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Abstract: Dehazing techniques are introduced for removing haze effects from captured images. In this paper, we use single image 

haze removal using Color Attenuation Prior (CAP) and later improve results by using Pixel Minimum Channel (PMC). The CAP 

method employs atmospheric scattering model for dehazing. The parameters like – scene depth is first learned using linear model, then 

transmission map is estimated from it and lastly atmospheric light is obtained. All these parameters are fed as input to atmospheric 

scattering model for recovering scene radiance of scene. The PMC scheme is used to relieve the problem of high computational cost. 

The transmission map and atmospheric light is directly estimated from PMC. Experimental results show that PMC outperforms CAP 

method. 
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1. Introduction 
 

Images are used for describing changes in the environment. 

When the image is vivid and without distortion, then only 

that changes can be learned and used in application. But in 

outdoor imaging, captured images are easily affected by 

atmospheric particles (e.g., haze, fog, mist) that absorb and 

scatter light as it travels from scene to the camera. The 

presence of such particles deteriorates quality of captured 

images.  

 

Haze is defined to be an atmospheric phenomenon where 

dust, smoke, and other dry particles obscure the clarity of 

sky. Sources of haze include volcanic ashes, combustion 

products, sea salt, smoke, dust. Hazy images are caused due 

to bad weather condition. This weather condition differs 

mainly in the types and sizes of particles involved and their 

concentration. Haze tends to produce a distinctive gray or 

bluish hue and is certain to affect visibility. Hazy images are 

dim, hide true color of scene, contain less information and 

are certain to affect visibility. Therefore removing haze from 

image is vital and very important and will benefit many 

computer vision applications such as aerial imagery, image 

classification and retrieval, remote sensing, video analysis 

and recognition.  

 

In this paper, we propose a novel color attenuation prior 

(CAP) for single image dehazing and use another dehazing 

technique named Pixel Minimum Channel (PMC) [2] to 

overcome high computational cost of CAP. The simple CAP 

is used for creating linear model for scene depth restoration 

of the hazy image. By learning the parameters of the linear 

model with supervised learning method, the bridge between 

the hazy image and its corresponding depth map is built 

effectively. This prior gives information about saturation, 

brightness and their difference in hazy image. This 

information is used to calculate depth of the scene. With the 

recovered depth information, we can easily estimate 

transmission map and learn the atmospheric light. These 

parameters of atmospheric scattering model are used for 

dehazing of single hazy image. An overview of the proposed 

CAP method is shown in Figure 1. 

 

 
Figure 1: An overview of CAP method 

 

The remainder of this paper is organized as follows: In 

Section 2, we review the previous dehazing methods. In 

Section 3, we discuss atmospheric scattering model which is 

widely used for image dehazing and give a concise analysis 

on the parameters of this model, and the proposed approach 

of recovering the scene depth using the color attenuation 

prior. In Section 4, we present another technique PMC. In 

Section 5, we analyses and compare the dehazing results of 

both the methods. Finally, we summarize this paper in 

Section 6. 

 

2. Literature Survey 
 

Image dehazing transforms images to provide better 

representation of the subtle details. Outdoor images taken in 

bad weather (e.g., foggy or hazy) usually lose contrast and 

fidelity, resulting from the fact that light is absorbed and 

scattered by the turbid medium such as particles and water 

droplets in the atmosphere during the process of propagation. 

Haze removal techniques are classified into two categories 

depending on number of input images used for dehazing: 
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1) Multiple image dehazing technique – Considers multiple 

images of same scene and does not depend on statistics or 

prior knowledge. 

2) Single image dehazing technique – Considers only single 

image of scene and depends on statistical assumption. 

 

Early researches used polarization-based method [3] with 

multiple images which are taken with different degrees of 

polarization. This method improves contrast of image but 

may fail in fog or dense haze situation. To overcome this, the 

next method which also deals with multiple images of same 

scene under different weather condition is used. 

 

In contrast restoration of weather degraded images [4], 

multiple images are used to locate and compute structure of 

scene. Using either depth segmentation or scene structure, the 

contrast from any image of scene taken in bad weather is 

restored. The only disadvantage is it cannot handle dynamic 

scenes.  

 

Recently, significant progress has been made in single image 

dehazing based on the physical model. He et al. [5] discover 

the dark channel prior (DCP) that, in most of the non-sky 

patches, at least one color channel has some pixels whose 

intensities are very low and close to zero. With this prior, 

they estimate the thickness of haze, and restore the haze-free 

image by atmospheric scattering model. The DCP approach 

is simple and effective in most cases. However, it cannot well 

handle the sky images and is computationally intensive. 

 

Some improved algorithms are proposed to overcome the 

weakness of the DCP approach. For efficiency, Tarel et al. 

[6] introduced a fast dehazing approach based on the median 

filter, assuming that the depth of scene is continuous. 

Unfortunately this algorithm cannot be used on all hazy 

images because such a strong assumption is violated in some 

cases. To sum up, the limitation of the dehazing methods lies 

in the fact that the haze-relevant priors or heuristic cues used 

are not effective or efficient enough. 

 

3. Proposed Methodology 
 

Novel color attenuation prior is proposed for single image 

dehazing. This simple and powerful prior can help to create a 

linear model for the scene depth of the hazy image. With the 

recovered depth information, the haze can be easily removed 

from a single hazy image. The efficiency of this dehazing 

method is dramatically high and the dehazing effectiveness is 

also superior to that of prevailing dehazing algorithms. Now 

the atmospheric scattering model is reviewed which is widely 

used for image dehazing and give a concise analysis on the 

parameters of this model. 

 

3.1 Atmospheric Scattering Model 

 

The atmospheric model used for image dehazing describes 

the formation of hazy image and gives a concise analysis on 

the parameter of this model. The model is proposed by 

McCartney in 1976 [7], is widely used in computer vision 

and image processing. The model can be expressed as 

follows: 

))(1()()()( xtAxtxJxI                     (1) 

 
)()( xdext                                     (2)  

Where I is the hazy image, J is the scene radiance 

representing the haze-free image, A is the atmospheric light, t 

is the medium transmission, ß is the scattering coefficient of 

the atmosphere and d is the depth of scene. Since I is known, 

the goal of dehazing is to eliminate A and t, then restore J 

according to Equation (1). 

 

We notice that the depth of the scene d is the most important 

information. On the one hand, since the scattering coefficient 

ß can be regarded as a constant, the medium transmission t 

can be estimated easily if the depth of the scene is given 

according to Equation (2). On the other hand, when the depth 

d(x) tends to infinity, the transmission t(x) tends to zero and 

we have: 

 )(,)( xdAxI                        (3) 

Equation (3) shows that the intensity of pixel which makes 

the depth tend to infinity gives the value of A. In this 

condition, the task of dehazing is converted into depth 

information recovery. However, it is a challenging task to 

obtain the depth map with a single hazy image 

 

In the next section, we present a novel approach to recover 

the depth information directly for a single hazy image using 

CAP. 

 

3.2 Color Attenuation Prior 

 

Color attenuation means reduction in true color of scene 

object due to reduced reflected energy received at imaging 

system. As the distance of object from imaging system 

increases, more reflected energy gets attenuated and more 

airlight is added. This results into more brightness and low 

saturation. So image appears to be hazy. 

 

Human brain quickly identifies hazy area from natural 

scenes. This inspired to conduct experiment on hazy image 

and seek a new prior and find new statistics. The main 

conclusion is that the density of the haze is positively 

correlated with the difference between the brightness and the 

saturation. We illustrate this in Figure 2. Since the haze 

density increases along with the change of scene depth in 

general, we can make an assumption that the depth of the 

scene is positively correlated with the density of the haze and 

we have: 

)()()()( xsxvxcxd                      (4) 

Where d is the scene depth, c is the haze density, v is the 

brightness of the scene and s is the saturation. We regard this 

statistics as color attenuation prior. 
 
Figure 2 shows how brightness and saturation varies within 

hazy image. In haze-free patch of hazy image, the difference 

between brightness and saturation is almost equal to 1. While 

in moderate hazy region, this difference increases and in high 

dense region, the difference is even higher. It seems like 

brightness, saturation and their difference vary regularly in a 

hazy image according to this observation. Although we have 

known that there must be link between d, v, and s, Equation 
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(4) is just an intuitional result and cannot ne an accurate 

expression. 

 

 
Figure 2: Relation between concentration of haze and 

difference between brightness and saturation. 

 

3.3 Scene depth restoration using Linear Model  

 

As we discovered that the difference between the brightness 

and saturation can approximately represent the concentration 

of haze, we assume that the relationship between d, v, and s is 

linear. Based on this assumption, we create a linear model as 

follows: 

)()()( 210 xsxvxd                  (5) 

Where d is depth of scene, v is the brightness, s is the 

saturation and (θ0, θ1, θ2) are linear coefficients. Learning 

linear coefficients is tedious work, for that training data is 

necessary. A training sample consists of a hazy image and its 

corresponding ground truth depth map. We use gradient 

descendent algorithm for this purpose. The values obtained 

are θ0=0.12179, θ1=0.959710 and θ2=-0.780245. Once the 

values of coefficients are determined, they can be used for 

any single hazy image.  

 

After developing relation between scene depth d, the 

brightness v, and the saturation s and estimating linear 

coefficients, we can recover the scene depth of the given 

input hazy image according to Equation (5). Here we refine 

initial depth map with guided filter [8] to remove blocking 

artifacts. In Figure 3, we show refined depth maps d and the 

transmission maps t can be well recovered by CAP method. 

With the estimated depth map, the task of dehazing is no 

longer difficult. 

 

 
Figure 3: Results of recovering depth map and transmission 

map. 

3.4 Estimation of the atmospheric light 

 

As explained in atmospheric scattering model, the 

atmospheric light A value is taken from those pixels of hazy 

image I that has large depth values that is far away from 

observer. We pick top 0.1% brightest pixels from the depth 

map and select pixels with highest intensity in the 

corresponding hazy image I as A. Figure 4 shows position of 

atmospheric light. 

 
Figure 4: Position of Atmospheric Light. 

 

3.5 Scene radiance recovery 

 

At this stage we have depth map d, transmission map t which 

is estimated using Equation (2) of atmospheric scattering 

model and atmospheric light A. So the scene radiance J can 

be recovered easily using Equation (1) of atmospheric 

scattering model. For convenience, we rewrite Equation (1) 

as follows 

 A
e

AxI
A

xt

AxI
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Where, the scattering coefficient ß determine the intensity of 

dehazing indirectly. Its value is taken as 1. For avoiding 

producing too much noise, we restrict the value of the 

transmission t(x) between 0.1 and 0.9. So the final function 

used for restoring J is given below and Figure 5 shows the 

dehazed image. 
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 (7) 

 

 
Figure 5: Scene radiance recovery. 

 

The CAP scheme has satisfactory dehazing results. However, 

the task of restoring depth map is time consuming and as the 

image resolution increases, the time dehazed also increases. 

So we undertake another dehazing method named Pixel 

Minimum Channel (PMC). 
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3.6 Training Data Collection 

 

In order to check effectiveness of the method, we not only 

dehazed naturally hazy images but also synthetic hazy 

images. Natural hazy images are taken from Google and for 

synthetic hazy image Middlebury stereo dataset [9]-[13] is 

used. Figure 6 shows the process of generating synthetic hazy 

images. 

 

 
Figure 6: Process of generating synthetic hazy image using 

haze-free image. 

 

Firstly, for each haze-free image, we generate a random 

depth map with the same size. The values of the pixels within 

the synthetic depth map are drawn from the standard uniform 

distribution on the open interval (0, 1). Secondly, we 

generate the random atmospheric light A (k, k, k) where the 

value of k is between 0.85 and 1.0. Finally, we generate the 

hazy image I with the random depth map d and the random 

atmospheric light A according to Equation (1) and Equation 

(2). 

 

4. Pixel Minimum Channel  
 

The PMC scheme attempts to relieve the problem of high 

computational cost and to handle high resolution images. 

Pixel minimum channel (PMC) uses the model in Equation 

(1) for single image dehazing. The model parameters A and 

t(x) is estimated through the PMC.  

 

4.1 The PMC dehazing scheme 

  

In the PMC scheme, the atmospheric light A and initial 

transmission map can be estimated directly by the PMC 

which comes from the 1x1 minimum filtering and then we 

use the guided image filter [8] to refine the initial 

transmission map. Given a hazy image I in RGB color space, 

the implementation steps of the proposed PMC scheme are 

described in the following steps: 

 

Step 1.Calculate the pixel minimum channel as 

)]([)( min
},,{

yIxI c

bgrc
pmc



                      (8) 

Step 2.Estimate atmospheric light A by  as 

)]([max xIA pmc
x

                          (9) 

Where, 0 < ≤ 1 is a scaling factor. Here  is 

taken. 

Step 3.Calculate the standard deviation of  

Step 4.Calculate the scaling factor B  

 )75.0),1(5.1min( B                (10) 

Step 5.Estimate the initial transmission map as  

pmcIBxt  1)(                           (11) 

Step 6.Apply the guided image filter to refine the initial 

transmission map t(x). 

Step 7.Recover the scene radiance as  

A
txt

AxI
xJ 




]),(max[

)(
)(

0

                            (12) 

Where,  is a user-defined lower bound of t(x). Here =0.1 

is taken. 

 

4.2 Estimation of Atmospheric Light and Transmission 

Map through PMC 

 

We first obtained pixel minimum channel Ipmc by using 1x1 

minimum filter on the original image. The minimum filter 

replaces the value of pixel by the minimum intensity level of 

the neighborhood of that pixel. Since the brightness of origin 

image is perfectly related to its PMC, we directly estimate the 

atmospheric light A through the maximum value of PMC 

with a scaling factor (Equation (9)). By refining the initial 

transmission map t(x) (Equation (11)) with guided filter [8], 

we get the final transmission map. Figure 7 shows PMC, 

transmission map and dehazed result using Equation (12). 

 

 
Figure 7: Dehazing results of PMC method. 

 

5. Experimental Results 
 

In this section, we provide comparison between dehazing 

results of CAP and PMC method. To check effectiveness of 

both the methods we use qualitative measures as well. Figure 

8 and 9 shows dehazing results on naturally and synthetic 

hazy images respectively. 

 

 
Figure 8: Dehazing results on naturally hazy image Girls. 
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Figure 9: Dehazing results on synthetic hazy image Dolls. 

 

Now we undertake qualitative measures to compare both the 

methods. We use Mean Square Error (MSE) and Structural 

Similarity (SSIM) [14] for comparing dehazing results on 

synthetic hazy image Dolls. MSE and SSIM is calculated 

between original image and dehazed result. Lower value of 

MSE means results are acceptable and higher values means 

unsatisfactory result. High value of SSIM means high 

similarity and lower SSIM value means opposite. Table1 and 

2 shows MSE and SSIM between CAP and PMC 

respectively. 

 

Table 1: MSE of image Dolls 

Image CAP PMC 

Dolls 0.6565 0.5665 

 

Table 2: SSIM of image Dolls 

Image CAP PMC 

Dolls 0.96 0.92 

 

The time complexity for CAP is O (m x n x r) and for PMC 

is O (m x n) for m x n image size and radius r. The time 

consumption for different image resolution is shown in table 

3. 

 

Table 3: Time consumption for different image resolutions 

Image Size CAP PMC 

441x450 2.5secs 1.5secs 

600x450 2.9secs 1.8secs 

 

6. Conclusion 
 

The dehazing results of CAP and PMC are satisfactory. But 

the time taken for dehazing is less for PMC than for CAP. 

This is because CAP method first calculates depth map and 

then estimates transmission map and atmospheric light 

whereas PMC directly estimates atmospheric light and 

transmission map from pixel minimum channel without 

calculating depth map of hazy image. Also the value of 

scattering Coefficient ß cannot be regarded as constant in the 

atmospheric scattering model. So the dehazing algorithms 

which are based on the atmospheric scattering model like 

CAP are prone to underestimating the transmission in some 

cases. So more flexible model is desired.  
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