑛

2
−1)(

3𝑛

2
+1)

 
3𝑛

2
+𝑑−2 

2 −
2(

3𝑛

2
−1)

(
3𝑛

2
+𝑑−2)

+  1 .        (5.2) 

(ii) The risk function of 𝜃 𝑝 , relative to squared error loss 

function is denoted by 𝑅𝑆(𝜃 𝑝 ) is given by 

𝑅𝑆(𝜃 𝑝 ) =  𝐸𝜃  𝜃 𝑝 
2
 − 2𝜃𝐸𝜃 (𝜃 𝑝 ) +  𝜃2 .        (5.3) 

Substituting the value of 𝜃 𝑝 from (4.9) and evaluating 

various expectations in (5.3), we get 

𝑅𝑆(𝜃 𝑝 ) =  𝜃2  
(

3𝑛

2
−1)(

3𝑛

2
+1)

[(
3𝑛

2
+𝑑−2)(

3𝑛

2
+𝑑−3)]

−
2(

3𝑛

2
−1)

[(
3𝑛

2
+𝑑−2)(

3𝑛

2
+𝑑−3)]

1
2

+  1  

. (5.4) 

(iii) The risk function of 𝜃 𝑒 , relative to squared error loss 

function is denoted by 𝑅𝑆(𝜃 𝑒 ) is given by 

𝑅𝑆(𝜃 𝑒 ) =  𝐸𝜃  𝜃 𝑒
2
 − 2𝜃𝐸𝜃 (𝜃 𝑒 ) +  𝜃2 .           (5.5) 

Substituting the value of 𝜃 𝑒 from (4.11) and evaluating 

various expectations in (5.5), we get 

𝑅𝑆(𝜃 𝑒) =  𝜃2  
(

3𝑛

2
−1)(

3𝑛

2
+1)

 
3𝑛

2
+𝑑−1 

2 −
2(

3𝑛

2
−1)

(
3𝑛

2
+𝑑−1)

+  1  .        (5.6) 

(iv) The risk function of 𝜃 1 , relative to squared error loss 

function is denoted by 𝑅𝑆(𝜃 𝑆 ), is given by 

𝑅𝑆(𝜃 1 ) =  𝐸𝜃  𝜃 1 
2
 − 2𝜃𝐸𝜃 (𝜃 1 ) +  𝜃2 .           (5.7) 

Substituting the value of 𝜃 1  from (4.13) and evaluating 

various expectations in (5.7) we get 

𝑅𝑆(𝜃 1 ) =  𝜃2  
(

3𝑛

2
−1)(

3𝑛

2
+1)

 
3𝑛

2
+𝑑 

2 −
2(

3𝑛

2
−1)

(
3𝑛

2
+𝑑)

+  1 .          (5.8)  

(v) The risk function of 𝜃 2 , relative to squared error loss 

function is denoted by 𝑅𝑆(𝜃 2 ), is given by 

𝑅𝑆(𝜃 2 )  =  𝐸𝜃  𝜃 2 
2
 − 2𝜃𝐸𝜃 (𝜃 2 ) +  𝜃2 .            (5.9) 

Substituting the value of 𝜃 2  from (4.15) and evaluating 

various expectations in (5.10), we get 

𝑅𝑆(𝜃 2 ) =  𝜃2  
(

3𝑛

2
−1)(

3𝑛

2
+1)

 
3𝑛

2
+𝑑−3 

2 −
2(

3𝑛

2
−1)

(
3𝑛

2
+𝑑−3)

+  1  .      (5.10) 

 

5. The Risk Functions Under the 

Precautionary Loss Function 
 

(i) The risk function of 𝜃 𝑆 , relative to squared error loss 

function is denoted by 𝑅𝑆(𝜃 𝑆 ) and accordance with (5), 

is given by 

𝑅𝑃(𝜃 𝑆 ) = 𝜃2 𝐸𝜃  
1

𝜃𝑆  − 𝐸𝜃 (𝜃 𝑆 ) −  2𝜃 . (6.1) 

Substituting the value of 𝜃 𝑆 from (4.7) and evaluating 

various expectations in (6.1), we get 

𝑅𝑃(𝜃 𝑆 ) =  𝜃  
(

3𝑛

2
+𝑑−2)

(
3𝑛

2
−1)

−
(

3𝑛

2
)

(
3𝑛

2
+𝑑−2)

− 2  . (6.2) 

(ii) The risk function of 𝜃 𝑝 , relative to squared error loss 

function is denoted by 𝑅𝑆(𝜃 𝑝 ) is given by 

𝑅𝑃(𝜃 𝑝 ) =  𝜃2 𝐸𝜃  
1

𝜃𝑝 
 − 𝐸𝜃 (𝜃 𝑝) −  2𝜃 . (6.3) 

Substituting the value of 𝜃 𝑝 from (4.9) and evaluating 

various expectations in (6.3), we get 

𝑅𝑃(𝜃 𝑝 ) =  𝜃  
[(

3𝑛

2
+𝑑−2)(

3𝑛

2
+𝑑−3)]

1
2

(
3𝑛

2
−1)

−

(3𝑛2)[(3𝑛2+𝑑−2)(3𝑛2+𝑑−3)]12−2 . (6.4) 

(iii) The risk function of 𝜃 𝑒 , relative to squared error loss 

function is denoted by 𝑅𝑆(𝜃 𝑒 ) is given by 

𝑅𝑃(𝜃 𝑒 ) =  𝜃2 𝐸𝜃  
1

𝜃𝑒  − 𝐸𝜃 (𝜃 𝑒) −  2𝜃 . (6.5) 

Substituting the value of 𝜃 𝑒 from (4.11) and evaluating 

various expectations in (6.5), we get 

𝑅𝑃(𝜃 𝑒) =  𝜃  
(

3𝑛

2
+𝑑−1)

(
3𝑛

2
−1)

−
(

3𝑛

2
)

(
3𝑛

2
+𝑑−1)

− 2  . (6.6) 

(iv) The risk function of 𝜃 1 , relative to squared error loss 

function is denoted by 𝑅𝑆(𝜃 𝑆 ), is given by 

𝑅𝑃(𝜃 1 ) =  𝜃2  𝐸𝜃  
1

𝜃1  − 𝐸𝜃 (𝜃 1) −  2𝜃. (6.7) 

Substituting the value of 𝜃 1  from (4.13) and evaluating 

various expectations in (6.7) we get 
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𝑅𝑃(𝜃 1 ) =  𝜃  
(

3𝑛

2
+𝑑)

(
3𝑛

2
−1)

−
(

3𝑛

2
)

(
3𝑛

2
+𝑑)

− 2       (6.8)  

(v) The risk function of 𝜃 2 , relative to squared error loss 

function is denoted by 𝑅𝑆(𝜃 2 ), is given by 

𝑅𝑆(𝜃 2 )  =  𝜃2 𝐸𝜃  
1

𝜃2  − 𝐸𝜃 (𝜃 2) −  2𝜃    (6.9) 

Substituting the value of 𝜃 2  from (4.15) and evaluating 

various expectations in (6.9), we get 

𝑅𝑆(𝜃 2 ) =  𝜃  
(

3𝑛

2
+𝑑−3)

(
3𝑛

2
−1)

−
(

3𝑛

2
)

(
3𝑛

2
+𝑑−3)

− 2    (6.10) 

 

6. Conclusion 
 

In this paper, we have discussed Bayesian estimation of one 

parameter of Inverse Maxwell Distribution. It is evident 

from the equations (4.7), (4.9), (4.11), (4.13) and (4.15) that 

the MLE of 𝜃 , under squared, precautionary, entropy, and 

other two loss function L1 & L2 using quasi-prior. The Bayes 

estimators depend upon the parameter of the prior 

distribution. 

 

In figure 1(a), 1(b), 2(a) and 2(b), we have plotted the ratio 

of risk functions of the Bayes estimators 𝜃𝑠
 , 𝜃𝑝

 , 𝜃𝑒
 , 𝜃1

 & 𝜃2
  , 

as given in the equation (5.2), (5.4), (5.6), (5.8), (5.10), 

(6.2),(6.4), (6.6), (6.8) and (6.10) for d=0.0(0.5)5.0, θ =1 and 

n= 5 and 10. It is clear that neither of the estimators 

uniformly dominates the any other. 

 

Table 1(a): Risk function under squared error (θ = 1, n= 5) 

d Rs Rp Re R1 R2 

0 0.46281 0.619225 0.307692 0.248889 0.839506 

0.5 0.368056 0.468202 0.270408 0.238281 0.61 

1 0.307692 0.371225 0.248889 0.235294 0.46281 

1.5 0.270408 0.309533 0.238281 0.237654 0.368056 

2 0.248889 0.271435 0.235294 0.243767 0.307692 

2.5 0.238281 0.249409 0.237654 0.2525 0.270408 

3 0.235294 0.238484 0.243767 0.263039 0.248889 

3.5 0.237654 0.235296 0.2525 0.274793 0.238281 

4 0.243767 0.237532 0.263039 0.287335 0.235294 

4.5 0.2525 0.243569 0.274793 0.300347 0.237654 

5 0.263039 0.252257 0.287335 0.3136 0.243767 
 

 
 

Table 1(b): Risk function (θ = 1, n= 10) 

d Rs Rp Re R1 R2 

0 0.171598 0.194103 0.142857 0.128889 0.222222 

0.5 0.155007 0.171966 0.134364 0.125911 0.1936 

1 0.142857 0.155271 0.128889 0.125 0.171598 

1.5 0.134364 0.14304 0.125911 0.125803 0.155007 

2 0.128889 0.134483 0.125 0.128028 0.142857 

2.5 0.125911 0.128958 0.125803 0.131429 0.134364 

3 0.125 0.125941 0.128028 0.135802 0.128889 

3.5 0.125803 0.125 0.131429 0.140979 0.125911 

4 0.128028 0.12578 0.135802 0.146814 0.125 

4.5 0.131429 0.127986 0.140979 0.153189 0.125803 

5 0.135802 0.131373 0.146814 0.16 0.128028 

 
 

Table 2(a): Risk function under precautionary (θ = 1, n= 5) 

D Rs Rp Re R1 R2 

0 0.20979 0.272932 0.153846 0.020513 0.136752 

0.5 0.173077 0.211956 0.148352 0.043269 0.069231 

1 0.153846 0.174229 0.153846 0.072398 0.027972 

1.5 0.148352 0.154312 0.168269 0.106838 0.00641 

2 0.153846 0.148345 0.190045 0.145749 0 

2.5 0.168269 0.153509 0.217949 0.188462 0.005495 

3 0.190045 0.167699 0.251012 0.234432 0.020513 

3.5 0.217949 0.189311 0.288462 0.283217 0.043269 

4 0.251012 0.217099 0.32967 0.334448 0.072398 

4.5 0.288462 0.250082 0.374126 0.387821 0.106838 

5 0.32967 0.287477 0.421405 0.443077 0.145749 

 

 
 

Table 2(b): Risk function (θ = 1, n= 10) 

d Rs Rp Re R1 R2 

0 0.082418 0.093104 0.071429 0.004762 0.02381 

0.5 0.075397 0.082585 0.070197 0.010369 0.012857 

1 0.071429 0.075498 0.071429 0.017857 0.005495 

1.5 0.070197 0.071475 0.074885 0.027056 0.001323 

2 0.071429 0.070197 0.080357 0.037815 0 

2.5 0.074885 0.071389 0.087662 0.05 0.001232 

3 0.080357 0.074813 0.096639 0.063492 0.004762 

3.5 0.087662 0.080257 0.107143 0.078185 0.010369 

4 0.096639 0.087539 0.119048 0.093985 0.017857 

4.5 0.107143 0.096495 0.132239 0.110806 0.027056 

5 0.119048 0.106983 0.146617 0.128571 0.037815 
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