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Abstract: This paper deals with an analytical study of flow of an incompressible generalized Burgers’ fluid (GBF) in an annular pipe. 

We discussed in this problem the flow induced by an impulsive pressure gradient and compare the results with flow due to a constant 

pressure gradient. Analytic solutions for velocity is earned by using discrete Laplace transform (DLT) of the sequential fractional 

derivatives (FD) and finite Hankel transform (FHT). The influences of different parameters are analyzed on a velocity distribution 

characteristics and a comparison between two cases is also presented, and discussed in details. Eventually, the figures are plotted to 

exhibit these effects. 
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1. Introduction 
 

Non-Newtonian fluids do not illustrate a linear 

interconnection between the rate of strain and the stress , 

and acquired great attention for their diverts applications in 

technology and industry , like paints , polymers solutions , 

and heavy oils , the models of these fluids found in various 

manners with their constitutive equations which differ 

seriously in their complexity [1], [2]. 

 

The actions of all non-Newtonian fluids cannot be recited by 

an individual model, due to the fact that they own difficult 

behavior. A numerous basical equations for non-Newtonian 

fluid models were proposed.for instance, the Burgers' fluid 

which has a representative relationship between the shear 

stress and the strain rate that cannot be described , that is 

why many of  models of constitutive equations have been 

suggested for those fluids [3], [4], [5]. Flow of viscoelastic 

fluid in an annular pipe of Burgers' model with fractional 

derivatives has been discussed by Hyder … etc. [6]. The 

flow of GBF in an annular pipe has also been discussed by 

Tong … [7]. 

 

Many applications of this fluid type can be found in [8], [9], 

[10], [11]. And the development in the viscoelastic flows 

theory have been mainly limited to the basical equations and 

fundamental models [12], [13]. Whereas a large number of 

fractional calculus implementations have been found in 

dynamics of fluid, nonlinear control theory, turbulence, and 

stochastic dynamical system [14], [15], [16]. In an annular 

pipe, the flow of unsteady rotating non-Newtonian fluid 

with oldroyd-B fluid model has been studied currently by 

Tong and Liu [17]. The oldroyd-B fluid flow in an annular 

pipe with fractional derivative has also been discussed by 

Tong … etc. [18].Later on , the results of MDH on the 

unsteady flow in an annular pipe of a viscoelastic fluid with 

a model of fractional GBF has been studied by Ibraheem 

and Abdulhadi[2].  

 

In this paper, our target is to study the flow of unsteady 

viscoelastic fluid in an annular pipe with a model of 

fractional GBF under impulsive pressure, and compare it 

with flow under constant pressure. The exact solution for the 

distribution of velocity is performed by utilizing the FHT 

and DLT of the fractional sequential derivatives. 

 

2. Dominant Equations 
 

The constitutive equations for an incompressible GBF 

fractional are given by 
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here (.) is the Gamma function. 

The model diminished to the generalized Oldroyd- B (O-B) 

model when and in addition to that, if  the model of ordinary 

O-B ought to earn. We suppose for the unidirectional flow 

the following form for both of velocity field and shear stress 
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where  indicated the unit vector y - along direction. 

Replacing equation (5) into (1) and observance of the initial 

situation 
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where 0SSSSrr  xxxyrx . Furthermore, in the 

existence of pressure gradient in y- direction, the motion 

equation supply the following equation of scalar:
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here  indicated the fixed density of the fluid. Removing 

amidst (7) and (8) eqs., we obtained the following 

differential fractional equation 
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where 



v denoted the kinematic viscosity. 

 

3. Flow of Plane Poiseuille 
 

Regard the problem of an incompressible generalized 

Burgers’ fluid flow is firstly at rest between two long 

coaxial infinitely cylinders of radii 0R and 1R  ( 0R ). At 

time 
 0t the fluid is generated as a result of an impulsive 

pressure gradient that acts on liquid in y- direction. Pointing 

to Eq. (9), the coinciding differential fractional partial 

equation which describe such flow has the following form 
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(t)K  indicated the fixed pressure gradient 

The related beginning and ending states are as follows  
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To earn the accurate analytical resolution of the previous 

problem (10)- (12), First, we applied the principle of 

Laplace transform [19] with regard to t, that we acquired 
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where ),( sr denoted the image function of ),( tr and 

s denoted a converting parameter. We use the restricted 

Hankel transform [19], described like the follows  
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where
ik are the positive roots of equation 0)( 10 ikRB and 
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where (.)0J and (.)0Y are the functions of Bessel of both  

the first and second types of order zero. 

Yet, using the restricted Hankel transform to (13)-(14) Eqs. 

with respect to r, that we obtained 
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Now, writing Eq. (17) in series form as  
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where )1(2   cbk . And its separated reverse 

Laplace transform [19] will take the following form 
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Mittag- Leffler function [19] andtoearn Eq. (19), the 

following feature of reverse Laplace transform is applied 
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eventually, the reverse restricted Hankel transform obtains 

the analytic resolution of speed distribution
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3.1 The Limiting Status  

 

Making the limits of Eq. number (21), when 0 , 02   

(b=0), we could obtained the distribution of velocity for a 

generalized Oldroyd- B fluid. Thus the field of velocity 

reduces to  
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where )1(   ck . 

 

4. Discussion and Numerical Results 
 

In this topic, the flow in an annular pipe was discussed due 

to impulsive pressure gradient for the generalized Burger’s 

fluid. The accurate resolution for the field of velocity u is 

obtained by applying the detached Laplace and restricted 

Hankel transforms. In addition, few figures were plotted to 

revealed the behavior of various parameters included in 

velocity expressions u .  

 

A rapprochement between flow due to impulsive pressure 

gradient (Panel a) and the flow due to constant pressure 

gradient (Panel b) is likewise made graphically in Figs 1-6.  

 

Fig. 1 was provided the graphical illustrations for the effect 

of the non- integer fractional parameter   on the fields of 

velocity. Velocity is decreasing with the increased the   

for the flow as a result to the impulsive pressure gradient, 

whereas quite opposite effect was observed for the flow due 

to a constant pressure gradient.    

 

Fig. 2 showed that the field of velocity is increased with the 

increasing the  of both cases. 

 

Fig. 3 provided the graphical explanation of the effect of 

repose parameter 1  on the fields of velocity. The velocity 

is decreased with the increase of 1  for both cases. 

 

Figs. 4 and 5 were prepared to show the effect of the 

material parameter 2  and the tardiness parameter 3 on the 

field of velocity. The field of velocity has similar behavior 

for both cases the velocity is increase with the increase of 

2 and 3 .  

 

 

 

 
Figure 1: Velocity of different value of  while maintaining 

another parameters constant a) flow due to impulsive pre. 

grad. b) flow due to constant pre. grad. 

 
Figure 2:Velocity of different value of  while maintaining 

another parameters constant a) flow due to impulsive pre. 

grad. b) flow due to constant pre. grad. 
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Figure 3: Velocity of different value of

1 while maintaining 

another parameters constant a) flow due to impulsive pre. 

grad. b) flow due to constant pre. grad. 

 
Figure 4: Velocity of different value of

2 while maintaining 

another parameters constant a) flow due to impulsive pre. 

grad. b) flow due to constant pre. grad. 

 
Figure 5: Velocity of different value of

3 while maintaining 

another parameters constant a) flow due to impulsive pre. 

grad. b) flow due to constant pre. grad. 

 
Figure 6: Velocity of different value of t while maintaining 

another parameters constant a) flow due to impulsive pre. 

grad. b) flow due to constant pre. grad. 
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