Removal of Pb(II) ions by Particulate Nanocomposite Prepared via Oxidation-Precipitation and Modified Co-Precipitation Methods

Samara J. Mohammad¹, Dr. Fadhil Abd Rasin²

¹Physics Department /College of Science for women/ University of Baghdad
²Physics Department /College of Science/ University of Baghdad

Abstract: Fe:Mn binary oxides was synthesized using a co-precipitation method. A nanoparticles composed of Mn(II)-bearing Fe₂O₄ (Fe:Mn) of ratio that synthesized, giving high specific surface area of 314.8 m²/g at 1:1 ratio. X-Ray Diffraction (XRD) study indicated the formation of nanostructure iron oxide with cubic phase consisting of crystalline structure in 1:0, 7:1 and poorly crystalline structure in 1:3, 1:5, 1:1. The influences of Fe:Mn molar ratio. The sorption maximum was observed at a Fe:Mn ratio of 1:1 adsorption capacity was much higher with HA humic acid at the same ratio. adsorption isotherms studied using both Freundlich and Langmuir models it was more suitable for describe adsorption behavior.

Keywords: binary oxide asnanostructured, oxidation and co-precipitation, adsorption isotherms

1. Introduction

The use of alternative low-cost materials as potential sorbents for the removal of heavy metal has been emphasized. Metal oxides have seen increased applications [1]. Recently their uses have been further enhanced with the development of nanosized metal oxides to provide a large surface area and plentiful adsorptive sites [2]. Heavy metals compounds are common pollutants in surface water and ground water. For example, lead ions Pb(II) may cause stomachache, dysphoria, even cancer in human because of their toxicity, it has been released from a wide range of industries [3]. For adsorption of heavy metals from aqueous systems, the most widely studied Nano metal oxide NMOs include iron oxides, manganese oxides, aluminum oxides, and titanium oxides. They are present in different forms, such as particles, tubes and others. The size and shape of NMOs are both important factors to affect their adsorption performance. Efficient synthetic methods to obtain shape-controlled, highly stable, and monodisperse metal oxide nanomaterial. Iron (hydro)oxides are effective for Pb ions adsorption [4]. Manganese oxides are also important scavengers of different anions. These two materials are both low cost and environmentally friendly. It can be anticipated that a Fe: Mn binary oxide originating from the combination of iron oxide and manganese dioxide will have the potential for Pb(II) ions removal. However, up to now, a series of Fe: Mn binary oxides with different Fe: Mn molar ratios (from 1:0:7:1) were recently synthesized and were tested for Pb removal, a novel adsorbent was prepared by co-precipitation method. NMOs are most commonly environmental friendly and low cost materials. This study investigated the influences of Fe: Mn molar ratio and humic acid content on Pb(II) ions adsorption processes.

2. Preparation of Fe oxide and Fe: Mn binary oxides

All chemicals are analytical grade and were used without further purification. Reaction vessels (glass) were cleaned with 1% HNO₃ and rinsed several times with deionized water before use. All series of Fe:Mn binary oxides was synthesized at different molar ratio (1:0, 1:1, 3:1, 5:1, 7:1 of Fe:Mn). The Fe:Mn binary oxide with a molar ratio of 1:3 was prepared according to a method slightly modified from that proposed by G.S. Zhang et al [2]. 0.015 mol Potassium permanganate (KMnO₄) (panreacspain) and 0.045 mol iron(II) sulfate hexahydrate (FeSO₄.7H₂O) were dissolved in 200 ml of deionized water. Under vigorous magnetic stirring, the FeSO₄ solution was added into the KMnO₄ solution simultaneously with 4 M NaOH solution to keep the solution pH in a range between 7-8. After addition, the formed suspension was continuously stirred for 1 h, aged at room temperature for 4 h, and then washed repeatedly with deionized water until no sulfate could be detected. The suspension was then filtrated and dried at 65 °C for 24 h. The dry material was crushed and stored in a desiccator for later use.

2.1 Batch adsorption

Adsorption isotherms of Lead on 1:0, 7:1, 5:1, 3:1 and 1:1 Fe: Mn binary oxides were obtained using batch experiments at pH 6.0. Initial concentration varied from 50 mg/L to 500 mg/L. In each test, 25 mg of the adsorbent sample was loaded in the 100ml glass vessel, and 50 ml of Lead solution containing differing amounts of Fe:Mn was then added to the vessel. In order to keep the pH level around 5-6, 0.1 M of NaOH or HNO₃ was added. The vessels were shaken on an orbit shaker at 180 rpm for 5 h at 25 ± 1 °C. After the reaction period, all samples were filtered by a 0.45 µm membrane filter. The Pb (II) contents were determined.
by AAS Atomic Absorption Spectroscopy device. All batch adsorption experiments were performed and the results were reported. The influence of humic acid on the sorption of Lead was investigated by (1:1) Fe: Mn molar ratio, 5 mg/L of humic acid modified adsorbent and add to a Lead solution when vessels were shaking.

3. Results and Discussion

Fig(1) illustrated the X-ray diffraction patterns of prepared Fe:Mn binary oxides X-Ray Diffraction patterns of Mn−Fe particles were taken on diffractometer with Cu Kα radiation 40 kV and 30 mA. The pattern of the oxide with a Fe: Mn molar ratio of 1:0, namely the pure Fe oxide, shows the ordered line pure Fe oxide pattern with two high broad peaks at 35.4and62.52 according to d spacing of 0.253 and 0.148 nm, respectively was magnetite[5,6]. The patterns of Fe:Mn binary oxides with Fe: Mn molar ratios of 7:1, 5:1, 3:1, and 1:1 were 7:1 identical to that of the 1:0oxide. Specific surface area (SSA), were determined by nitrogen adsorption−desorption isotherm using the BET method, surface area measurements of the Fe:Mn binary oxides are 109.5, 314.8, 311.9, 257.2, and 112.1 of 1:0, 1:1, 3:1, 5:1, 7:1(m²/g) respectively. That all the Fe:Mn binary oxides contain a high surface area than pure Fe oxide[7] and 1:1 molar ratio give a high surface area.

3.1. Adsorption Capacities and Kinetics

3.1.1. Adsorption data analysis.

Lead adsorption capacities of Fe:Mn binary oxides prepared at different Fe:Mn molar ratios were evaluated using adsorption isotherms at pH 5.0 ± 1.0. Fig. 2a shows the change of adsorbed Lead as a function of contact time. For initial concentration of 100 mg/l, it is obvious that the adsorption process could be divided into two steps, a quick step and a slow. In the first step, the adsorption rate was fast, and appropriate adsorption capacity was achieved within the beginning 3h in 1:1. This may be due to the fine particles of Fe:Mn binary oxide powders.

The smaller particle size was favorable for the diffusion of solution onto the active sites of the solid surface. 1:1 had a much higher Pb(II) adsorption capacity than other molar ratio of Fe:Mn (Figure 2b). Furthermore, it was very effective in removing Pb(II) at equilibrium concentration. (Adsorption %) and adsorption capacity for adsorbent qe (mg. g⁻¹), was determined by analyzing Lead before and after the treatment and calculated by using the eq.1. and eq.2

\[
\text{% Adsorption} = \frac{C_o - C_e}{C_o} \times 100 \quad \text{eq.1}
\]

\[
q_e = \frac{\text{Adsorption} \times C_o \times V}{100 \times W} \quad \text{eq.2}
\]

where \(C_o\) and \(C_e\) are initial and equilibrium Pb concentration in the solution (mg L⁻¹), m is the adsorbent dosage (mg), and \(V\) is the volume of the solution (mL).

Figure 1: a) The X-ray diffraction of pure Fe oxide

Figure 2: a) Lead adsorption capacity of Fe:Mn binary oxide with the change of contact time at different molar ratio, b) removal percentage of different molar ratio,
adsorbent dose = 0.5g/L, pH 5.6, speed = 180 rpm, T = 25 ± 1°C.

The adsorption isotherms of different initial Fe:Mn binary oxides show in figure 3. The data in Figure 4 were fitted into both the Langmuir model (eq3) and Freundlich model (eq4), as follows:

$$\frac{C_e}{q_e} = \frac{1}{a_m b} + \frac{1}{a_m} C_e \quad \ldots \ldots \ldots 3$$

$$\log(q_e) = \frac{1}{n} \log(C_e) + \log(K_f) \quad \ldots \ldots \ldots 4$$

where q_e (mg/g) is the amount of Pb(II) adsorbed on the adsorbent, C_e (mg/L) is the equilibrium Pb(II) concentration in solution phase, K_f (L/mg) is the equilibrium adsorption constant related to the affinity of binding sites, q_{max} is the maximum amount of the Pb(II) per unit weight of adsorbent for complete monolayer coverage, K_F is roughly an indicator of the adsorption capacity, and n is the heterogeneity factor which has a lower value for more heterogeneous surfaces.

Figure 3: Absorption isotherms of Pb(II) on different Fe:Mn molar ratio

As shown in fig 4 and Table 1, the adsorption data of the Fe:Mn(1:1)+HA were better fitted into Freundlich model than Fe:Mn(1:1). This is possibly due to the heterogeneous nature of the adsorbent.

Figure 4: Langmuir and Freundlich adsorption isotherm for Pb(II) on Fe:Mn(1:1) and Fe:Mn(1:1)+HA nanocomposite adsorbent dose = 0.5g/L, pH 5±6, speed = 180 rpm, T = 25 ± 1°C, contact time t= 4h.

Table 1: Kinetic Parameters for Pb Adsorption on Fe:Mn(1:1) and Fe:Mn(1:1)+HA nanocomposite

<table>
<thead>
<tr>
<th>adsorbent</th>
<th>Langmuir model</th>
<th>Freundlich model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R^2</td>
<td>q (mg/g)</td>
</tr>
<tr>
<td>Fe:Mn(1:1)</td>
<td>0.95</td>
<td>909</td>
</tr>
<tr>
<td>Fe:Mn(1:1)+HA nanocomposite</td>
<td>0.98</td>
<td>833</td>
</tr>
</tbody>
</table>

In contrast, the Langmuir model better described the adsorption behavior of Pb(II) by Fe:Mn (1:1) than Freundlich model. This agrees with the assumption in the Langmuir model that adsorption occurs on a homogeneous surface. The maximal adsorption capacity calculated from the Langmuir model was 909 mg/g for Fe:Mn (1:1) and 833 mg/g for nanocomposite. This suggests that the humic acid can give the nanoparticles with a higher adsorption capacity for Pb(II) due to its excellent surface characteristics. As shown in Table 2, the magnetic Mn–Fe core has a higher Pb(II) adsorption capacity than magnetic Fe$_3$O$_4$, MnFe$_2$O$_4$ and iron oxide nanoparticle as different adsorbents.

Table 2: Maximum Pb(II) Adsorption Capacities of different Adsorbents

<table>
<thead>
<tr>
<th>adsorbent</th>
<th>Pb(II) concentration range (mg/L)</th>
<th>Pb(II) adsorption capacity (mg/g)</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe$_3$O$_4$</td>
<td>5–350</td>
<td>69.8 (pH 5.0)</td>
<td>8</td>
</tr>
<tr>
<td>iron oxide nanoparticles</td>
<td>10–800</td>
<td>35.8 (pH 5.5)</td>
<td>9</td>
</tr>
<tr>
<td>MnFe$_2$O$_4$</td>
<td>10–250</td>
<td>69.1 (pH 6.0)</td>
<td>10</td>
</tr>
<tr>
<td>Fe$_3$O$_4$/MnO$_2$</td>
<td>5–350</td>
<td>142.0 (pH 5.0)</td>
<td>11</td>
</tr>
<tr>
<td>Fe:Mn(1:1)</td>
<td>50–500</td>
<td>909 (pH 6.0)</td>
<td>Present study</td>
</tr>
<tr>
<td>Fe:Mn(1:1)+HA nanocomposite</td>
<td>50–500</td>
<td>833 (pH 6.0)</td>
<td>Present study</td>
</tr>
</tbody>
</table>

The excellent ability of MnO$_2$ for adsorbing Pb(II) [12] leads to maximal sorption capacity in Fe:Mn (1:1). Because high content or equal of MnO$_2$ compare Fe oxide in this ratio for Pb(II) removal that mean when iron oxide little content in ratio.

Volume 6 Issue 5, May 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: ART20173470
DOI: 10.21275/ART20173470

1080
4. Consolation

A novel Fe:Mn binary oxides as nanoparticles with different Fe: Mn molar ratios were successfully fabricated by oxidation and co-precipitation with high surface area to efficient removal of Pb(II) from water. Batch adsorption technique, The molar ratio of 1:1 exhibited the highest absorption capacity for Pb(II), kinetics and isotherm of Pb adsorption were studied at(50-500)mg/l initial solution pH range from 5-6 on Fe:Mn (1:1) and Fe:Mn (1:1)+HA nanocomposite.

References

[6] Maria Cristina Mascolo 1,2,* , Yongbing Pei 1,3 and Terry A. Ring Materials(2013), 6, 5549-5567.

