
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Design and Analysis of Parallel Content Matching

Algorithm for Pub-Sub Systems using Different

Parallel Paradigms

M. A. Shah
1
, Dr. D. B. Kulkarni

2

1 Department of Computer Science and Engineering, Walchand College of Engineering, Sangli (MS) India

2Department of Information Technology, Walchand College of Engineering, Sangli (MS) India

Abstract: The key challenge in the performance of Pub-Sub system is the design of matching algorithm. The content matching takes

place on each broker system along the path from publisher to subscriber in broker overlay network. Matching time is significant as

compared with a network delay of message forwarding. In the case of content-based systems, matching is time-consuming task, whose

performance affects the entire system. Efficient content-based event matching is considered as challenging research problem from past

few years. All algorithms proposed earlier are inherently sequential and does not exploit parallel architecture which is easily available

in current generation computers. This paper describes a new Pub-Sub content-based matching algorithm designed using principles of

shared and distributed memory program running efficiently on multicore processor architecture. Hybrid parallel programming

approach shows 4 times reduction in average matching time and an improved throughput of over 4000 events/s when using 32

processors which are almost double of events processed using only shared memory approach or only distributed memory approach.

Paper also presents the result of the content matching algorithm using GPU.

Keywords: Throughput, matching time, distributed memory architecture, Shared memory architecture, CUDA, GPU, Content-matching

Algorithm

1. Introduction

Nowadays the majority of information is available on the

World Wide Web. Besides system for searching, querying,

retrieving information from the web, there is a need for

systems being able to capture the dynamic aspects of the web

information by notifying users of interesting events A tool

that implement this functionality should have features of

efficiency and scalability. Indeed, it should manage demands

for millions of subscriptions to get matched with the events

published. It should handle high rates of events and notify the

interested users in short delay. For inter-object

communication generally event-driven, or Notification-based,

interaction pattern is used. This notification pattern is

increasingly being used in a Web services context [11].

Another good example of Pub-Sub system is the set of

auction sites on the internet e.g. eBay, Amazon, Yahoo.

Every day a large number of items are put up for auction by

each of those auction sites.

Over the last couple of years, another reliable Pub-Sub

system called Wormhole is designed. The wormhole has

become a critical part of Facebook's software infrastructure.

At a high level, Wormhole propagates changes issued in one

system to all systems that need to reflect those changes –

within and across data centers. Low latency and efficiency

are the prominent properties of Wormhole [20]. Figure 1

shows an overview of Pub-Sub system.

Figure 1: Overview of Pub-Sub System

Pub-Sub systems [6]; establishes a connection between

publishers (producers) and subscribers (consumers) of

events. Pub-Sub system is asynchronous in time and space.

This way, publishers are decoupled from subscribers; they do

not need to be aware of each other. Publishers submit events

to the Pub-Sub system while Subscribers through

subscriptions express their interest in the event. Pub-Sub

system does the work of matching and notification of events

to interested subscribers. The core functionality implemented

by Pub-Sub system is matching. For large number of events

and subscriptions matching component must work at

attainable performance.

This work concentrates on making this Pub-Sub system

efficient and scalable by leveraging commodity multicore

processors and accelerators. The contributions of this work

are as follows:-

Paper ID: ART20173882 2386

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

1) Achieved reduction in matching time

2) Proposed a data distribution mechanism for subscription

management & designed hybrid approach of parallelism

to achieve high throughput in the matching process.

3) Behavioral analysis of parameters such as high throughput

and low latency for varying size of processors and

workload.

The remainder of the paper is organized as follows: Section 2

covers the survey related to traditional Pub-Sub systems,

sequential matching algorithms and discuss work related to

parallel high-performance event processing. Section 3

describes event and data model. Section 4 presents parallel

programming data model and their features. Section 5

explains content matching algorithm on various parallel

platforms. In section 6 extensive performance evaluations are

reported.

2. Related Work

Let’s review the related work on distributed content based

Pub-Sub systems. This elaborates traditional Pub-Sub system

as well as newly designed high-performance Pub-Sub

systems.

2.1 General Pub-Sub Research

Most of the earlier work on scalable Pub-Sub has relied on

networks of brokers, which are dedicated machines, each

performing the whole range of operations that compose the

content routing task viz.: (1) management of subscriptions

from users and other brokers (2) filtering of incoming

publications against stored subscriptions and dispatching to

local interested subscribers and (3) filtering of incoming

publications against routing tables for dispatching to other

brokers. Brokers are typically organized in a broker overlay,

with subscriptions and publications flowing between brokers

according to its logical structure, typically a tree or a mesh.

Well-known examples of broker-based Pub-Sub middleware

are SIENA [8], Gryphon [9] and PADRES [10].

2.2 Event Processing Algorithms in Pub-Sub Systems

Two main categories of matching algorithms have been

proposed: counting-based [13, 14, 15] and tree-based [16,

17, 18] approaches. These approaches can further be

classified as either key-based, in which for each expression a

set of predicates are chosen as identifier [12], or as non-key

based [13,17,15]. Counting-based methods aim to minimize

the number of predicate evaluations by constructing an

inverted index over all unique predicates. The two most

efficient counting-based algorithms are Propagation [14], a

key-based method, and the k-index [15], a non-key-based

method. Likewise, tree-based methods [17,18] are designed

to reduce predicate evaluations and to recursively divide the

search space by eliminating subscriptions on encountering

unsatisfied predicates. The most prominent tree-based

method, Gryphon, is a static, non-key based algorithm [16].

BE-Tree [2] is a novel tree-based approach, which also

employs keys, that outperform existing work [13,14,15,16].

The latest advancement of counting-based algorithms is k-

index [15], which gracefully scales to thousands of

dimensions and supports equality predicates and non-equality

predicates. k-index partitions subscriptions based on their

number of predicates to prune subscriptions with too few

matching predicates; however, k-index is static and does not

support dynamic insertion and deletion. BE-Tree is

distinguished from k-index is that BE-Tree is fully dynamic,

naturally supports richer predicate operators (e.g. range

operators), and adapts to workload changes. BE-Tree,

however, is limited to attributes whose values are discrete

and for which the range in discrete attribute values is pre-

specified. So, BE-tree is unable to cope with real-valued

attributes, string-valued attributes, and discrete-valued

attributes with unknown range. Additionally, BE-tree [1] [2]

employs a clustering policy that is ineffective when many

subscriptions have a range predicate such as low ≤ ai ≤ high,

where ai is an attribute and the clustering criterion p that is

used lies between low and high. Here p is the clustering

technique used to collect the subscriptions into the same

cluster. In this case, all such subscriptions fall into the same

cluster and event processing is considerably slowed.

PUBSUB [19], which is a heterogeneous system, offers a

variety of data structures to keep track of the buckets in an

attribute structure enabling the user to select data structures

best suited for each attribute. Because of PUBSUB’s

heterogeneity in data structures for each attribute, PUBSUB

permits all attribute data types.

2.3 High-performance event processing in Pub-Sub

systems

In [7], the event matching algorithm proposed is parallelized

leveraging chip multi-processors, increasing the throughput

to over 1600 events/second with eight cores and reducing the

processing latency by 74%. In [3] author has proposed

CUDA based Content Matcher (CCM) on GPU to accelerate

matching in content-based Pub-Sub systems. In [4] author

has proposed high performance massively parallel

architecture for content-based Pub-Sub system while [5]

proposed multi-core message broker with Quality of Service

support.

3. Events and Predicates

A subscription is a set of predicates. Each predicate consists

of 3 characteristics [35]: An attribute name, a value and a

relational operator (<, =, !=, >,) are the components of

predicate. An event is attribute , value pair. An event’s pair,

say (<attribute name> x, <value> y), matches a subscription

predicate (<attribute name> a, <value> b, <operation> c)

only when x = a and y <operation c> b.

Sample event is defined as follows:

 string class=travel/airlines/offer;

 date starts = Jun;

 date expires = Aug;

 string origin = LA;

 string destination = AUS;

 string carrier = United

Paper ID: ART20173882 2387

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A Filter is defined as the conjunction of attribute constraints.

Each attribute constraint has a name, a type, an operator, and

a value. A constraint defines an elementary condition over an

event or message. Sample filter is defined as follows:

 string class >*travel/airlines;

 date starts<Jul;

 date expires>Jul;

 string origin = LA;

 string destination = AUS

This is a valid filter matching the event of the earlier

example. So a filter matches an event if all the attribute

constraints in a filter are satisfied by the attributes in an

event.

A predicate is defined as a disjunction of filters. A Predicate

matches an event if, at least one of its filter matches an event.

4. Programming Models

Programming paradigm which is best suited for the

underlying computer architecture is to be chosen correctly.

Here in this section we describe various parallel

programming paradigms with their features

4.1 Programming Shared Address Space (OpenMP)

Platform

OpenMP [21][22] is an Application Programming Interface

for implementing explicit shared-memory parallelism. API

provides an incremental path for developing parallel code

from existing serial code. OpenMP offers programmers a

simple and flexible interface for parallel application

development on different platforms which ranges from a

desktop computer to supercomputer. This API is designed for

multicore shared memory machine. Parallelism in OpenMP is

accomplished exclusively through the use of threads. A

thread is a lightweight process and smallest unit of execution

which is scheduled by the operating system. Threads exist

within the resources of a single process. Typically there is

one to one association between thread and process but the

actual use of thread is decided by the application. In this

programming, the model programmer has full control over

parallelization. Parallelism is as simple as inserting compiler

directive in the sequential program and as complex as

insertion of subroutines to form multiple levels of parallelism

and locks.

Fork -join model of parallel execution is used by OpenMP.

Every OpenMP program begins with master thread and until

the first parallel region construct is encountered, the master

thread executes sequentially. The master node creates a pool

of threads to achieve parallelism. Block of the code which is

enclosed by the parallel region constructs is executed in

parallel by using a number of threads. After compilation of

execution of statements in a parallel region, all threads

synchronize and eventually terminate. Then again master

thread takes the control of the program. Compiler directives

which can be embedded in C / C++ and FORTRAN are used

to achieve OpenMP parallelism. The threads involved in the

execution of parallel region can be altered dynamically at

runtime to promote efficient resource utilization.

The distinct component comprises OpenMP API are

compiler directives, runtime library routines, and

environment variables. Compiler directives are used for

various purposes like distribution of loop iterations between

threads, a block of code to be divided among threads and

synchronization of works among threads. Runtime library

routines are used for various purposes like setting and

querying a number of threads, getting thread unique identifier

and setting and querying nested parallelism etc.

Environmental variable is used for controlling the execution

of parallel code at runtime. The environmental variable set

the number of threads, binds threads to processors and also

enable/disable dynamic threads. In our work, we have used

this construct extensively to achieve parallelism.

4.2 Programming Distributed Address Space (MPI)

Platform

The message-passing programming paradigm is one of the

oldest and most widely used approaches for programming

parallel computers. Two key attributes that characterize the

message passing programming paradigm are partitioned

address space and support for explicit parallelization.

Message-passing programs are often written using

asynchronous or loosely synchronous paradigms. In the

asynchronous paradigm, all concurrent tasks execute

asynchronously. This makes it possible to implement any

parallel algorithm. In loosely synchronous programs tasks or

a subset of tasks synchronize to perform interactions.

However, between these interactions, tasks execute

completely asynchronously. Most message-passing programs

are written using the single program multiple data approach

(SPMD).

4.3 Programming Hybrid Platform

To exploit parallelism beyond a single level, MPI and

OpenMP programming models can be combined. Domain

decomposition is the key to obtain coarse grain parallelism

and we can achieve fine grain parallelism at loop level with

the help of threads.

4.4 GPU Programming with CUDA

Ten years ago performance of single core CPU has

essentially stagnated and a solution devised was exploiting

Multi-core to increase parallelism. An application which

works on Big data or scientific simulation require increased

performance so the question raised was are there faster

alternative to CPU?

The rise of GPU in 1990’s for graphics processing games and

visualization, solved this problem at same extent. CPU has

always been slow earlier and GPU was only used for graphics

processing. GPU benefited from Moore’s law. GPU

architecture was evolved from hardwired logic which has

fixed-function to flexible programmable ALU’s. GPU

become fully programmable in 2006, NVIDIA invented

parallel programming model and parallel computing platform

named CUDA, in Nov 2006. Computing performance is

dramatically increased by utilizing the power of Graphic

Processing Unit (GPU). General purpose programming is

Paper ID: ART20173882 2388

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

possible with the help of this programming model. Nowadays

GPUs are widely deployed as accelerators. To interact with

CUDA compliant device different languages can be used. We

used CUDA C [23], which is explicitly devoted to

programming GPUs. Five key characteristics are described

below on which CUDA programming model is based.

Thread Group Hierarchical Organization

In parallel programming, the problem is partitioned into

different sub-problems which can be solved independently,

by blocks of threads in a concurrent fashion. Each sub-

problem is further decomposed into finer pieces which can be

solved in parallel by all threads within a block. This

hierarchical decomposition helps the algorithm to scale

across an available number of cores.

Shared Memories

During execution of the thread, it may access data from

multiple memory spaces. Each thread is having access to the

private local memory where automatic variables are stored.

Each block has a shared memory accessible to all threads

residing in the same block. Finally, all thread may access

same global memory.

Barrier Synchronization

There is no need to offer synchronization between thread

blocks as they are allowed to execute independently from

each other. On other hand, threads within the same block

synchronize to execute and thus their memory access is

coordinated. Through barriers, thread synchronization is

achieved in CUDA.

Separation of Device and Host

GPU act as a coprocessor of a host (the CPU) running a C /

C++ program according to CUDA programming model

CUDA threads gets executed on separate device (the GPU).

Two separate memory spaces are maintained by host and

device. Before execution, data should be copied from the

memory of host to device memory allocated at the start of

execution. Device performs the execution using thread and

results are copied back to the memory of host and device

memory is de-allocated.

Kernels

A single flow of execution for multiple threads is decided by

a special function called Kernel. When calling kernel

function, the programmer specifies the number of block and

number of threads within each block that must execute it.

CUDA runtime provides two special variables ThreadID and

BlockID which are accessible inside the kernel and them

together uniquely identify individual thread among those who

execute the kernel.

5. Matching Algorithm

The matching algorithms developed for distributed memory

architecture is presented here with the parallel matching

engine that makes use of cores as well as threads.

5.1 MPI Content-based Matching Approach

The MPI Content- based matching algorithm consists of three

phases: 1) Decomposition phase 2) Matching phase 3)

Reduction phase. Subscriptions are divided equally among a

number of processes. Events are available with every

process, they are kept globally. Every process calculates the

matched subscriptions for given block of events using

constraint evaluation and counting algorithm, and send to the

root process. Thus every process works parallel towards the

building of solution. As shown in Figure 2, in Output

decomposition method, calculation of output is divided into a

number of processes.

Figure 2: Output Decomposition Algorithm for Matching

using MPI

Begin

Input: - Subscriptions, Events, Number of Processes

Output:: - Matched Subscriptions

1. Dynamically divide the subscription file among a number

of processes taking part into the computation.

2. Place the events into global memory.

3. For each process do in parallel

For each event do

For each predicate in event do

Compare with predicates in subscriptions

If all predicates in the events matched with all

predicates in subscription

Count=count+1

End if

End for

End for

End for

Return Count (matched subscriptions) to root process

Output the Total matched subscriptions by root process.

End.

5.2 Hybrid (MPI + OpenMP based) Content-based

Matching Approach

The matching algorithm is based on the two-phase algorithm

presented in [7]. The algorithm works in two phases.

Incoming messages are evaluated against predicates in the

subscription in first phase. First phase named as H phase

generates intermediate results. Subscriptions are traversed

and evaluated in next phase called C phase. In C phase we

evaluate formed clusters according to a number of predicates

Paper ID: ART20173882 2389

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

in the event. For this clusters are formed based on the number

of predicates in the subscriptions. This increases the pre-

processing time but reduces the matching time. Figure 3

describes the content matching engine to be executed by

every process.

Figure 3: Matching Engine

In hybrid approach again, decomposition of subscriptions

takes place according to a number of processes. Each process

performs the matching function asynchronously. Here a block

of events is allocated to every process. Adding one more

level of parallelism, events within the pool are further

distributed to threads allocated to processes and each thread

matches event with subscriptions. Figure 4 explains the

working of a hybrid approach.

Figure 4: Hybrid Approach of Parallelism

5.3 Matching Algorithm using GPU

We have also implemented CUDA Content Matching

algorithm presented in [3] which run efficiently on GPU. For

this, we created data structures as mentioned in [3].It is

observed that CCM performs well as compared to sequential

matching algorithm and achieves good speedup.

All the tests were executed on the machine with the following

configuration.

1) NVIDIA Tesla C1060

2) 4GB Global Memory Each

3) 30 SMs

4) Max. 512 threads i.e. 16 warps per SMP

5) (32 threads = 1 warp)

6) 8 Cores in Each and so 8 active blocks in each SM

7) 1024 threads i.e. approx. 30 warps can be active

simultaneously

6. Experimental Results

The performance of the content matching algorithm is

evaluated based on the scalability, matching time and

throughput. Specifically, The gains achieved in both

throughput and average matching time are shown, as the

matching engine scales from a sequential system of one

processor to a fully parallel system of thirty-two processors.

The algorithms designed using shared memory; distributed

memory and hybrid memory model are compared.

Experiments were run on a machine HP Proliant DI 785 65

servers with 8 CPU quad core AMD processor. Secondary

storage is 584 GB and each core has 2 GB RAM.

To generate subscriptions and events workload generator

was used. Both subscriptions and events were input to the

system in a single batch (first subscriptions were loaded

followed by events). Table 1 specifies the workload

Table 1: Workload Specification

Parameter Subscription

Workload

Number of subscriptions 100000-500000

Average Predicates per Subscription 18

Subscription Predicate Value Range 1-25

Number of Events 100000

Average Attribute per Event 50

Event Attribute Value Range 1-25

Number of Distinct predicates 1000

Number of Distinct attributes 100

6.1 Scalability

Figure 5: Throughput Based on Scalability Workload

Figure 5 shows the number of events processed per second

using shared memory, distributed memory, and hybrid

approach. All above approaches are implemented by using

parallel programming APIs OpenMP, MPI, and MPI +

OpenMP respectively. As the graph shows, increasing the

number of processes from 1 to 32 results in near linear

increase in throughput. This is not true for MPI approach

because it does the sequential matching, which takes more

time and so less throughput. Near double increase in

throughput is observed for a hybrid approach. This is obvious

because subscriptions get divided among the processes, and

also threads works in parallel to match the events.

Paper ID: ART20173882 2390

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 6: Average Matching Time for Parallel Approaches

Figure 6 shows the average matching time of the single event

as the number of cores increase for all the three

implementations. The Linear reduction is observed in

matching time for OpenMP and MPI + OpenMP

implementation. Compared to lock based ME_IP approach

presented in [7] we get 4 times reduction in matching time

for shared as well as a hybrid matching approach. Developed

hybrid matching algorithm shows significant performance

improvement in average matching time

6.2 Speedup and Efficiency

Figure 7: Speedup and Efficiency of MPI_OpenMP

Architecture

Figure 7 shows a linear increase in a speedup for approaches

of OpenMP and hybrid. Efficiency observed is approximately

1 for 2 to 32 processors. It has been observed that efficiency

remains constant as we increase the number of processors.

Hence we claim that algorithm is efficient and scalable. The

formula for calculating speedup and efficiency is described

here.

 Speedup (S) is the ratio of the time taken to solve a

problem on a single processor to the time required to solve

the same problem on a parallel computer with p identical

processing elements.

 Efficiency(E) is a measure of the fraction of time for

which a processing element is usefully employed

 Mathematically, it is given by

 E=S/p

Result Analysis for Matching Algorithm using GPU

The dataset used for these experimentations is as mentioned

in [3].

The following Figure 8 shows how performance changes with

the average number of attribute inside events. The algorithm

shows higher matching times with a higher number of

attributes. It has become possible because CUDA content

matching (CCM) algorithm processes all of the attributes in

the events parallel. Available GPU cores are fully exploited

by CUDA content matching algorithm. We have observed

increased speedup of CCM over its sequential counterpart.

Figure 8: Number of Attributes Vs. Processing Time

The following Figure 9 shows how performance changes with

the number of filters per interface. Increasing such number

also increases the overall number of constraints, and thus the

complexity of matching.

Figure 9: Number of Filters Per Interface Vs. Processing

Time

7. Conclusion

This paper presented three parallel approaches to reduce the

matching time of a single event and to increase throughput.

The result shows that with 32 processors, throughput

increased from 250 to over 4000 events/second for a hybrid

approach. Matching time is also reduced from 9ms to 0.4 ms.

Good speedup is observed & algorithm scales well up to 32

processes. It is observed that matching problem is relatively

easy to parallelize. Programming CUDA is (relatively) easy

while attaining good performance is hard. Memory accesses

and transfers tend to dominate over processing cost and must

be carefully managed.

Paper ID: ART20173882 2391

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

References

[1] Mohammad Sadoghi, Hans-Arno Jacobsen.Analysis and

Optimization for Boolean Expression Indexing. ACM

Transactions on Database Systems, Vol. 38, No. 2,

Article 8, Publication date: June 2013.

[2] M. Sadoghi and H.-A.Jacobsen.BE-Tree an Index

Structure to Efficiently Match Boolean Expressions over

High dimensional Discrete Space.SIGMOD 2011.

[3] Alessandro Margara, GianpaoloCugol. High-

performance content-based matching using GPUs. DEBS

'11 Proceedings of the 5th ACM international conference

on Distributed eventbased system New York, NY, USA

ACM 2011

[4] Raphaël Barazzutti,1 Pascal Felber.StreamHub: A

Massively Parallel Architecture for High-Performance

Content-Based Publish/Subscribe. DEBS’13, June 29–

July 3, 2013, Arlington, Texas, USA.

[5] Zhaoran Wang, Xiaotao Chang. Pub/Sub on Stream: A

Multi-Core Based Message Broker with QoS Support.

DEBS 2012, July 16–20, 2012, Berlin, Germany July

2012.

[6] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-

M.Kermarrec.The many faces of publish/subscribe.

ACM Computer Survey, 35:114–131, 2003.

[7] AmerFarroukh , Elias Ferzli , NaweedTajuddin,

Hansarno Jacobsen.Parallel event processing for content-

Based publish/subscribe systems, in DEBS '09

Proceedings of the Third ACM International Conference

on Distributed Event-Based Systems, New York, USA

2009

[8] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf.Design

and evaluation of a wide-area event notification

service.ACM TCS, 2001.

[9] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley,

and T. D. Chandra.Matching events in a content-based

subscription system.In PODC, 1999.and evaluation of a

wide-area event notification service. ACM TCS, 2001.

[10] H.-A. Jacobsen, A. Cheung, G. Lia, B. Maniymaran, V.

Muthusamy, and R. S. Kazemzadeh.The PADRES

publish/subscribe system. Handbook of Research on

Adv. Dist. Event-Based Sys., Pub./Sub. and Message

Filtering Tech., 2009.

[11] J2EE Web Services on BEA Web Logic by Subbarao

[12] G. Cugola and G. Picco.REDS: A Reconfigurable

Dispatching System. SEM, pages 9—16, Portland, 2006.

ACM Press

[13] T. Yan and H. Garcia-Molina.Index structures for

selective dissemination of information under the Boolean

model. ACM TODS’94.

[14] F. Fabret, H.-A.Jacobsen, F. Llirbat, J. Pereira, K. A.

Ross, and D. Shasha.Filtering algorithms and

implementation for fast pub/sub systems.SIGMOD’01

[15] S. Whang, C. Brower, J. Shanmugasundaram, S.

Vassilvitskii, E. Vee, R. Yerneni, and H. Garcia-Molina.

Indexing Boolean expressions.In VLDB’09.

[16] K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and

T. D. Chandra.Matching events in a content-based

subscription system.In PODC’99

[17] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith.

Efficient filtering in publish-subscribe systems using

binary decision diagrams. ICSE’01.

[18] G. Li, S. Hou, and H.-A. Jacobsen.A unified approach to

routing, covering and merging in [publish/subscribe

systems based on modified binary decision diagrams.

ICDCS’03.

[19] SartajSahni. PUBSUB: An Efficient Publish/Subscribe

System. IEEE Transactions on Computers, , no. 1, pp. 1,

PrePrintsPrePrints, doi:10.1109/TC.2014.2315636

[20] Wormhole: Reliable Pub-Sub to Support Geo-replicated

Internet Services Yogeshwer Sharma, Philippe Ajoux,

PetcheanAng,

[21] An Introduction to Parallel Programming with OpenMP

by Alina Kiessling.

[22] https://computing.llnl.gov/tutorials/openMP/

[23] Introduction to CUDA C by an Jose Convention Center,

September 20, 2010.

Paper ID: ART20173882 2392

https://computing.llnl.gov/tutorials/openMP/

