
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Interactive 3D Touch and Voice Control System

Prashasti Sar
1
, Mariya Ali

2
, Vaidehi Pawar

3

1, 2, 3B.E. Electronics (Mumbai University)

Abstract: In this paper, we design an interactive 3D touch and voice control system. The system can use any large surface as a

touch/gesture and voice controlled pad. People investing in large screen devices can use this technology, making their lives more

convenient. Thus, we aim to achieve the following goals: To create a library of gestures which will be recognized by the system. To train

the system to learn new gestures at runtime upon activation of the recording function. To identify different layouts of applications at run

time. To be able to access functions at OS level using our code.

Keywords: Kinect, interactive UI, touch/gesture, voice control

1. Introduction

An Interactive screen can be obtained by projecting a

mobile/ laptop screen onto any flat surface and interacting

with that surface. This implies that said surface will behave

as a new screen on which operations can be performed. This

has been done by using depth cameras and Kinect sensors in

the past. This paper is also achieving the UI with the help of

Kinect sensor. It is achieved by recognizing gestures and

patterns that a user makes to interact with the screen and

giving them a definite meaning.

For example, when we see the gesture of a hand waving in

our direction, due to previously acquired learning, our brain

deciphers it as a hand wave and so as a response we wave

back. This learning of gestures by the software enables us

to use any surface as our interactive screen.

Section 2 consists of a brief description of related work and

literature survey done previously. Section 3 talks about the

hardware and software components used. Section 4 throws

light on the results and a few case studies undertaken for

this paper. Section 5 draws the conclusion.

1.1 Design Considerations

Gesture recognition comes with its own challenges; the

most important one being how efficiently the gesture is

recognized by the system. Since the entire system is real

time based, suitable algorithms have to be used to obtain

high degree of precision, accuracy and efficiency. Presently,

gaming softwares which use gesture recognition offer an

efficiency of about 97%. Obtaining these values in a system

show the merit of the system. The system is meant to be

portable and easy to use. Hence the number of hardware

components must be kept in check. For the prototype

design, only three devices are used and if actually

implemented by fulfilling the scope of the project, then the

number of hardware devices can be reduced to one.

2. Related Work

2.1 Hand Gesture Recognition Using Kinect

Hand gesturerecognition (HGR) is an important research

topic because some situations require silent communication

with sign languages. Computational HGR systems assist

silent communication, and help people learn a sign

language. In this article, the system was able to detect the

presence of gestures, identify fingers, and recognize the

meanings of nine gestures in a pre-defined Popular Gesture

scenario. The accuracy of the HGR system was from 84 to

99% with single-hand gestures, and from 90% to 100% if

both hands performed the same gesture at the same time.

2.2 Gesture recognition based on arm tracking for

human-robot interaction

In this paper, the proposed system utilizes upper body part

tracking in a 9-dimensional configuration space and two

Multi-Layer Perceptron/Radial Basis Function (MLP/RBF)

neural network classifiers, one for each arm. Classification

is achieved by buffering the trajectory of each arm and

feeding it to the MLP Neural Network which is trained to

recognize between five gesturing states.It was observed that

the successful recognition ratio did not drop below 86%

while the false negative percentage remained in low levels

as well.

2.3 A Real-Time Hand Gesture Recognition Method

In this paper, the authors propose a robust real-time hand

gesture recognition method. In their method, firstly, a

specific gesture is required to trigger the hand detection

followed by tracking; then hand is segmented using motion

and color cues; finally, in order to break the limitation of

aspect ratio encountered in most of learning based hand

gesture methods, the scale-space feature detection is

integrated into gesture recognition. Applying this method to

navigation of image browsing, experimental results showed

that the method achieved satisfactory performance.

2.4 A Hand Gesture Recognition System Based on

Difference Image Entropy

In this paper, the authors propose a real-time hand gesture

recognition system based on the difference image entropy

obtained using a stereo camera. In existing systems, hand

detection has been primarily conducted in a constrained

environment. However, in this system, the authors

implement a recognition system for incoming hand images in

real-time. In the detection step, we implement a depth map

using the SAD method based on right-left images acquired

using a stereo camera. This system perceives the foreground

Paper ID: ART20173958 2654

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

object and performs hand detection. The experiment results

show that the proposed method has an average recognition

rate of 85%.

2.5 Hand Gesture Recognition with Depth Images: A

Review

This paper presents a literature review on the use of depth

for hand tracking and gesture recognition. The survey

examines 37 papers describing depthbased gesture

recognition systems in terms of:

(1) The hand localization and gesture classification methods

developed and used, (2) The applications where gesture

recognition has been tested (3) The effects of the low-cost

Kinect and OpenNI software libraries on gesture recognition

research. The papers that use the Kinect and the OpenNI

libraries for hand tracking tend to focus more on

applications than on localization and classification methods,

and show that the OpenNI hand tracking method is good

enough for the applications tested thus far. Though five

different types of depth sensors were used, the Kinect was

by far the most popular. The Kinect also has available hand-

tracking software libraries that were used by 8 of the papers,

and the papers that used the Kinect tended to focus more on

applications than on localization and classification

techniques.

3. Components of the Project

3.1Block Diagram

Following are the main components of this project:

1) Kinect Sensor

2) Laptop/PC

3) Projector

Figure 1: Block diagram of the system components

3.2 Component Description

Kinect Sensor

Figure 2: Kinect Sensor

Kinect is a line of motion sensing input devices by Microsoft

for Xbox 360 and Xbox One video game consoles and

Windows PCs. The sensor is a horizontal bar connected to a

small base with a motorized pivot and is designed to be

positioned lengthwise above or below the video display. The

device features an "RGB camera, depth sensor and multi-

array microphone running proprietary software", which

provide full-body 3D motion capture, facial recognition and

voice recognition capabilities.

Laptop/PC:

The laptop has basically two functions:

• To process the image captured by the Kinect and run the

application to perform the gesture recognition.

• Since a word processor is being controlled by these

gestures, which is a laptop application, functions on the

laptop OS level have to be accessed through the code.

Projector:

A projector simply projects images onto a wall or projection

screen. Projectors are typically used to increase the image

size for viewing by audiences.

3.3Software Development Kits Used

In order to be able to recognize a person and its movements

the Software development kit(SDK) needs to support

tracking of the user and the user movements.

Freenect:

Libfreenect is a user space driver for the Microsoft Kinect.

It runs on Linux, OSX, and Windows and supports

• RGB and Depth Images

• Motors

• Accelerometer

• LED

• Audio

OpenCV:

OpenCV is released under a BSD license and hence it’s free

for both academic and commercial use. It has C++, C,

Python and Java interfaces and supports Windows, Linux,

Mac OS, iOS and Android. OpenCV was designed for

computational efficiency and with a strong focus on real-

time applications. Written in optimized C/C++, the library

can take advantage of multi-core processing. Enabled with

OpenCL, it can take advantage of the hardware acceleration

of the underlying heterogeneous compute platform. Adopted

all around the world, OpenCV has more than 47 20

thousand people of user community and estimated number

of download exceeding million. Usage ranges from

interactive art, to mines inspection, stitching maps on the

web or through advanced robotics.

Visual Studio:

Microsoft Visual Studio is an integrated development

environment(IDE) from Microsoft. It is used to develop

computer programs for Microsoft Windows, as well as web

sites, web applications and services. Visual Studio uses

Microsoft software development platforms such as

Windows API Windows Forms, and Windows Presentation

Foundation. It can produce both native code and managed

code.

Paper ID: ART20173958 2655

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Web_site
https://en.wikipedia.org/wiki/Web_site
https://en.wikipedia.org/wiki/Web_site
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Windows_API
https://en.wikipedia.org/wiki/Windows_Forms
https://en.wikipedia.org/wiki/Windows_Forms
https://en.wikipedia.org/wiki/Windows_Presentation_Foundation
https://en.wikipedia.org/wiki/Windows_Presentation_Foundation
https://en.wikipedia.org/wiki/Windows_Presentation_Foundation
https://en.wikipedia.org/wiki/Windows_Presentation_Foundation
https://en.wikipedia.org/wiki/Windows_Presentation_Foundation
https://en.wikipedia.org/wiki/Native_code
https://en.wikipedia.org/wiki/Native_code
https://en.wikipedia.org/wiki/Managed_code
https://en.wikipedia.org/wiki/Managed_code
https://en.wikipedia.org/wiki/Managed_code

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4. Design and Implementation

This section presents different ideas for the design of cursor

control, gestures and how the gestures are recognized. The

different ideas are discussed, and an idea for the cursor

control, the gestures and the recognizing of gestures is

chosen. It must be noted that the interface is developed

with the right hand as the user’s dominant hand. The reason

for omitting the choice of the left hand as the dominant hand

is, because it is a trivial implementation and not relevant in

this study.

4.1 Cursor

In order to interact with a browser a similar interaction form

as a cursor is required. The basic idea is to use the most

commonly used input device, which is a mouse, as

inspiration, where the movement of users’ hand is mapped

directly to the position of the cursor. If the user moves his

hand to the left, the cursor should move to the left side of

the screen. Xlib library functions were used for

implementation of the same.

The libraries below are used for mouse manipulation

from Xlib import X,

display import Xlib.XK

import Xlib.error

import Xlib.ext.xtest

Event types:

d = display.Display() #Display reference for Xlib

manipulation

def move_mouse(x,y): #Moves the mouse to (x,y). x and y

are ints

s = d.screen()

def click_down(button): #Simulates a down click.

Button is an int

Xlib.ext.xtest.fake_input(d,X.ButtonPress, button)

d.sync()

def click_up(button): #Simulates a up click.

Button is an int

Xlib.ext.xtest.fake_input(d,X.ButtonRelease, button)

d.sync()

4.2 Gestures

The gestures required to perform various functions on a

word processor can be done in two ways, using the fingers

or the arm. The different ideas to make these gestures have

therefore been divided into two categories: finger gestures

and arm gestures.

 Finger gestures

The idea of finger gestures is to use the fingers to make the

gestures. An example is by showing one finger the

functionality of a mouse click is triggered, and by showing

two fingers the functionality of a double click on a mouse is

triggered. In order to perform finger gestures the

functionality of counting the number of fingers that are

shown is required.

To be able to count the fingers, the available output from

the Kinect and the OpenCV SDK has been studied. The

available output from the OpenCV SDK is the depth image

and the RGB-image, and based on these, two possible ideas

have been developed and tested. One idea is based on the

depth image, and the other idea is based on the use of skin-

detection on the RGB-image from the Kinect.

Depth image

The depth image from the Kinect provides the data needed

to count the number of fingers that are shown. The depth

image from the Kinect is shown in Figure 3.1, and as seen

the fingers can be seen as outgoing tops from the palm.

Figure 3: Depth image from Libfreenect

The number of fingers can then be counted using the

Convex Hull algorithm. The Convex Hull algorithm can be

illustrated by having a board with nails in, where an elastic

band is stretched around the nails to form an outer border.

The Convex hull algorithm is capable of calculating the

number of edges that are needed to form the border. This

number can then be converted to the number of fingers

shown, because each shown finger requires a new edge as

seen in Figure 3.2.

The advantage of this idea is that the hand can be separated

from background because of functionality provided by the

Kinect and the OpenCV SDK. The disadvantage of this

approach is the quality of the depth image that the OpenCV

SDK delivers. The quality of the depth image is only

sufficient in our implementation, when the user holds his

hand within 80 cm from the Kinect. After the limit of 80 cm

the depth image becomes blurry, and this increases the

difficulty of detecting and separating the fingers from each

other. Figure 3.3 shows a screenshot of when holding the

hand at the limit of 80 cm.

The OpenCV SDK can also only create a sufficient depth

image, when the user is farther than 50cm away from the

Kinect. If the user is closer than 50 cm, the quality of the

depth image is reduced significantly and can therefore not

be used. To sum up, this is only functional within the limit

of 50 - 80 cm away from the Kinect, meaning a 30cm

spread.

Paper ID: ART20173958 2656

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 4: Depth image used with Convex Hull algorithm

Figure 5: When holding the hand at the limit at 80cm

Skin Detection

The other idea is to use the RGB-image from the Kinect,

because the quality of the RGB-image is not reduced as

significant as the depth image after 80 cm. The problem of

this approach is to separate the hand from the background,

and to handle this, separation skin detection is applied. Skin

detection used the fact that the human skin has a particular

color spectrum that can be used to separate the skin and

thereby the hand from the background.

Using skin detection, the shape of the hand can be detected,

and this shape can be applied as data in the Convex Hull

algorithm. This will, as with the depth image return the

number of fingers that are shown.

As mentioned, the advantage of this approach is that the

quality of the RGB-image from Kinect is sufficient at a

larger distance than the depth image. The disadvantage with

this approach is the fact that Kinect’s perception of the color

of the skin changes according to the light settings. The

Kinect tries to adjust to the light settings in the room. By

switching off the light, the color of objects can appear

differently to the Kinect. Other objects than the actual skin

can therefore be detected to be within the predefined color

spectrum that the skin detection algorithm is searching for.

The approach with skin detection is discarded because of

the sensitivity concerning the light settings. If the system is

calibrated, and the light is switched on, this can break the

system.

5. Results and Case Studies

The gestures and voice control feature are implemented on a

word processor in order to completely control its

functioning. The case studies performed were to

individually verify following features:

• The Gesture Recognition

• The Voice Control

• Slideshow Control

5.1 Static Gesture Recognition

Figure 6: Gesture Recognition operation

The static gesture recognition is done using the Convex Hull

algorithm. To identify a gesture efficiently, two parameters

are calculated; cArea and areaRatio. cArea is the

circumference of the hand of the user while a gesture is

being made. Using these two parameters the gesture is

recognized by the sensor up to desired accuracy. A library

of 10 gestures has been pre-stored and is available at the

users’ disposal.

5.2 Voice Control

Voice Control is implemented to introduce a feature of voice

to text conversion in order to write on to a notepad. As

demonstrated in figure 4.1 and 4.2, the voice control is

initialized and words spoken by the user are recognized by

the sensor.

Figure 7: Initializing voice control

Paper ID: ART20173958 2657

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 8: Voice Recognition implemented

These words are stored as text onto a notepad at runtime.

User can access this notepad by performing a gesture which

triggers the notepad to open up. The case study result is

demonstrated in figure 4.3

Figure 9: Recognized words updated on notepad

5.3 Slideshow Control

The slideshow function implements swipe gestures. As the

user swipes right or left, the image on the screen or the slide

displayed also moves to the next or previous one. This

function can be implemented on a power point or an image

viewer application.

Figure 10: Actual operation of slideshow

6. Conclusion

Use of Kinect sensor to supplant large screen devices is an

innovation in itself. A training mode is added to the system

for runtime recording and learning of gestures. This

algorithm aims to be the most efficient method of learning

by using artificial intelligence concepts. The accuracy of

the system is at 89%. This system can be further improved

by bettering the algorithm and generalizing it for other

applications. However, we leave that as part of its future

scope on which anyone can work on.

7. Acknowledgment

We take this opportunity to express our sincere gratitude to

Prof. SapnaPrabhu, Department of Electronics

Engineering for providing us with technical guidance and

suggestions regarding the paper.

References

[1] A Real-Time Hand Gesture Recognition Methodyikai

Fang1, Kongqiao Wang2, Jian Cheng1 And Hanqing

Lu1

[2] Real-Time Gesture Recognition Using 3d Depth Camera

by Guan-Feng He, Sun-Kyung Kang, Won- Chang Song,

Sung-Tae Jung

[3] Learning To Be A Depth Camera For Close Range

Human Capture And Interaction By Sean Ryan Fanello,

CemKeskin, Shahram Izadi, PushmeetKohli, David

Kim, David Sweeney, Antonio Criminisi, Jamie Shotton,

Sing Bing Kang, Tim Paek

[4] Hand Gesture Recognition With Depth Images: A

Review By Jesus Suarez* And Robin R. Murphy,

Member, Ieee

[5] Hand Gesture Recognition Using Kinect by Yi Li

[6] https://github.com/GestureDetection

[7] https://msdn.microsoft.com/enus/library/hh855360.aspx

[8] http://www.microsoft.com/enus/download/details

.aspx?id=44561

[9] http://www.codeproject.com/Articles/716741/Implementi

ng-Kinect-gestures

https://code.msdn.microsoft.com/windowsdesktop/S

imple-Gesture-Processing-097c5527

Paper ID: ART20173958 2658

https://github.com/GestureDetection
https://github.com/GestureDetection
https://github.com/GestureDetection
https://msdn.microsoft.com/en-us/library/hh855360.aspx
https://msdn.microsoft.com/en-us/library/hh855360.aspx
https://msdn.microsoft.com/en-us/library/hh855360.aspx
https://msdn.microsoft.com/en-us/library/hh855360.aspx
https://msdn.microsoft.com/en-us/library/hh855360.aspx

