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Abstract: Let G be a graph with chromatic number χ(G) = k.  The chromatic edge stability number esχ(G) is the minimum number of 

edges whose removal results in a graph G1 with χ(G1) = χ(G)−1. The chromatic bondage number ρ(G) is the minimum number of edges 

between two color classes in a k coloring of G, where the minimum is taken over all k-colorings of G. We present several interesting 

results and unsolved problems on Chromatic edge stability number and Chromatic bondage number. In this paper we introduce two 

fundamental parameters which involve independent domination and chromatic number. 

 

Keywords: chromatic number, chromatic bondage number, Chromatic edge stability number 

 

1. Introduction 
 

Let G be a graph with chromatic number χ(G) = k. The 

chromatic edge stability number esχ(G) is the minimum 

number of edges whose removal results in a graph G1 with 

χ(G1) = χ(G) − 1. The chromatic bondage number ρ(G) is the 

minimum number of edges between two color classes in a k- 

coloring of G, where the minimum is taken over all k-

colorings of G. We present several interesting results and 

unsolved problems on Chromatic edge stability number and 

Chromatic bondage number. 

 

For any graph theoretic parameter the effect of removal of an 

edge on the parameter is of practical importance. Another 

related problem is the determination of the minimum number 

of edges whose removal alters the value of the parameter. For 

example, the minimum number of edges of G whose removal 

increases the domination number of G was studied by Bauer 

et al., [6] who called it as the edge stability number of G. 

Fink et al., [12] studied the same concept and used the term 

bondage number. We observe that the chromatic number of a 

graph can be reduced by removing a set of edges from the 

graph. Hence, analogous to the concept of bondage number 

for domination, it is natural to study the minimum number of 

edges whose removal reduces the chromatic number of the 

graph, which we call the chromatic edge stability number. In 

this paper , we initiate a study of these two parameters. 

 

2. Main Results 
 

Definition 1.1. The chromatic edge stability number of a 

graph G is defined to be the minimum number of edges of G 

whose removal results in a graph G1 with χ(G1) = χ(G)−1 

and is denoted by esχ(G). 

 

Example 1.2. 

(i) esχ(G) = m if and only if G is bipartite. 

(ii) esχ(Kn) = 1 for all n ≥ 2. 

(iii) esχ(Cn) = 1 if n is odd. 

  

If {V1,V2,...,Vk} is a k-coloring of a k-chromatic graph G and 

if G1 is the graph obtained from G by removing all the edges 

between two color classes Vi and Vj for some i ≠ j, then χ(G1) 

= k − 1. This observation motivates the following definition. 

 

Definition 1.3. The minimum number of edges between two 

color classes in a k-coloring of a k-chromatic graph G, 

where the minimum is taken over all k-colorings of G, is 

called the chromatic bondage number of G and is denoted by 

ρ(G). 

 

Obviously, for any graph G, esχ(G) ≤ ρ(G). Further, for all 

the graphs given in Example 1.2, esχ = ρ. In the following 

lemma we give another family of graphs with this property. 

 

Lemma 1.4. For the complete tripartite graph G = Kλ,λ,λ, 

esχ(G) = λ
2
.  

 

Proof. Since ρ(G) = λ
2
, we have esχ(G) ≤ λ

2
. Further G is 

decomposable into λ
2
 triangles and hence esχ(G) ≥ λ

2
. Thus 

esχ(G) = λ
2
. 

 

For the complete k-partite graph G =  , we have 

ρ(G) = min{λi λj : 1 ≤ i < j ≤ k}. In this connection we pose 

the following conjecture. 

 

Conjecture 1.5. For the complete k-partite graph G 

= esχ(G) = ρ(G). 

 

More generally, we have the following problem. 

 

Problem 1.6. Characterize graphs G for which  

esχ(G) = ρ(G). 

 

The following theorem shows that the difference between ρ 

and esχ can be made arbitrarily large. 

 

Theorem 1.7. Given two positive integers k and r with k ≥ 3, 

there exists a graph G such that χ(G) = k and ρ − esχ > r. 

 

Proof. Let G1 be a copy of Kk. For each edge e = xy of G1, 

we attach r + 1 copies of Kk, say GI,1, Gi,2,..., Gi,r+1 such that 

V ( Gi,j ) ∩ V( G1 ) = { x,y }, where 1 ≤ j ≤ r + 1. Let G be the 

resultant graph. Clearly χ(G) = k. If H is the subgraph of G 

obtained by removing the edges of G1, we have χ(H) = k 

− 1.Further, if H1 is any subgraph of G obtained by removing 

a set of m edges, where m < , then H1 contains a copy of 

Kk and hence χ(H1) = k. Thus esχ(G) = . Now, let V1 and 

V2 be two color classes in a k-coloring of G. Let es be the 
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unique edge of G1 whose ends are in V1 and V2. Now, each 

Gi,j, where 1 ≤ i ≤ , i ≠ s and 1 ≤ j ≤ r + 1, contains 

exactly one edge with ends in V1 and V2. Hence ρ = [ −1](r 

+ 1) + 1. Hence ρ −esχ = r[ 1] > r.  

Remark 1.8. Obviously, esχ(G) ≤ ρ(G) ≤ . If esχ(G) = 

then ρ(G) = and hence the number of edges between 

any two color classes in any k-coloring of G is . However, 

the converse is not true. For example, for the uniquely 3-

colorable graph G given in Figure 1.1, the number of edges 

between any two color classes in the 3-coloring of G is 3 = 

. However, esχ(G) = 2. 

 

 
 

In the following theorem, we characterize k-chromatic graphs 

with ∆ = n − 1 for which ρ =  .  

 

Theorem 1.9. Let G be a k-chromatic graph with ∆ = n−1. 

Then ρ =  if and only if G has exactly one cut vertex and 

has ρ blocks each isomorphic to Kk . 

 

Proof. Let u be a vertex of G with deg u = n − 1. Suppose ρ 

=  . Let {V1,V2,...,Vk} be any k-coloring of G with V1 = 

{u}. Now, the number of edges between any pair of color 

classes (Vi ,Vj) is ρ and hence |Vi| = ρ, for all i, where 2 ≤ i ≤ k 

and the subgraph induced by the ρ edges between Vi and Vj, 

where 2 ≤ i < j ≤ k, is isomorphic to ρK2. Let Vi = 

{vi1,vi2,...,viρ} and E (Vi ∪ Vj) ={vi1vj1,vi2vj2,...,viρvjρ}, 2 ≤ i < j 

≤ k. Now, for each i = 1,2,...,ρ, the subgraph of G induced by 

{u,v2i,v3i,...,vki} is isomorphic to Kk. Hence G is the graph 

with exactly one cut-vertex and ρ blocks each isomorphic to 

Kk. 

 

The converse is obvious. 

 

Theorem 1.10. For any r-regular graph G on n vertices, 

ρ(G) ≤ (n − r)
2
. Further equality holds if and only if n − r 

divides n and G is isomorphic to the complete k-partite 

graph K λ,λ,...,λ where λ = n − r and k = . 

 

Proof. Since G is r-regular, the number of vertices in a color 

class in any k-coloring of G is at most n − r and hence ρ(G) ≤ 

(n − r)
2
.  

 

Suppose ρ(G) = (n − r)
2
. Let {V1,V2,...,Vk} be a k-coloring of 

G. Since G is r-regular, |Vi| ≤ n − r for all i = 1,2,...,k. 

Suppose |Vi| < n − r for some i. Then the number of edges 

between Vi and Vj for all j ≠ i is less than (n − r)
2
, which is a 

contradiction. Hence |Vi| = n − r for all i = 1,2,...,k. Since the 

number of edges between Vi and Vj for all i ≠ j, is (n − r)
2
, it 

follows that G is a complete k-partite graph in which each 

part contains exactly n − r vertices. Hence k (n − r) = n, so 

that n − r divides n. The converse is obvious. 

 

Theorem 1.11. Let G be a k-chromatic graph having a 

vertex u with deg u = n − 1. Then ρ = r, where r is the 

minimum number of vertices in a color class other than {u} 

in a k-coloring of G and the minimum is taken over all k-

colorings of G. 

 

Proof. Since {u} is a color class in any k-coloring of G, we 

have ρ ≤ r. Suppose {V1,V2,...,Vk −1,{u}} is a k-coloring of G 

such that the number of edges between V1 and V2 is less than 

r. Since |V1| ≥ r and |V2| ≥ r, there exists a set S ⊆ V1 such that 

|S| ≥ |V1| − r + 1 and V2 ∪ S is independent. Hence {V1\ S, V2 
∪ S, V3,...,Vk−1,{u}} is a k-coloring of G with |V1\ S| < r, 

which is a contradiction to the minimality of r. Thus ρ = r. 

 

Corollary 1.12. For any k-chromatic graph G with ∆ = n − 

1, we have ρ(G) ≤ β0(G), where β0(G) is the independence 

number of G. 

 

Proof. Since ρ = r and r ≤ β0, the result follows. 

 

Remark 1.13. The bound given in the above corollary is 

sharp. For example, for the graph G given in Figure 1.2, 

ρ(G) = β0(G) = 2.  

  

 
 

Theorem1.14. Let G be a k-chromatic graph having a vertex 

u with deg u = n − 1. Then ρ = β0 if and only if for any k-

coloring {V1,V2,...,Vk−1,{u}} of G, |Vi| = β0 for all i = 1,2,...,k 

− 1 and Gij has a perfect matching, where Gij is the induced 

subgraph , 1 ≤ i < j ≤ k −1.  

 

Proof. Suppose ρ = β0. Let {V1,V2,...,Vk−1,{u}} be any k-

coloring of G. Since the number of edges between the color 

classes Vi and {u} is |Vi|, it follows that |Vi| ≥ β0. Further 

since each Vi is an independent set in G, we have |Vi| = β0.  

 

Theorem 1.15.Let G be a bipartite graph with 

bipartition(X,Y). Then G contains a matching that saturates 

every vertex in X if and only if |N(S)| ≥ |S| for all S ⊆ X 

 Now, consider Gij =  i < j. Let S ⊆ Vi. If |N(S)| < |S| , 

then X1 = ( Vj −N(S) ) ∪ S is an independent set and |X| > β0, 

which is a contradiction. Thus |N(S)| ≥ |S| for all S ⊆ Vi and 

hence it follows from Theorem 1.15, that Gij has a perfect 

matching.  

 

Conversely, if for any k-coloring {V1,V2,...,Vk−1,{u}}, |Vi| = β0 

and Gij has a perfect matching, then it follows that |E(Gij)| ≥ 

β0 and |E( | = β0 and hence ρ = β0.  
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Corollary 1.16. Let G be a k-chromatic graph with ∆ = n − 

1 and ρ(G) = β0(G). Then n = (k − 1)β0 +1. Also |E(G)| ≤ 

and equality holds if and only if G is 

isomorphic to the complete k-partite graph K1,β0,β0,...,β0. 

 

Corollary1.17. Let G be a 2-chromatic graph with ∆ = n 

−1. Then ρ(G) = β0(G) if and only if G is isomorphic to the 

star K1,n−1. 

 

Corollary 1.18. Let G be a 3-chromatic graph with ∆ = n −1 

and ρ(G) = β0(G). Then 3β0 ≤ |E(G)| ≤ β0(β0 + 1). Further 

|E(G)| = 3β0 if and only if G has exactly one cut vertex u and 

has β0 blocks each isomorphic to K3. Also |E(G)| = β0(β0 + 1) 

if and only if G is isomorphic to K1,β0,β0. 

 

Proof. Let {V1,V2,{u}} be a 3-coloring of G. Since |V1| = |V2| 

= β0 and has a perfect matching, it follows that 3β0 ≤ 

|E(G)| ≤ β0(β0 +1). Now, |E(G)| = 3β0. if and only if  

= β0 K2 and hence u is the unique cut vertex of G and G has 

β0 blocks each isomorphic to K3. Further |E(G)| = β0(β0 + 1) 

if and only if  = Kβ0,β0 and hence the result follows. 

 We now proceed to investigate properties of graphs G for 

which esχ(G) = 1. 

 

Theorem 1.19. Let G be a k-chromatic graph. Then esχ(G) = 

1 if and only if there exists a k-coloring{V1,V2,...,Vk} of G 

such that |V1| = 1 and there is exactly one edge between V1 

and V2. 

 

Proof. Suppose esχ(G) = 1. Let e = uv be an edge of G such 

that χ(G − e) = k − 1. Let{V1,V2,...,Vk−1} be a (k−1)-coloring 

of G − e. Clearly u and v belong to the same color class, say 

V1. Now, {{u},V1 −{u},V2,...,Vk−1} is a k-coloring of G and e 

= uv is the only edge between{u}and V1−{u}. The converse 

is obvious. 

 

Theorem 1.20. Let G be a k-chromatic graph with esχ(G) = 

1. Then there exist two adjacent vertices u and v such that 

deg u + deg v ≥ 2( k−1). 

 

Proof. It follows from Theorem 1.19 that there exists a k-

coloring {{u}, V1,V2,...,Vk−1} of G such that there is exactly 

one edge e = uv between {u} and V1. Since u is adjacent to at 

least one vertex of Vi , for all i ≥ 1, we have deg u ≥ k − 1. 

We now claim that deg v ≥ k −1. Suppose deg v < k −1. Then 

there exists a color class, say V2, such that v is not adjacent to 

any vertex of V2. Now, {(V1−{v})∪{u},V2∪{v},V3,...,Vk−1} 

is a (k − 1)-coloring of G, which is a contradiction. Hence 

deg v ≥ k − 1 so that deg u + deg v ≥ 2 ( k − 1). 

 

Theorem1.21.In the k-coloring of a uniquely k- colorable 

graph, the subgraph induced by the union of any two color 

classes is connected. 

 

Theorem 1.22. Let G be a uniquely k-colorable graph. Then 

esχ(G) = 1 if and only if the k-coloring of G contains two 

singleton color classes. 

 

Proof. Let {V1,V2,...,Vk} be the k-coloring of G. Let esχ(G) = 

1. Then by Theorem 1.19 there exist color classes say V1 and 

V2 such that |V1| = 1 and there is exactly one edge between V1 

and V2. By Theorem 1.21, we have  is connected and 

hence |V2| = 1. The converse is obvious. 

 

Problem 1.23. Characterize graphs G for which esχ(G) = 1. 

 The following theorem gives Nordhaus-Gaddum type result 

for the parameter esχ(G). 

 

Theorem 1.24. For any graph G, we have  

(i) 2 ≤ esχ(G) + esχ( ) ≤ and  

(ii) 1 ≤ esχ(G)·esχ( ) ≤ m[   

 

Further, the following are equivalent.  

(a) esχ(G) + esχ( ) =  

(b) esχ(G)·esχ( ) = m[   

(c) G is one of the graphs P3, 3,P4,C4 and 4. 

 

Proof. Since for any graph G, 1 ≤ esχ(G) ≤ m, the inequalities 

follow. Now, esχ(G) + esχ( ) = if and only if esχ(G) = 

|E(G)| = m and esχ(G) = |E( )| = .Hence G and are 

both bipartite, so that (a), (b) and (c) are equivalent. 

 

3. Conclusion 
 

In this paper , we initiate a study of two parameters 

chromatic edge stability number esχ and chromatic bondage 

number ρ and investigate properties of graphs G for which 

esχ(G) = 1 

 

4. Future Scope 
 

Further we can develop this paper and find the relation 

between chromatic edge stability number esχ and chromatic 

bondage number ρ for all graphs. 
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