
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 6, June 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Live Data Stream Classification for Reducing Query

Processing Time: Design and Analysis

Spraha Kamriya
1
, Vandana Kate

2

1Research Scholar, Department of Computer Science and Engineering, Acropolis institute of technology and Research, Indore, India

2Professor, Department of Computer Science and Engineering, Acropolis institute of technology and Research, Indore, India

Abstract: The problem of data analysis and making decisions are increases with the volume of data. In other words processing of large

data requires large resources to process and providing the final response. The big data is environment which is used for the large data

processing and their analytics. But when the traffic is high and block size of data is larger than the query response is generated with the

significant amount of delay. In order to optimize the delayed response need to make some effort for improving the performance of the

big data systems. In this paper we proposed a new approach for solving this delayed data response based on streamed data mining. The

proposed approach contributes for demonstration of the live twitter stream gathering, pre-processing of data and transformation of the

unstructured data into the structured data features, classification of data streams using the group learning concept for streamed text

data. This approach improves the query processing time and produces response in less time even when a single pattern is appeared for

the query processing.

Keywords: Data Streaming; Twitter; Big Data; Hadoop; C4.5 Decision Tree; OVA; MapReduce

1. Introduction

Data streams are ordered and probably unbounded sequences

of data points generated by a typically non-stationary data

generating process. Common data mining tasks associated

with data streams include clustering, classification and

frequent pattern mining. New algorithms for these types of

data are proposed repeatedly and it is important to figure out

them efficiently under standardized conditions.

A. Streaming Data

Streaming Data is data that is generated continuously by

thousands of data sources, which typically send in the data

records simultaneously, and in small sizes (order of

Kilobytes). Streaming data incorporate a wide variety of data

such as log files generated by customers using your mobile

or web applications, ecommerce purchases, in-game player

activity, information from social networks, financial trading

floors, or geospatial services, and telemetry from connected

devices or instrumentation in data centers [1].This data needs

to be processed sequentially and incrementally on a record-

by-

record basis or over sliding time windows, and used for a

wide variety of analytics including correlations,

aggregations, filtering, and sampling. Information derived

from such analysis gives companies visibility into many

aspects of their business and customer activity such as –

service usage (for metering/billing), server activity, website

clicks, and geo-location of devices, people, and physical

goods –and enables them to respond promptly to emerging

situations. For example, businesses can track changes in

public sentiment on their brands and products by

continuously analyzing social media streams, and respond in

a timely fashion as the necessity arises [4].

B. The Data Stream Model

In the data stream model, data are arrive one or more

Continuous data stream it can not access from disk or

memory.Data streams differ from the conventional stored

relation model in several ways [2]:

 The data elements in the stream arrive online.

 The system has de control over the procedure in which

data elements comes to be processed, either within a data

stream or across data streams.

 Data streams are potentially unbounded in size.

 Once an element from a data stream has been processed it

is discarded or archived — it cannot be retrieved

easilyunless it is explicitly stored in memory, which

typically is small relative to the size of the data streams.

Operating in the data stream model does not preclude the

presence of some data in conventional stored relations.

Often, data stream queries may perform joins between data

streams and stored relational data. For the purposes of this

paper, we will assume that if stored relations are used, their

contents live static. Thus, we preclude any potential

transaction-processing issues that might arise from the

presence of updates to stored relations that occur

concurrently with data stream processing.

The paper is composed as takes after. Section II quickly

depicts the related work of Data Streaming Classification. In

Section III, we give a depiction of live stream Data

Classification Technique using binary classifier. Result

summary are introduced in Section IV. At last, Sections V

talk about our conclusion and future works.

2. Literature Survey

This section provides the listing of different research efforts

that are made in order to enhance query processing time for

streaming data, whereas different methodologies have been

adopted for significant literature.

Paper ID: ART20174017 1711

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 6, June 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

In this paper, Haojun Liao et al. [5] present an approach to

construct a built-in block-based hierarchical index structures,

like Rtree, to organize data sets in one, two, or higher

dimensional space and improve the query performance

towards the common query types (e.g., point query, range

query) on Hadoop distributed file system (HDFS). The query

response time for data sets that are stored in HDFS can be

significantly reduced by avoiding exhaustive search on the

corresponding data sets in the presence of index structures.

The basic idea is to adopt the conventional hierarchical

structure to HDFS and several issues, including index

organization, index node size, buffer management, and data

transfer protocol, are considered to reduce the query

response time and data transfer overhead through network.

Experimental evaluation demonstrates that the built-in index

structure can efficiently improve query performance, and

serve as cornerstones for structured or semi-structured data

management.

In data mining process and spatial and multimedia databases,

a effective tool is the kNN join, which is use to provide the k

nearest neighbors (NN), from a dataset S, of every object in a

dataset R. Since it influence both the join and the NN search,

performing kNN joins well is a demanding task.Data which

is store in map reduce cluster kNN joins run fluently on it,

this is an interesting problem. In this work, Chi Zhang et al.

[6] proposes novel (exact and approximate) algorithms in

MapReduce to perform efficient parallel kNN joins on large

data. Authors demonstrate our ideas using Hadoop.

Experiments shows onLarge and Real Data Set with millions

of records in both data Sets up to 30 dimensions, have find

the efficiency, effectiveness, and scalability of proposed

methods.

k nearest neighbor join (kNN join), designed to find k

nearest neighbors from a dataset S for every object in another

dataset R, is a primitive operation widely adopted by many

data mining applications. As a combination of the k nearest

neighbor query and the joint operation, kNN join is an

expensive operation. Given the increasing volume of data, it

is difficult to perform a kNN join on a centralized machine

efficiently. In this paper, Wei Lu et al. [7]kNN join

withMapReduce is a well-accepted framework for data-

intensive applications over the clusters of systems. In brief,

the mappers cluster objects into groups; the reducers perform

the kNN join on each group of objects separately. Authors

design an efficient mapping mechanism that adventure

pruning rules for distance filtering, and overcome both the

shuffling and computational costs. To reduce the shuffling

cost, they propose two approximate algorithms to minimize

the number of replicas. Large-scale experiments on our in-

house cluster expose that our proposed methods are efficient,

robust and scalable.

This paper describes the basic processing model and

architecture of Aurora, a new system to manage data streams

for monitoring applications. Monitoring applications differ

substantially from conventional business data processing.

The fact that a software system must process and revert to

continual inputs from many sources (e.g., sensors) rather

than from human operators requires one to rethink the

structural architecture of a DBMS for this application. In this

paper, D. J. Abadi et al. [8] present Aurora, a new DBMS

currently under construction at Brandeis University, Brown

University, and M.I.T. They first provide an overview of the

basic Aurora model and architecture and then describe in

detail a stream-oriented set of operators.

This paper presents the design of a read-optimized relational

DBMS that contrasts sharply with most current systems,

which are write-optimized. Among the many discrepancy in

its design are: storage of data by column rather than by row,

careful coding and packing of objects into storage including

main memory during query processing, storing an

overlapping collection of column oriented projections, rather

than the current fare of tables and indexes, a non-traditional

implementation of transactions which includes high

availability and snapshot segregation for read-only

transactions, and the extensive use of bitmap indexes to

complement B-tree structures. Mike Stonebraker et al [9]

present preliminary performance data on a subset of TPC-H

and show that the system we are building, C-Store, is

substantially faster than popular commercial products.

Hence, the architecture looks very encouraging.

3. Proposed Work

The proposed methodologies high level conceptual model is

demonstrated using the fig 1. The entire data model and their

processes are defined using four stage process:

Figure 1: Methodology Layers

A. Data Stream Gethering

The data mining is always deals with the different kinds

ofdata and their formats, in addition of that there are a

number of different kinds of data formats are present.

According to the current context we differentiate the data

formats in two major categories, static data and dynamic

data. The static data are those which are available in a

specific volume and that are not increases in timed manner.

On the other hand the dynamic data are those which are

continuously increases with the time. According to literature

such kind of data is also named as time series data or

streamed data. In order to gather the data from the live

streams some additional process is followed. Additionally

the twitter is assumed as the live stream source of data and to

gather the data from this data source the techniqueis

presented using fig2.

Paper ID: ART20174017 1712

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 6, June 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 2: Data Gathering System

According to the described figure twitter is assumed as the

stream data source. In order to get the data directly from the

twitter the twitter provides the query API, which first

authenticate the user for their account access and then the

apache strom infrastructure is configured with the local

Hadoop storage. That provides the ability to make query over

the twitter account for gathering the twits from the twitter

server. The query response generated from the server is

temporarily stored on a file of HDFS directory. That is

further used with the classification purpose.

B. Data Classification

The data classification is a technique by which the pattern of

the data is identified to club the similar pattern data.

Therefore the collected data need to be process and obtain

some features by which the actual group of data can

identifiable. But any classifier can directly works on the

static data for making more accurate analysis. Therefore here

need to change the process of classification according to data

source interface. Before discussion about the changes made

on the classification strategy need to discuss about the

classifier model. In this experiment the C4.5 decision tree

algorithm is utilized for classification. The classifier steps

are discussed using table 1.

Table 1: C4.5 Algorithm
Input: A data set (D)

Output: A decision tree say T constructed

Process:

1. A node (X) is created;

2. If instance in same class.

3. Make node (X) as the leaf node and assign a label CLASS C;

4. Check IF the attribute list is empty, THEN

5. Make node(X) a leaf node and assign a label of most

customary CLASS;

6. Now choose an attribute which has highest information gain

from the provided attribute List, and then marked as the

test_attribute;

7. Confirming X in the role of the test_attribute;

8. In order to have a recognized value for every test_attribute

for dividing the samples;

9. Generating a fresh twig of tree that is suitable for

test_attribute = attifrom node X;

10. Take an assumption that Bi is a group of test_attribute= attiin

the samples;

11. If Bi is NULL, THEN

12. Next, add a new leaf node, with label of the most general

class;

13. ELSE a leaf node is going to be added and returned by the

Generate_decision_tree;

Now this data set is works on the pure structured format thus

the unstructured data need to be modifying for adopting the

algorithm. The processing of the data in unstructured to

structured format conversion is defined using fig 3.

Figure 4: Data Parsing

The collected data is produced as input to the system. That

data is in unstructured format and may be noisy for

processing with some algorithm. Therefore in first the stop

words from the entire text are removed. The stop words are

frequently occurred in the sentences and not much impacting

to discovery of any subject or domain i.e. is, am, are, this,

the, so on. In order to remove them the following step

process is used.

Table 2: Stop Word Removal

Input: collected data D, Stop word list 𝑆𝑤

Output: refined data R

Process:

1. 𝑓𝑜𝑟 𝑖 = 0; 𝑖 ≤ 𝑆𝑤 . 𝑙𝑒𝑛𝑔𝑡 ; 𝑖 ++

2. 𝑅 = 𝐹𝑖𝑛𝑑𝐴𝑛𝑑𝑅𝑒𝑝𝑙𝑎𝑐𝑒 𝐷, 𝑆𝑤 𝑖 ,

3. 𝑒𝑛𝑑𝑓𝑜𝑟

4. Return R

After removing the stop words from the data now need to tag

the data using the NLP parser. The NLP parser extracts the

part of speech information from the data. This part of speech

data is used with the next phase for extracting the features

form the data. In this context the frequency of the each part

of speech information is computed and listed with a data

table. The example of the extracted feature is given using

table 3.

Table 3: Example Features

Noun Pronoun Verb Adverb

2 2 1 1

2 3 1 4

The computed features can be used with the decision tree

make tree data structure for finding the suitable group of

data. So we take reference from the previous made statement

worked with the binary classification algorithm, thus the

between two different classes a new instance of the classifier

is introduced. The process of stream data classification is

given using table4.

Table 4: Classification of Samples

Input: classifier C, Pattern data D

Output: grouped data G

Process:

1. While D != null

2. Fetch pattern 𝐷𝑖

3. If new class appeared

Paper ID: ART20174017 1713

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 6, June 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

a. If count = = 0

i. Initialize the classifier instance 𝐶𝑖

ii. Classify 𝐷𝑖 using 𝐶𝑖

iii. Update count = count +1

b. Elseif count = = 1

i. Classify 𝐷𝑖 using 𝐶𝑖

ii. Update count = count +1

c. End if

4. G = 𝐶𝑖

5. End if

6. i = i + 1

7. End while

8. Return G

After completing the classification of data the numbers of

different groups is prepared these groups are used in further

processes.

C. Group Structure Development

After the classification of the data, the different groups of

data are preserved in a different big data hive structure.

Therefore the similar group of data is stored in different

structures of the hive. This hive data is used for making

query for finding the required data.

D. Query Interface

The query interface is used to provide input the query

keywords to the system and system works to find the

required records from the data base using big data query.

Based on the response generated the performance of the

system is computed and stored in data base for further results

analysis.

4. Result Analysis

a) Accuracy

In a classification technique the accuracy is measurement of

accurately classified patterns over the total input patterns

produced for classification result. Therefore that can be a

measurement of successful training of the classification

method. The accuracy of the classifier can be evaluated using

the following formula:

The accuracy of the implemented proposed algorithm of Live

Data Stream Classification is characterized using figure 4.

The given fig 4 shows the accuracy of the implemented

method. X- Axis of the figure show the number of runs of

the algorithm during classification and tagging and Y axis

shows the obtained performance in terms of accuracy

percentage.To demonstrate the performance of both the

proposed data classification technique and traditional

decision tree C4.5, the blue line is used for proposed model

and red line shows the performance of traditional C 4.5.

According to the obtained results the performance of the

proposed model provides more accurate results. Additionally

the accuracy of the Data classification model is showing the

consistent result while we varying number of runs.

Figure 4: Accuracy

b) Error Rate

The amount of data misclassified samples during

classification of algorithms is known as error rate of the

system. That can also be computed using the following

formula.

Figure 5: Error Rate

The fig 5 shows the comparative error rate of implemented

classification algorithm. In order to show the performance of

the system the X axis contains the number of experiments for

tagging and the Y axis shows the performance in terms of

error rate percentage. The error rate of the traditional C 4.5 is

given using the red line and the performance of the proposed

classification method is given using the blue line. The

performance of the proposed classification is effective and

efficient during different execution and reducing with the

amount of data increases. Thus the given classifier is more

efficient and accurate than the traditional C4.5 of data

classification.

c) Memory Consumption

Memory consumption of the system also termed as the space

complexity in terms of algorithm performance. That can be

calculated using the following formula:

The amount of memory consumption depends on the amount

of data reside in the main memory, therefore that affect the

computational cost of an algorithm execution. The

performance of the implemented classifier for Data

Streaming is given using fig 6 to show the diagrammatically

result the performance the X axis demonstrate the Number of

experiments of the algorithm and the Y axis shows the

respective memory consumption during execution in terms

of kilobytes (KB). According to given demonstration,

Paper ID: ART20174017 1714

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 6, June 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

memory of the both implemented result memory showing the

complexity of the system and traditional C4.5 consuming

less space as compared to proposed algorithm of data stream

classification.

Figure 6: Memory Consumption

d) Time Computation

The amount of time required to classify the entire live stream

data is known as the time consumption. That can be

computed using the following formula:

The time consumption of the proposed algorithm is given

using fig 7. In this diagram the X axis depict the number of

runs and the Y axis contains time require to process the

algorithm in terms of milliseconds. According to the

comparative results analysis the performance of the proposed

technique minimize the time consumption. Therefore, this

proposed is better and efficient of stream data classification

of twitter data using enhancement of the decision tree i.e.

C4.5.

Figure 7: Time Consumption

5. Conclusion and Future Work

The huge quantity of data is not effectively and efficiently

processed using the normal computing techniques. Therefore

the requirement of new techniques is appeared for efficient

computing and enhancing the system response time. In order

to process data more efficiently the big data infrastructure is

used. The key issue of this technology is, it start working

only when the complete block of the data is completed. If the

data is less in quantity the model delayed the processes of

data response. Therefore a new technique for improving the

user query response time is need to find which works on the

streams of data and produces frequent response for the end

user query. In order to achieve the solution for the addressed

issue the ―less data may response faster‖ hypothesis is used.

The proposed technique is modeled on the streamed text data

therefore the twitter live stream data is used. That data

collection is performed with the help of storm infrastructure

and twitter API. First the data collected and then the feature

extraction is performed using the NLP tagging and the TF-

IDF concept. Finally the ensemble based classification

technique is applied to classify the data into the groups.

These grouped or classified data is preserved in the HIVE

structured data base directly. The preserved data is can be

used with the query interface or any quick response

application for providing the end user response.

6. Future Works

The proposed concept is implemented successfully and

observed it is effective improving the performance. By

motivating this performance enhancement the following

research directions are suggested for future improvements.

 Involving the technique for processing of the increasing

amount of data with time

 Increases the speed of the data fetching

 Utilizing the concept for data pre-fetching and caching

References

[1] Ikonomovska, Elena, Suzana Loskovska, and Dejan

Gjorgjevik, "A survey of stream data mining",

Proceedings of 8th National Conference with

International Participation, ETAI. 2007.

[2] ―What is Streaming Data?‖ available online at:

https://aws.amazon.com/streaming-data/

[3] Hahsler, Michael, Matthew Bolanos, and John Forrest,

"Introduction to stream: An Extensible Framework for

Data Stream Clustering Research with R", Journal of

Statistical Software (2015).

[4] P. Buddha Reddy and CH Sravan Kumar, ―A Simplified

Data Processing in MapReduce‖, (IJCSIT) International

Journal of Computer Science and Information

Technologies, Vol. 7 (3), PP. 1400-1402, 2016.

[5] Liao, Haojun, Jizhong Han, and Jinyun Fang, "Multi-

dimensional index on hadoop distributed file system",

Fifth International Conference on Networking,

Architecture and Storage (NAS), 2010 IEEE, 2010.

[6] Zhang, Chi, Feifei Li, and Jeffrey Jestes, "Efficient

parallel knn joins for large data in mapreduce",

Proceedings of the 15th International Conference on

Extending Database Technology, ACM, 2012.

[7] Lu, Wei, et al. "Efficient processing of k nearest

neighbor joins using MapReduce." Proceedings of the

VLDB Endowment 5.10, PP. 1016-1027, 2012

[8] Abadi, Daniel J., et al. "Aurora: a new model and

architecture for data stream management" The VLDB

Journal—the International Journal on Very Large Data

Bases 12.2 (2003): 120-139.

[9] Stonebraker, Mike, et al. "C-store: a column-oriented

DBMS", Proceedings of the 31st international

conference on Very large data bases, VLDB

Endowment, 2005.

[10] Floratou, Avrilia, et al. "Column-oriented storage

techniques for MapReduce" Proceedings of the VLDB

Endowment 4.7, PP. 419-429, 2011.

Paper ID: ART20174017 1715

https://aws.amazon.com/streaming-data/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 6, June 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[11] Lam, Wang, et al. "Muppet: MapReduce-style

processing of fast data." Proceedings of the VLDB

Endowment 5.12 (2012): 1814-1825.

Paper ID: ART20174017 1716

