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Abstract: Fisher’s method of adjusting the cutoff point to obtain a balance on the total probability of misclassification are 

disadvantaged in the sense that they inflate the classification error in the presence of outliers. The proposed method of Modified 

Fisher’s Cutoff Point (MFCP) is aimed at addressing this problem. To accomplish this purpose, linear discriminant analysis was 

performed using Fisher’s technique and the modified approach. Misclassification errors were computed for both methods and the 

modified procedure was observed to have minimum error than the Fisher’s procedure. The results obtained in applying the cutoff point 

showed that the modified approach performs better than the Fisher’s linear discriminant cut off point. The application of this new 

method reduces the effect of outliers to the barest minimum.  
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1. Introduction  
 

Fisher’s linear discriminant analysis is a conventional 

multivariate technique for dimension reduction and 

classification (Pohar etal, 2004 & Sugiyama, M. 2007;). 

Discriminant analysis deals with the problems of 

discrimination and classification (Johnson and Wichern, 

2007) Fisher’s discriminant analysis is concerned with the 

problem of classifying an object of unknown origin into one 

or more distinct groups or population on the basis of 

observations made on it. Hawkins (1982). These 

observations form the training sample which is used to 

construct a discriminant rule for the allocation of new 

individual objects into one of the groups. The basic objective 

of discriminant analysis is to classify and predict problems 

when the dependent variables are in numerical form, Alvin 

(2002). 

 

An automobile engineer may classify an auto mobile engine 

into grade I, grade II, or grade III on the basis of 

measurements of its output, shape, size and shape. 

Nutritionist may classify food items into carbohydrate, 

protein, minerals, fat and oil based on measurements 

observed about the food composition. These examples 

illustrate range of problems that can be solved through the 

use of discriminant analysis.  

 

Fisher (1936) proposed the transformation of multivariate 

x to univariate y such that the y observations from 1 and 

2  has maximum separation and that the mean difference 

determines this separation. His work was based on the 

assumption of equal covariance matrices. Fisher’s technique 

is determined by the optimal transformation of minimizing 

the within and between class separation. 

 

The proposed method of Modifying Fisher’s cutoff point has 

the advantage of reducing the classification error or the 

probability of misclassification. Theorems that will be 

developed will be used to solve the proposed method. 

We are therefore proposing to develop a robust Fisher’s 

linear discriminant function by modifying the Fisher’s cutoff 

point using the moving average method. In carring out this 

study we shall consider only two groups discriminant 

analysis. The emphasis is on Fisher’s two group 

discrimination.  

 

2. Linear Discriminant Function  
 

Discriminant analysis is performed by making the weight of 

each variable to maximize the between and within group 

variance. The linear discriminant function is given by 

jj XCXCXCBD  ...2211                 
 1 

D  is the discriminant score  

B  is the discriminant constant 

kjC j ,...,2,1,   is the discriminant weight or coefficient,  

kiX i ,...,2,1, 
 
is the independent variable or predictor 

 Chen and Muirhead (1994) proposed two methods- the first 

is a projection pursuit index on the Fisher’s discriminant 

ratio of between class variation and within class variation. 

The second is the total probability of misclassification. 

Robust linear discriminant functions were constructed by 

applying projection pursuit optimization algorithm and the 

rank cut off point for robust location estimates. Randles, 

Brofitt, Ramberg and Hogg (1978) modified the work by 

improving the balance between two classification rates for 

linear discriminant and quadratic functions. Chen (1989) 

applied the cutoff point which minimizes the error rate in 

classifying the training samples. See Anderson (1984) and 

Gnadadesikan (1988) for other procedures of cutoff points. 

 

3. Methodology  
 

The major aim of discriminant analysis is to distinguish 

between two known populations, group
1G
 and 

2G
. The 

purpose is to create a classification rule which can be used 
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for classifying individual units that belong to any of the two 

groups based on specified characteristics. 

 

We assume that the we have n x p observations of data 

matrix from G groups and the data matrix X contains the 

observed values ijx of the jth variable of the ith individual, 

ni ,......,2,1 , pj ,....,2,1 . It also has a variable 

 ,,.....,2,1 Ggi   whose value indicates the group the 

observation belongs to.  
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Here we have n individual items and on each item we have 

measurements on p variables. Each individual item belongs 

to only one group and many individuals will be allocated to 

a specified group. 

 

Let gn  be the number of individual items that belong to 

group g. 

 g =1,2...,G. 

Let gix  be the ith individual item in group g, i=1, 2,… gn . 

Let G be the number of group and each group has m-

dimensional samples.
   

4. Determination of Fisher’s cutoff point 
 

Let 

2

21 )( xx 
 and 

2

21 )( yy 
 be the separation of the 

two populations which represents the distance that measures 

the variation between means of the discriminant scores. We 

find a vector 
a

 that maximizes the standardized difference 

 

ys

yy 21 

  

ys

yy 21 

 
 measures the difference between the transformed means 

21 yy 
 with respect to the sample standard deviation ys

 

The separation of the projected y is measured by the ratio of 

the squared difference. 
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Is the maximum of this ratio and is known as the 

Mahalanobi’s squared distance.  The vector of coefficient 
a

 

that maximizes the standardized difference and the squared 

distance is the ratio 

 
Saa

xxa

'

]'[ 2

21 

 (refer to eq.70) and the 

separation is maximized for 
  1

21 ''  Sxxa
The linear 

combination  

  xSxxxay 1

21' 
                                      5 

 maximizes the ratio. 

 

We proceed and apply the allocation rule as follows; 

Allocate 

 ox
to 1 if mxSxxy opo




1

21 )(
                 6

 

Allocate ox to 
2 if mxSxxy opo




1

21 )(
          7

 

Where m     21

1'

21
2

1
xxSxx p 


               8  

This rule is known as Fisher’s linear discriminant function 

and m is the CUTOFF POINT. That is  

)(
2

1
21 yym                                     9 
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The cutoff point 
cY
 is the projection of the midpoint 

between the two population sample means into the same 

subspace. The classification rule based on the cutoff point is  

Assign an observation ox  to 1 if cYY 
 
 

Assign an observation ox to 
2 if cYY   

This is called the linear discriminant analysis. (Fisher, 

1936,).  

 

Graphical display of separation by discriminant analysis.  
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Figure 1: Two group discriminant analysis 

 

The samples are projected very close to each other but the 

means are far apart from each other.  

 

The Apparent error rate (APER) will be evaluated using the 

confusion matrix as presented below. It indicates the number 

of correct and incorrect classified individuals in the data set. 

 

Table 1: Confusion matrix table 

 
Where 

cn1  is the number of individuals from 1  correctly classified as 

1
  
cn2  is the number of individuals from 2  correctly classified as 

2  
mn1  is the number of individuals from 1 misclassified as 2  

mn2  is the number of individuals from 2  misclassified as 1  

The apparent error rate (APER) is given as  

 APER = 
21

21
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                              14 

The hit ratio (HR) is given as 
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The confusion matrix and APER is to justify how good or 

bad the rule is. The APER is an estimate of the probability 

that a classification procedure based on a given data will 

misclassify a future observation. 
 

 

5. Modifying the Fisher’s cutoff point  
 

Theorem 1. 

 If nxxxx ,...,,, 321  
is a set of observations and  

)()2()1( ... nyyy 
 
is the ordered n observations 

Where  

 nxxxy ,...,,min 21)1(   and  nn xxxy ,...,,max 21)( 
 

17 

If )()2()1( ,...,, nyyy belong to two regions 1R and
2R where 

RRR 21, and R  is the sample space, then the cutoff 

point is the midpoint of the moving average of R
. 

Proof. 

Let 121 ,...,, Rxxx n  and 
2R  
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Hence, the nth term is  
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Therefore, the midpoint is 
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The cutoff point is  

 
2

2
)1(

2
)( 


nn

C

yy

Z                                  23 

 

6. Problem on FLDF 
 

This problem on Fisher’s linear discriminant function was 

chosen from one of the text books. Compute the Fisher’s 

linear discriminant function for two data set.  

Samples for 1n :  

            )9,10(,9,8,8,8,10,9,5,7,7,6, 211 xxX  

Samples for 

            )14,13(,11,12,16,11,20,22,16,15,11,13,: 2122 xxXn  

 
The matrix form of the data sets is 
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Application of Fisher’s cutoff point  

The mean class for each group  
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The covariance matrix for 1n sample 
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 The covariance matrix for 2n samples 
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The within class scatter matrix 
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Hence, the discriminant function is 

21 3293.12212.0' xxxaY 
 

Computation of Fisher’s CUTOFF point 

8648.8' 11  xaY

 

 

6215.16' 22  xaY

 

 

The Fisher’s CUTOFF point is 

2

21 YY
Yc


 74315.12

 

 

The classification rule is 

Assign the variable x to 1 if cYY   

Assign the variable x to 2 if cYY   

The discriminant scores for 1  

.7517.9,1941.0,8648.8,3022.11,0981.5,9779.71 Y

The discriminant scores for 2  

 

 Results of FCP 

The confusion matrix table constructed resulted to the 

following classification errors  
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Problem on MFCP 

Given the same Fisher’s dataset above,Perform the linear 

discriminant analysis using the MFLDF.  

 

7. Manual application MFCP analysis for equal 

sample size 
 

The discriminant scores for 1 and 
2 above are combined 

and arranged in ascending order. 

-21.7196,-18.8356,-17.9508,-15.7356,-14.8477,-11.9679,-

11.3022,-10.1941, -9.7517, -8.8648, -7.9779, -5.0981 

The moving average is obtained as follows 

 -20.2776 -18.3932 -17.8432 -15.2917, - 13.0750, - 11.6351 

-10.7482 -9.9729 -9.3083 -8.4214 -6.5380 

 

The cutoff point is given as 
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The modified cut off point, 6351.11cZ  

The allocation procedure becomes  

Assign the variable x  to 1 if cZY   

Assign the variable x  to 
2 if cZY 

 
 

8. Results of MFCP 
 

The confusion matrix table constructed resulted to the 

following classification errors. 

 

   

%100

0

02/1,01/2







HR

Aper

PP

 

 

 

9. Summary 
 

A theorem was developed which was used to solve problems 

on Fisher’s Linear discriminant analysis and the modified 

procedure.  

 

It was discovered that the modified solution yielded 

minimum error of classification than that of Fisher’s 

technique as observed in table 2. The apparent error rate for 

Fisher is 0.083 while the modified is 0. The MFCP showed a 

100% correct classification while that of FCP showed 91.7% 

correct classification. The results of the experiment 

.7356.15,9679.11,8356.18,7196.21,9508.17,8477.142 Y
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conducted suggested a comparable classification procedure 

to the Fisher’s linear discriminant function. 

 

10. Conclusion 
 

A modified cutoff point was developed to solve problems in 

discriminant analysis. This proposed procedure reduces the 

effect of outliers and yields minimum error of classification 

when compared with the Fisher’s discriminant function. 
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