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Abstract: We have developed a computer programming application for Medical diagnosis for detection of Alzheimer’s disease using 

analysis of oxidative proteins. Alzheimer’s disease (AD) is a progressive, irreversible, and most common cause of dementia. Oxidative 

stress plays a significant role in the pathogenesis of Alzheimer’s disease (AD), which is devastating and occurs in the elderly. The brain 

is more vulnerable than other organs to oxidative stress, and most of the components of neurons, such as lipids, proteins, and nucleic 

acids can be oxidized in AD due to mitochondrial dysfunction, increased metal levels, inflammation, and β-amyloid (Aβ) peptides. 

Oxidative stress participates in the development of AD by promoting Aβ deposition, tau hyperphosphorylation, and the subsequent loss 

of synapses and neurons. The relationship between oxidative stress and AD suggests that oxidative stress is an essential part of the 

pathological process, and antioxidants may be useful for AD treatment. It is common to use computational techniques, especially 

protein-protein interaction analysis, to mine the association between oxidative protein interaction networks and discover some 

regulation elements that are essential to the expression of proteins. The results of the study will be helpful in drug discovery and testing 

of particular disease requires preclinical and clinical trials. 
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1. Introduction 
 

Alzheimer’s disease (AD) is a progressive, incurable neuro-

degenerative disorder. Multiple processes have been 

implicated in AD, notably including abnormal β-amyloid 

(Aβ) production [1–7], tau hyperphosphorylation and 

neurofibrillary tangles (NFTs) (8, 9), synaptic pathology (10–

12), oxidative stress [13–15], inflammation [5, 16–19], 

protein processing or misfolding [20, 21], calcium 

dyshomeostasis [15, 20–26], aberrant reentry of neurons into 

the cell cycle [27, 28], cholesterol synthesis [29, 30], and 

effects of hormones [23, 31] or growth factors [17, 32]. 

Nevertheless, the pathogenic factors that initiate these 

processes remain elusive. 

 

As of year 2017, there were an estimated 50+ million people 

with dementia worldwide. This number will increase to an 

estimated 75.6 million in 2030, and 135.5 million in 2050. 

Much of the increase will be in developing countries. 

Already, 62% of people with dementia live in developing 

countries, but by 2050 this will rise to 71%. The fastest 

growth in the elderly population is taking place in China, 

India, and their South Asian and Western Pacific neighbors 

(http://www.alz.co.uk/research/statistics). 

 

The results of several surveys have suggested that high levels 

of oxidative stress and free radicals, or decreases in the 

antioxidant and/or free-radical-scavenging capacity play a 

role in the development of neurodegenerative diseases [33]. 

In AD, oxidative stress is manifested in, for example, 

increased protein oxidation, lipid peroxidation, and formation 

of reactive oxygen species (ROS)[34]. In the presence of 

oxidative stress, proteins may modify their structure and 

function by cross-linking with other proteins, or through 

nitration or carbonylation, which generally leads to loss of 

function. Moreover, it is possible that the sporadic form of 

AD is initiated by mitochondrial dysfunction [35, 36].In 

addition, Vitamin E has been shown to protect against 

neurodegeneration by lowering oxidative stress [37].    

 

The present study aims at exploring the homology analysis 

and association between protein-protein interaction network 

analysis of oxidative stress related proteins, i.e., SOD1, 

NOS2, IL6, PON1 and COX2 to elucidate the molecular 

basis of Alzheimer ’s disease. 

 

2. Data Sources 
 

Disease genes are most often identified using: (1) genome-

wide association or linkage analysis studies,  (2) similarity or 

linkage to and co-regulation/co-expression/co-localization 

with known disease genes, and (3) participation in known 

disease-associated pathways or compartments. In this section, 

we discuss the AD genes/proteins data set and sources used 

for the construction of Phylogenetic tree and the Protein-

Protein interaction. For this study purpose, we selected 13 

oxidative genes/proteins that cause AD through (listed on the 

website http://www.genecards.org/ and the HEFalMp online 

tool – http://hefalmp.princeton.edu/).  Figure 1 shows genes 

that are significantly associated with Alzheimer’s disease in 

terms of oxidative stress. They are annotated from HUGO 

Gene Nomenclature Committee (HGNC), EntrezGene, 

Ensembl, GeneCards RNA genes and Human Chromosome 

21 Database (Crow21) databases. 
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Figure 1: Genes that are most significantly connected to 

Alzheimer disease genes using the HEFalMp network and 

OMIM disease gene annotations 

(http://hefalmp.princeton.edu/disease/all_genes/55) 

 

 
Figure 2: The genes that are most significantly connected to 

Alzheimer disease genes using the HEFalMp network and 

OMIMdisease gene annotations 

(http://hefalmp.princeton.edu/disease/all_genes/55). The gold 

bars to the left of APP and APOE indicate that both genes 

were annotated Alzheimer disease according to OMIM. 

doi:10.1371/journal.pcbi.1002816.g006 

 

 Column Height – 271.4 mm (10.69") 
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3. Methodology and Algorithm 
 

The In the present study, Protein-Protein Interaction analysis 

of oxidative stress proteins of Alzheimer’s disease was 

implemented in a modular manner. It was divided into four 

modules. The procedure is as follows.  

Step 1: Collect the Genes/Proteins responsible for AD from 

online Biological Databases 

Step 2: Construct the Phylogenetic tree for AD proteins 

Step 3: Construct the Protein-Protein Interaction network for 

T2D proteins  

Step 4: Identify the association between the proteins. 

  

4. Results and Discussions 
 

Multiple sequence alignment was performed to the selected 

13 AD causing proteins by submitting corresponding proteins 

in FASTA format to phylogeny tool, i.e., 

http://www.phylogeny.fr. The result of alignment is obtained 

in the form of a phylogram. Figure 3 shows the phylogram 

tree construction of AD proteins. The phylogram displays the 

sequential relationship of proteins along with the scores that 

represent the distance between protein sequences.  

  

 
Figure 3: Phylogram tree for AD proteins. 

 

5. Conclusions and Further Recommendations 
 

Oxidative stress plays a crucial role in the pathogenesis of 

Alzheimer’s disease. In the present work, we aimed to 

explore the evolution and interaction analysis to arrive at the 

relationship and association between oxidative stresses 

related AD proteins. We applied the data mining, text 

mining, evolution analysis and protein-protein interaction 

network analysis to identify the proteins that are most likely 

to cause AD. In the future, studies of this nature may pay way 

for in-silico protein-protein interaction experiments that can 

be extended to develop new therapeutic interventions for AD.  

The results of the study will be helpful in drug discovery and 

testing of particular disease requires preclinical and clinical 

trials. 
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