
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Fast Dictionary Construction using Data Structure

and Numeration Methodology with Double Hashing

Safa S. Abdul-Jabbar
1
, Loay E. George

2

1 Baghdad University, College of Science for women, Computer Science Department, Baghdad, Iraq

2Computer Science Department, College of Science, Baghdad University, Baghdad, Iraq

Abstract: The problem of text retrieval is continuously attracting more research attention; they still used for efficiently analyze text

data. The unstructured text data take more importance in numerous fields such as business analysis, customer retention and extension,

social media, information retrieval and legal applications, etc. This article considers the importance of exploratory dictionary

construction for finding the concepts of interest, also it proposes a system for efficient dictionary construction, tuning. The re-use of

these dictionaries across a large scale and different datasets still remain an unsolved problem. This paper employing different types of

hash functions to conduct progressive multi-search stages, and reducing the time that required constructing the dictionary as much as

possible while maintaining the accuracy of the information contained in it. Many text-mining tools, hashing functions, data structures

concepts and numeration operations were utilized in the planned system in order to provide a dynamic word dictionary. This could be

used for fast text retrieval systems as a result of its small size in comparison with the original dataset. The proposed algorithm was

designed for improving the time complexity due to the ability to retrieve an accurate result in a short time. This could be done by

obtaining the advantages of binary search; which lets the processing time replaced from being linear to logarithmic behavior. The

obtaining result is considered the highest when compared with the results of other published works, especially those based on dealing

with string as a sequence of characters. The proposed system extracts the important word information’s which gave chance to text

retrieval system for attaining accurate and fast results.

Keywords: Fast String Operations, Binary Search, Double Hashing, Thesaurus Construction, Keyword Generation, Knowledge

Dictionary, extract word Features, data structures concepts

1. Introduction

Due to an oversized quantity of information that is held on

and utilized in computers, a number of this information is in

style of text information, some of this data is in form of text

data. The ability of fast and accurate retrieval of specific

information from this kind of data is still challenging task.

This system should deal with the storage, organization,

representations and access to text documents. The users

should have easy accessibility to the documents relevant to

their queries, and this can be provided by the organization of

text documents. Any dataset used for retrieval system may

contain the different number of text documents. When a user

asks for a specific document, he should formulate his

question so as to be processed by the retrieval system, and

the result should select a specific number of documents

which contain the query keywords as basic elements [1].

In summary, string matching problem findings the incidence

of a pattern P of lengths m characters from a text T of length

(L) in characters, and the pattern P has a different number of

substrings (words) each one has multiple characters [2]. This

problem was studied by many researchers; different

techniques and algorithms were introduced to solve it [3] [4].

 Text mining had gained importance due to growing

usefulness of data mining applications occurred in recent

years. Till 2008, the evolution of text mining was even small

[5], but was grown rapidly because of the awareness of

business that hidden in unstructured information. Text mining

aims to understand and organize large amounts of

unstructured data that are available in any system which use

it to gain useful information that used to solve real-world

problems (e/g. information extraction) [6] [7] [8].

Information extraction is a commonly used process that

depending on the dictionary [9], entity annotation [10],

classification [8], and link analysis tasks.

The process of constructing dictionaries depends on what is

called a practitioner’s art [7]; it requires experience and a lot

of trial and error with manual tuning for measures (e.g.,

precision and recall) [6]. The practitioner’s domain

knowledge becomes particularly important for tagging

abstract concepts [11].

Two kinds of knowledge dictionaries are provided. One of

them is called the key concept dictionary while the other is

called the concept relation dictionary. Words are extracted

from the documents by lexical analysis. Each word is

checked to see whether it corresponds to an expression in a

key concept dictionary. If it is a key concept corresponding

to the expression then the concept class corresponding to the

concept is extracted. If a dictionary can consider a concept

class as an attribute and the text class given by the reader can

be considered as a class attribute for a training example, then

it is possible to generate a training example from a document.

The dictionaries are made through trial and error, so it is a

time-consuming process. In addition, the dictionaries must be

created for each target problem. Consequently, the creation is

a bottleneck for applying a text mining system to a new target

problem [12].

Sakurai et al. have proposed a method that used for automatic

building rules and their classes from the original data by

employment an inductive learning method [12]. The result

showed that the fuzzy inductive learning algorithm is

appropriate for the acquisition of the rules by providing

Paper ID: ART20173976 DOI: 10.21275/ART20173976 2718

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

higher accuracy through numerical experiments based on 10

fold cross validation and using daily business reports in

retailing [12].

In 2010, Godbole et al constructed a framework that provides

a spread of interaction modes to the user to quickly build

dictionaries over massive real-world datasets [11]. They

adapt one or a lot of dictionaries across domains and tasks

(e.g. social media mining). Thereby enabling reprocess of the

information. They made a case study on real-life datasets;

where the time and energy of the professional person will be

preserved using the dictionary-based text mining tools. The

proposed system is savings about 60% of the elapsed time

and measures the control parameters (recall and Precision)

according to different user words query.

The dynamic dictionary can be used for both compression

and data retrieval operations from a large dataset. So,

Bhadade and Trivedi proposed a pre-compression technique

that can be applied to the original text files. The output of

this technique could be utilized in the available standard

compression techniques (e.g., BZIP2 and arithmetic coding)

because the proposed method provides better compression

ratio.The suggested algorithm used the dynamic dictionary

that must be created at run-time [13].

Global Dictionary (GDIC) data structure is used as a

preprocessing model in 2011 by Park et al, they inspected

6,200 documents to find the similar text in huge document

repositories [14]. In this method the frequency of occurrence

of common non-stop words (i.e. stop-words like ―I‖ and ―to‖)

were measured. Then, they used the proportion of common

non-stop words to determine either that or not to inspect

documents. Based on this information, they extracted

essential pairs of documents that compared. Each pair of

these documents used in two different methods at same time:

The first method used the common non-stop words which

have high frequency.

The second method used the words with high proportions as

common non-stop words.

This model reduced searching time to 64-87%, while the

sensitivity was stood at 77-96%.

Also in 2011, Wang et al. proposed a new method for

approximate string search. They used a dictionary in which

the system can find words that are similar to the given

misspelled word [15]. In other words, this method used the

probabilistic approach to complete its search. This approach

used log-linear model and an algorithm for finding the top

number of candidates. The log-linear model can, definitely,

used as the conditional probability distribution for the word.

Also, they used the loss function with the learning method

that employs the criterion in candidate generation. The tests

indicated this algorithm is efficient and guaranteed for

finding the best candidates.

In this paper, a dynamic word dictionary is generated using

many text-mining tools, hashing functions, data structure

concepts, and enumeration operations in which the word

information’s are extracted from each file in any given

dataset. This can be used for fast text retrieval systems

because of its small size in comparison with the original

dataset. This gave an effective role in increasing the system

ability for retrieving the most relevant files for the inputted

user query.

2. The Proposed System

The proposed system consists of three primary stages which

are: (A) Lexical Analysis Stage, (B) Building the Primitive

Dictionary Model Stage, and (C) Indexing Database System

Stage.

A. Lexical Analysis Stage: is applied to extract the useful

data using numeration operation for all input documents.

This stage consists of two steps:

a) Data cleaning: is required to remove the noise and make

it suitable for further stages.

b) File Filtering: is applied for managing the resulted files

by passing only files that including useful data.

B. Building Main Dictionary Stage: is applied to extract a

set of words to be used as features representing the original

files to decrease the processing time of retrieval systems,

because it will reduce the search space size. This stage

implies the steps:

a) Reducing the Search Space: this step consists of two

operations:

1. Stop-word Extraction Operation: is used to extract all

stop-words that appeared in the dataset, its

frequencies and the number of files that containing

each word. This information is provided using the

data structures concepts to produce

(hash0_StopwordsFile, Stop_wordsRec, and

Filename_list):

 Establishment of the first list contains the hash

value that depends on the first two characters (first

index), the number of words covered by this index

and a pointer value refer to the start index in the

second list.

 Establishment of the second list contains the words

that convey by each hash value with its frequency

of occurrence and the start index in the document

file list to each word.

 Establishment of Short Document Record of Stop-

words List: it is a list of packed records used for

pointing to the series of documents conveys certain

indexed word.

2. Stemming Operation: is used for identifying the roots

of all words in the dataset using the porter stemming

with enumeration operations and lengths conditions

in each step.

b) Statistical Analysis (2-level hashing index system): is

applied for converting the unstructured text data to

structured data; such that the arranged text becomes easy

to use in any searching process (using the first two

characters).

For the first two stages, we can use the same method that

proposed by Abdul-Jabbar and George in 2016 [16]; Figure

(1) shows the basic stages that composed the system.

Paper ID: ART20173976 DOI: 10.21275/ART20173976 2719

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1: Basic system design

C. Indexing Database System Stage: it is applied for

extracting the word features (such as the words weight), then

determining the most and least significant words

automatically in any dataset, and helping the system for

partitioning the search space to multiple nodes; this will

reduce the time that required for doing any retrieval process.

This method is designed to implement this stage using some

of the data structure concepts in order to produce the packed

data list and the global dictionary:

 Hash0_Record List: it contains the values of hash0 which is

using the first two characters of each word, H0; it is used as

a pointing index for the starting position of searching

operation in the global dictionary. Also, Hash0 records list

contains the frequency of occurrence of each hash0 value to

define the searching operation range.

 Hash1_List: the global dictionary contains the hash1 value

of each word, H1; it uses the next four characters of each

word appeared in the dataset. Also, this list holds the

associated frequency of each H1 value and the start

pointing index in the packed list that contains the symbol

numbers of document files containing this word.

 The short document file list of records of all document

files containing each word listed in the global dictionary;

in other words it holds a reference list of the document

files names (or symbol numbers) convey the indexed

words.

The computed Hash values depends on only 6 characters of

each word because they cover around 83% of the whole

datasets as depicted in Table (1).

Table 1: The Cumulative Average of Words that Available

in All Lengths (for Words length range [1-16]

Words

Len.
Dataset1 Dataset2 Dataset3 Dataset4

1 7.742% 9.245% 8.8235% 6.362%

2 9.962% 11.967% 11.600% 7.203%

3 25.466% 27.565% 27.983% 22.494%

4 52.389% 53.515% 54.810% 44.713%

5 70.645% 72.398% 73.723% 64.623%

6 83.374% 84.638% 85.222% 79.115%

7 90.971% 92.258% 92.267% 88.356%

8 95.186% 96.267% 96.113% 93.279%

9 97.222% 98.281% 98.079% 95.671%

10 98.339% 99.276% 99.108% 97.173%

11 98.903% 99.656% 99.542% 97.772%

12 99.250% 99.846% 99.771% 98.647%

13 99.455% 99.943% 99.892% 99.733%

14 99.594% 99.975% 99.940% 99.828%

15 99.709% 99.987% 99.965% 99.875%

16 99.781% 99.994% 99.980% 99.915%

The indexing method has been used in order to speed up the

process of access to certain information. Nowadays, all

modern computers have large RAM size which is enough to

avoid the way back and forth to the hard disk each time the

CPU need relatively large information for doing some

operations; taking into consideration the repetitive data

movement between hard disk and the RAM will take a lot of

time. Each operation relevant to indexing operation requires:

 CPU Time: the time needed for processing each operation.

 Storage Time: the time required for accessing storage in

order to get the required information.

Hence, to reduce the elapsed time during any searching

operation by we need to reduce the number of visiting to non-

volatile storage instead of going directly to RAM (when

required); this was done through providing the required

information as packed in the RAM. This was implemented in

the developed method by establishing a global dictionary and

a packed data list that contains words information in the

search space.

As an example, if we have a dataset containing 1000000

words; for each word a record with length 12 bytes will be

assigned to store the word information. So, the required

storage will be 12 * 1000000 =12 MB; this is a small size in

comparison with the memory size that can be easily provided

by the new versions of computers; such that they can hold

these lists of information in the volatile storage part. This will

significantly accelerate the time access to the vital

information. It is worth to mention that the process of

gathering words information for the whole search space will

be accomplished once at a time at the initialization phase of

the program execution.

Algorithm (1): Global Dictionary Algorithm

Objectives: Taking the advantage from data structure tools

for building global dictionary that can used for

searching proposes.

Input: 729 files contain all words in the dataset.

Output: The hash value for each word, the start and end

index for each word in the dependent list that

Paper ID: ART20173976 DOI: 10.21275/ART20173976 2720

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

contain words freq., besides the files number

(Global Dictionary).

Step1: Define struct (records for storing information about

each word in the dataset)

 Struct WordRecType

 int Hash = 0, StCnt = 0, Freq = 0

 End struct

Step2: Generate the Indexing Table for Hash Value

Determination

 Byte V[255]

 For I = 0 to 255 step 1, V[I] = 0, Next I

 For I = 33 to 127 step 1, V[I] = 27, Next I

 For I = 65 to 90 step 1, V[I] = I – 64, Next I

 For I = 97 to 122 step 1, V[I] = I – 96, Next I

Step3:Calculate H1 & Load the File Data

 H1 = 27 * V(Asc(Mid(Fil$, 1, 1))) + V(Asc(Mid(Fil$, 2, 1)))

 Aread the data file

Step4: File Scan the determine H2 & Frequency

 For I = 3 to L

 If)A(I) = 44 & A(I + 5) = 32(then

 WrdLen = I - St

 If WrdLen = 2 then

 H2 = 0

 ElseIf WrdLen = 3 then

 H2 = 19683 * V(A(St + 2))

 ElseIf WrdLen = 4 then

 H2 = 19683 * V(A(St + 2)) + 729 * V(A(St + 3))

 ElseIf WrdLen = 5 then

 H2 = 19683 * V(A(St + 2)) + 729 * V(A(St + 3)) + 27 *

V(A(St + 4))

 ElseIf WrdLen >= 6 then

 H2 = 19683 * V(A(St + 2)) + 729 * V(A(St + 3)) + 27 *

V(A(St + 4)) + V(A(St + 5))

 End If

 Freq(H2) = Freq(H2) + 1, St = I + 6, I = I + 5

 End If

 Next I

Step5: Construct the Words Record List

 M = -1, St = 0

 For H2 = 0 to 531440

 If (Freq(H2) > 0) Then

 M = M + 1

 WordList(M).H1 = H1, WordList(M).H2 = H2,

WordList(M).Freq = Freq(H2),

 WordList(M).St = St + FileOfs, St = St + Freq(H2)

 End If

 Next H2

 FilLstLen = St - 1

Step6: Print in file. \\ Print the resulted Hash0 list values in

files that have corresponding names to the buffers.

 countt = M, total = start + M

 open ssss for binary writer as bfile

 bfile.write(H1, Fil, start,total)

 close file

 start = total + 1

Step7: Construct the Reference File List

 For I = 0 to M

 H2 = WordList(I).H2, Pnt(H2) = WordList(I).St - FileOfs

 Next I

 OldFileOfs = FileOfs

 FileOfs = FileOfs + FilLstLen + 1

 St = 3, L = L - 5

 For I = 3 To L

 If (A(I) = 44 & A(I + 5) = 32) then WrdLen = I - St

 If WrdLen = 2 then

 H2 = 0

 ElseIf WrdLen = 3 then

 H2 = 19683 * V(A(St + 2))

 ElseIf WrdLen = 4 then

 H2 = 19683 * V(A(St + 2)) + 729 * V(A(St + 3))

 ElseIf WrdLen = 5 then

 H2 = 19683 * V(A(St + 2)) + 729 * V(A(St + 3)) + 27 *

V(A(St + 4))

 ElseIf WrdLen >= 6 then

 H2 = 19683 * V(A(St + 2)) + 729 * V(A(St + 3)) + 27 *

V(A(St + 4)) + V(A(St + 5))

 End If

 FilNo = 16777216 * A(I + 4) + 65536 * A(I + 3) + 256&

* A(I + 2) + A(I + 1)

 FilLst(Pnt(H2)) = FilNo, Pnt(H2) = Pnt(H2) + 1

 St = I + 6: I = I + 5

 End If

 Next I

Step8: Save the File List

 open ssss for binary writer as bfile

 bfile.write(FilLst)

 close file

End;

The size of the short document list can be reduced by

avoiding repeating the same file name that containing each

word. This was implemented using an additional integer

number to refer for the number of repeated times for each file

name. The influence of implementation of this operation is as

follow:

 Equal Storage Size Case: this case is realized when we

have words that occurred twice in the given file; in this

case in the original file 2 integer numbers (4 bytes for each

integer number in C#) should be used to store the files ID

number, and in the compressed method we also use 2

integer numbers (the first number used to refer for

containing file for that word, and the second number is

used to refer for the number of same word repetitions in

that file). So, the number of used bytes will be same in

both (the old and the new) file.

 Lost Storage Case: lost storage is possible only if we have

words that appeared once in the given file; in this case we

lost 4 bytes (i.e., for the word frequency number in the file)

there is no need for this number in such case because

consuming an integer value to refer that the word was

appeared once in this file is meaningless; it is important to

mention that this case has low incidence.

 Gain in Storage Case: for repeated words in the given file,

no matter how repetitive words are in each file because for

any repetition case only 2 integer numbers will needed (the

first number uses to contain the file name, and the second

number uses to register the number of repetitions).

Figure (2) shows the illustrated proportions of these three

cases as follows (the old size=4639612 byte, new

size=2526832 byte, the loss size=-831916 byte, the gain

size= 2944696). So, the Net Gain= 2112780, the

compression ratio=1.8361, and the Size Profit=45.5379%.

Paper ID: ART20173976 DOI: 10.21275/ART20173976 2721

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 2: The cumulative rate of file frequency according to

the number of recurrence (as an example 0 to 255 no. of

repeated times)

After that, depending on these statistical analysis results, it

was noted that the profit size will be recorded at a rate of

45.53%, which leads to the success of applying the proposed

compression method. In order to implement this compression

operation Algorithm (2) was applied in this stage on the

resulted files from the previous operation.

Algorithm (2): Compress the Short Document Record of

Words List Algorithm

Objectives: Reduce the Suze that need to store the information

of any given dataset

Input: Short Document Record of Words List, and Global

Dictionary Files.

Output: The same number of input text files with reduced

size.

Step1: Define struct (records for storing information about

each word in the dataset)

 Struct WordRecType

 int Hash = 0, StCnt = 0, Freq = 0

 End struct

 Struct WordRecType2

 int Hash = 0, StCnt = 0, Freq = 0, Total_Freq=0

 End struct

 Struct File_list

 int File_Name = 0, File_Freq = 0

 End struct
Step2: Read Text files
 A read the file hash0_list content as a sorted array

of structures

 B read the file global dictionary content as a sorted

array of structures

 Read the file_list file as array of bytes
Step3:Compress the Files Name List //Compress this file by

removing repeated file name with maintain the

total freq. of each word that considered as useful

information for compute weights of each word.

This will change the information of each word

that stored in the global dictionary. Then store

the files information (filename, and frequency)

in a different structure called File_list.

 For j=0 to B.length step 1

 For I = 0 to B[j].Freq step 1

 if (File_list.File_Name is the similar to the pervious

one) then

 File_list[File_Name]. File_Freq =

File_list[File_Name]. File_Freq +1

 else

 WordRecType2[j]. Freq= WordRecType2[j].

Freq+1

 end if

 Next I

 WordRecType2[j].Hash= WordRecType[j].hash

//The hash value does not changed

 WordRecType2[j]. StCnt = WordRecType[j]. StCnt

+WordRecType2[j]. Freq +1

 WordRecType2[j]. Total_Freq= WordRecType [j].

Freq //To save the freq. of each word in the dataset

 End For

Step5: Save the Output Files

 byte[] By = new byte[4]

 set ssss file path for hash values

 open ssss for binary writer as bfile

 bfile.write(A)

 close file

 set ssss file path for the structures of word records

 open ssss for binary writer

 For u = 0 to WordRec2.Length step 1

 By = BitConverter.GetBytes(WordRec2[u].Hash),

b.Write(By)

 By = BitConverter.GetBytes(WordRec2[u].Freq),

b.Write(By)

 By = BitConverter.GetBytes(WordRec2[u].StCnt),

b.Write(By)

 By =

BitConverter.GetBytes(WordRec2[u].Total.Freq), b.Write(By)

 next u

 close file

 set ssss file path for the structures of word records

 open ssss for binary writer

 For u = 0 to File_list.Length step 1

 By = BitConverter.GetBytes(File_list

[u].File_Name), b.Write(By)

 By = BitConverter.GetBytes(File_list [u].

File_Freq), b.Write(By)

 next

 close file

End;

3. Experimental Results

In this section, the results of some conducted tests are

presented and discussed to evaluate the performance of the

established system. The programming language C#

(Microsoft Visual Studio 2015) was utilized to develop the

programs. In order to test the proposed system performance,

in this thesis work the tests were conducted using four big

datasets; they are:

 Dataset-1: It was collected from papers, books and

articles with the possibility of recurrence of partial files

contents. The file sizes ranging within [1KB-20374KB].

The total size of this dataset (Loay & safa dataset) is

4.26GB [17].

 Dataset-2: It was constructed using Oxford University

Text Archive; it was collected by comprising a number of

texts taken from different sources. They usually compiled

for purposes of linguistic research. It forming text with

size 541 MB. It was designed to represent a wide cross-

section of current British English [18].

Paper ID: ART20173976 DOI: 10.21275/ART20173976 2722

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 Dataset-3: It is a standard dataset obtained from Pizza &

Chili [19]. After downloading this dataset, it was

partitioned into files for mining processing according to its

content. The resulted file sizes ranging from 1KB to

29.633KB. The whole files cover the size 2.10GB.
 Dataset-4: This dataset is a collection of public USENET

postings, which was collected between Oct 2005 and Jan

2011. It covers 47,860 groups of English language, non-

binary-file news. It contains very small percentage of non-

English words and non-words; this corpus is a raw text

[20].

The proposed system was designed using some concepts of

data structures discipline; according to the method, the

resulted files of this stage are: (i) the short stop-word list of

records; (ii) stop-words dictionary; (iii) short list of records

for documents files; (iv) single complete dictionary; and (v)

the non-duplicate words in the search space. Generally, this

stage was applied to extract words characteristic from large-

scale textual data and supports the operations of visualizing

them with high performance.

The elapsed time for implementing this stage is shown in

table (1) for all tested datasets in order to demonstrate the

impact of each mentioned stage. In this section, each step of

the proposed system was tested using enumeration. Table (1)

shows that the baseline classification performance of lexical

analysis is better than other stages depending on the noise

removing. The stop-word extraction operation has a larger

time compared with other operations because of the required

matching operations between each word and all words

contained in the stop-word list.

The size of resulted files for each stage was listed in table

(2). This may considered as a preliminary file compression

stage, which can be used to consolidate storage that contains

only the most important information of the dataset.

Table 2: The size of each dataset after and before systems

stage

Stage
Lexical

Analysis Stage

Building Primitive

Dictionary Stage

Indexing Database

Stage

Dataset1 16.35 116.38 3.02

Dataset2 1 13.51 0.408

Dataset3 2.25 58.08 1.7

Dataset4 137.28 1193.9 35.5

The overhead operations for each string operation are:

conversion of each string to its equivalent ASCII value,

doing other operations which are relevant to characters' case,

and then recover the string form to display the result on the

screen. As a result of avoiding these operations by using the

proposed method, the profit ratio in both (the execution time

and the search space) was shown in Table (3) & Table (4).

The attained test results showed that the proposed system can

significantly reduce the required time of each operation; as

shown in Tables (1). Hence, this system can save up to

92.05% of the execution time for the dictionary construction

operation computed with controlling the accuracy of the

resulted files; this can be considered as an investment in both

time and hardware. The Net time profit of each step was

computed using the following equation which depends on the

execution time of each one:

Where, T1 is the elapsed time when using the traditional

method; T2 is the elapsed time when using the numeration

method.

While, the saved space percentage was computed using the

same equation with one difference: T1 is the size of the

original dataset; T2 is the size of the dataset after processing

operations. For comparison purposes, the size of each dataset

was computed when building the main dictionary using the

traditional operations (i.e. lexical analysis, stop-word

extraction, stemming, and 2- level hashing system) then

compared with the size resulted from the proposed system, as

shown in table (4); in order to find the most efficient method

for reducing the search space size with maintaining the

relevant information of each word.

Table 3: Net time Profit Percentage for each Stage

Compared with the Traditional Method

 Stages Net time Profit Percentage

Dataset1

Lexical analysis 87.37

Stop-words Extraction 99.285

Stemming operation 99.60

2-level Hashing index 96.07

Dataset2

Lexical analysis 84.70

Stop-words Extraction 94.35

Stemming operation 99.80

2-level Hashing index 95.42

Dataset3

Lexical analysis 87.37

Stop-words Extraction 80.6

Stemming operation 98.50

2-level Hashing index 92.41

Dataset4

Lexical analysis 65.05

Stop-words Extraction 93.83

Stemming operation 99.74

2-level Hashing index 98.76

Table 4: The Reduced Search Space Size Percentage

 Net Saved Size Percentage

using the Building Main

Dictionary Stage

Net Saved Size

Percentage using the

Proposed System

Dataset1 23.49% 99.85%

Dataset2 24.85% 98.89%

Dataset3 12.26% 99.69%

Dataset4 4.30% 99.73%

Table (5) presents comparisons between the system

performances of the proposed system with other recently

published work for the words with lengths up to 16

characters. The listed results in this table indicate the

effectiveness of the proposed system.

Paper ID: ART20173976 DOI: 10.21275/ART20173976 2723

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Table 5: The comparisons between the elapsed times between the proposed system and the previous works

Method name Author name Data size
Computation Time Used

techniques
Searching time(s) Preprocessing time(s)

GDIC (Global DICtionary) Park et al.(2011) 6,200 documents 9,705.33 12,624.32s Dictionary

Fast and Accurate Method

for Approximate Search
Wang et al. (2011) 973,902 word Did not mentioned Did not mentioned Dictionary

The Proposed Method
Safa & Loay

(2016)

4-datsets with different

sizes O(
save up to 92.05% of the

traditional execution time

Hashing &

Dictionary

These comparisons are difficult because each method uses

different techniques. The elapsed time for each method is

depending on the structure of the program (the reflection of

the programmer ideas) and the computer hardware. So, in

order to compute the required time for each method the

computation complexity was used as an indicator to the

required time of each method. Where n is the dataset size; L

is the number of pattern P; m is the number of words.

As showed in Table (5) the proposed method gives as

excellent performance (time and maintain the system

accuracy) on retrieval systems because the computation

complexity has a logarithmic base, this success is entirely as

a result of utilize the numeration and hashing methodology

and using the data structure concepts and binary search

strategies. While, the traditional method have a linear time

complexity that directly depends on the dataset and the given

query size.

4. Conclusions and Future Work

In this paper, a new dictionary based on data structure

concepts and hashing methodology has been proposed. This

dictionary is more flexible for providing the dynamic range

of words because more number of characters can be involved

for defining each word using multi hashing operation. It uses

the data structure concepts which enable us to use the binary

tree structure as a strategy for performing the searching

operation; this will reduce the elapsed time for searching

operation from O(n) to O(Log2n); The partitioning operation

will be easier for preparing the distributed search space

which consists of many space search tiles such that each tile

can be conducted by certain server in the system. In addition,

the number of most redundant words for each slot can be set

variable; depending on the nature of the text which entirely

depends on the language of the dictionary. In other words, in

the case of using Arabic, it will reflect other most redundant

words distribution in comparison with the case of dealing

with the English language. After accomplishing the

dictionary construction operations, the overall performance is

improved due to reducing the searching space. The attained

reduction percentage for the total search space when using

the traditional string operations for building the dictionary

was 16.22%. While, the use of the proposed system led to

size reduction percentage around 99.54% with preserving the

search accuracy for the relevant information of each word..

Porter stemming algorithm was slightly modified by reducing

the checking operations applied on each condition by taking

the advantage of words length (i.e., checking the length of the

given word at the beginning of each condition to avoid

wasting time for processing word cases which does not meet

the similarity condition). The required length for each

condition will equal the word suffix plus one for the

minimum remaining characters, in addition, the using of the

numeration operation in each step leads to reducing the

processing time taken by this algorithm. A double hashing

indexing system was introduced, it depends on the first six

characters of each word, the first two characters are used to

establish the first hash level and the next four characters for

building the second level. The process of counting the

frequency of occurrence of each word will be very useful to

accomplish proper flexible segmentation and set the position

of segmentation pivot points along the word list and the

corresponding file pointing list.

As a future work, a suitable stop-words statistical distribution

model can be developed by computing the stop-words

frequencies over whole documents files; this can be done

over each language to be covered by the system. Also, this

improvement will increase the retrieving ability of the

system. The adopted stemming operation can be substituted

by other algorithms (i.e., lemmatization operation); that

involve many tasks such as understanding the context and

determining the meaning of word in a sentence. Taking into

consideration the used stemming method achieved relatively

rational results. Beside that, another level of hashing step can

be used and its effectiveness on the system accuracy can be

studied. Since, the proposed system deals only with

documents consist of English words; it can be developed to

be a multilingual system can retrieve the documents consist

of any natural language.

References

[1] Baeza-Yates, R., and Ribeiro-Neto, B., ―Modern

information retrieval‖, New York: ACM press, 1999.

[2] Fredriksson, K.; and Grabowski, S.,‖Average-Optimal

String Matching‖, Journal of Discrete Algorithms 7)4),

pp. 579–594, 2009.

[3] Charras, C., and Lecroq, T., ―Handbook of Exact String

Matching Algorithms‖, King’s College London

Publications Pp. 1-17, Vol. 2, ISBN-13: 978-

0954300647, 2004.

[4] Navarro, G., and Raffinot, M., ‖Flexible Pattern

Matching in Strings‖, Cambridge University Press,

ISBN: 0521813077, 2002.

[5] O’Dowd, S., 2008. Unstructured Data and Text

Analytics in Capital Markets. Financial Insights Report-

IDC report.

[6] Bhattacharya, I., Godbole, S., Gupta, A., Verma, A.,

Achtermann, J., and English, K., ―Enabling Analysts in

Managed Services for CRM Analytics‖. In Proceedings

of the 15th ACM SIGKDD International Conference on

Paper ID: ART20173976 DOI: 10.21275/ART20173976 2724

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Knowledge Discovery and Data Mining, pp. 1077-1086,

ACM, 2009.

[7] Takeuchi, H., Subramaniam, L.V., Nasukawa, T., and

Roy, S.,‖Getting Insights from the Voices of Customers:

Conversation Mining at a Contact Center‖, Information

Sciences 179(11), pp.1584-1591, 2009.

[8] Godbole, S., and Roy, S.,‖Text Classification, Business

Intelligence, and Interactivity: Automating C-Sat

Analysis for Services Industry‖ In Proceedings of the

14th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 911-919,

ACM, 2008.

[9] Riloff, E., and Jones, R.,‖Learning Dictionaries for

Information Extraction by Multi-Level Bootstrapping‖.

In AAAI/ IAAI, Pp. 474-479, 1999.

[10] Bunescu, R. C.,‖Learning for Information Extraction:

from Named Entity Recognition and Disambiguation to

Relation Extraction‖, ProQuest, 2007.

[11] Godbole, S., Bhattacharya, I., Gupta, A. and Verma, A.,

―Building re-usable dictionary repositories for real-world

text mining‖. In Proceedings of the 19th ACM

international conference on Information and knowledge

management, pp. 1189-1198. ACM, 2010.

[12] Sakurai, S, Y, Ichimura, A, Suyama, and R, Orihara, "

Acquisition of a knowledge dictionary for a text mining

system using an inductive learning method‖, In

Proceedings of IJCAI 2001 Workshop on Text Learning:

Beyond Supervision, pp. 45-52, 2001.

[13] Bhadade, U.S. and A.I. Trivedi, ‖Lossless text

compression using dictionaries‖, Int. J. Comput. Appl.

13(8). pp. 27-34, 2011.

[14] Park, S.Y., Kim, S.Y., Kim, S.H., and Cho, H.G., ‖A

Global Dictionary Based Approach to Fast Similar Text

Search in Document Repository‖, In Computer and

Information Technology (CIT), 2011 IEEE 11th

International Conference, Pp. 526 – 532, IEEE, 2011.

[15] Wang, Z.; Xu, G.; Li, H.; and Zhang, M., ―A Fast and

Accurate Method for Approximate String Search‖,

Proceedings of the 49th Annual Meeting of the

Association for Computational Linguistics: Human

Language Technologies, Vol 1, pp. 52-61,2011.

[16] Abdul-Jabbar, S., S. and George, L. E.,‖Building Words

Dictionary List Using Symbol Enumeration and Hashing

Methodology‖, Research Journal of Applied Sciences,

Engineering and Technology 13(12), pp. 885-894, 2016.

[17] Sami, S., Loay E., 2016. ―Loay & Safa Dataset‖.

Mendeley Data, v2

http://dx.doi.org/10.17632/ggh75fd25f.2.

[18] Burnard, L., the University of Oxford Text Archive,

1976, University of Oxford,

http://ota.ox.ac.uk/catalogue/index. html.

[19] Ferragina, P. and Navarro, G., 2005. Pizza & Chili

Corpus—Compressed indexes and their testbeds. http://

pizzachili.dcc.uchile.cl/ 2013.

[20] Shaoul, C. & Westbury C., ―A reduced redundancy",

USENET corpus (2005-2011) Edmonton, AB:

University of Alberta,

http://www.psych.ualberta.ca/~westburylab/downloads/u

senetcorpus.download.html.

Paper ID: ART20173976 DOI: 10.21275/ART20173976 2725

http://dx.doi.org/10.17632/ggh75fd25f.2

