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Abstract: In this paper we consider a diffusion perturbed classical compound Poisson risk model in the presence of a constant dividend 

barrier. An integro-differential equation with certain boundary conditions of the discounted dividend payments prior to ruin is derived 

and solved. We also consider few particular examples to offer optimal dividend barrier. 
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1. Introduction 
 

The classical risk model perturbed by a diffusion was first 

introduced by Gerber (1970) and has been further studied by 

many authors during the last few years; e.g., Dufresne and 

Gerber (1991), Gerber and Landry (1998), Wang and Wu 

(2000), Wang (2001), Tsai (2001, 2003), Tsai and Willmot 

(2002a, b), Zhang and Wang (2003), Chiu and Yin (2003), 

and the references therein. 

 

The barrier strategy was initially proposed by De Finetti 

(1957) for a binomial model. More general barrier strategies 

for a compound Poisson risk process have been studied in a 

number of papers and books. These references include 

Buhlmann (1970), Segerdahl (1970), Gerber (1973, 1979, 

1981), Gerber (1979), Paulsen and Gjessing (1997), 

Albrecher and Kainhofer (2002), Højgaard (2002), Lin et al. 

(2003), Dickson and Waters (2004), Li and Garrido (2004), 

and Albrecheret al. (2005).The main focus is on optimal 

dividend payouts and problems associated with time of ruin, 

under various barrier strategies and other economic 

conditions. For the risk model modeled by a Brownian 

motion, Gerber and Shiu (2004) give some very explicit 

calculations on the moments and distribution of the 

discounted dividends paid until ruin. 

 
2. The model  

 

Consider the following classical surplus process perturbed 

by a diffusion 

)()(
1

tBUptxtX
tN

i

i  


, 0t , (2.1) 

 (1) 0)0(  Xx  is the initial surplus. 

 (2)  0; tNt is a Poisson process with parameter  , 

denoting the total number of claims from an insurance 

portfolio. 

 (3)  iU independentof  0; tNt , are positive i.i.d. 

random variables withcommon distribution function, 

)()(1)( xUPxPxP i 
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, density function )(xp , 

moments 
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0
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j , for ,2,1,0j , and the 

Laplace transform 
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 (4)  0; tBt is a standard Wiener process that is 

independent of the aggregate claims process 



tN

i

iUtS
1

:)(  

and 0 is the dispersion parameter. 

 (5) )1(1  p is the premium rate per unit time, 

0 is the relative security loading factor. 

 In this paper, a barrier strategy is considered by assuming 

that there is a horizontal barrier of level xb  such that 

when the surplus reaches level b , dividends are paid 

continuously such that the surplus stays at level b until it 

becomes less than b .Let )(tXb
be the modified surplus 

process with initial surplus xXb )0( under the above 

barrier strategy. We define the ruin time of the company as

 0)(:inf  tXt b . 

 Let 0q be the force of interest for valuation and define 






0
)( t

qt

b dLexD , bx 0  
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to be the present value of all dividends until time of ruin , 

where
tL is 

the aggregate dividends paid by time t .We use the symbol 

)(xVb
, bx 0 , for the expectation of )(xDb

: 

 )()( xDExV bb  , bx 0 . 

3. 
An Integro-differential Equations of )(xVb  

In this section, we will show that )(xVb
satisfies an 

integro-differential equation with certain boundary 

conditions as follows.
 

Lemma 1 If the density function )(xp  is continuously 

differentiable in ),0(  , then )(xVb
 is twice continuously 

differentiable in x  in the interval ),0( b . 

Theorem 2 Suppose )(xp is continuously differentiable on

),0(  , then )(xVb
satisfies the following homogenous 

integro-differential equation for bx 0 : 

0)()()()()()(
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 (3.1)

with the boundary conditions 

0)0( bV                        (3.2) 

1)(' bVb                        (3.3) 

Proof: Consider the infinitesimal interval from 0 to

dt .Conditioning, one obtains that 
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Since 

)(1 dtqdte qdt 
 

)(1)( 1 dtdtdtWP    

)()( 1 dtdtdtWP    

Taylor’s expansion (Lemma 1 shows that )(xVb  is twice 

continuously differentiable in x )gives 
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then substituting these formulas into (3.4), subtracting

)(xVb from both sides, Interpreting dt  and )(dt terms, 

canceling out common factors, and letting 0dt , we 

prove that the integro-differential equation (3.1) holds. 

 

The boundary condition (3.2) is obvious: If 0)0( X , ruin 

is immediate and no dividends are paid. 

To prove the boundary condition (3.3), let 0 and )(, xVb 

be the expected discounted dividends paid until ruin in the 

following risk model in the presence of the a dividend 

barrierb ,  

  ,

1

)()( t
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,  

where ,tN is a Poisson process with parameter 0 , and

p is such that    1pp .It is well known 

that  ,

1

t

N

i

i NU
t




is also a compound 
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Poisson process. Gerber and Shiu (1998, Eq. (7.4)) shows 

that 1)('

, bVb  .Now 

we choose  ,  , and p such that tNVar t

2

1, ][    

and 0][ 1,  tNtpE  .These two conditions yield 

2

2




   and 






2

p .It is easy to prove that, when

 0 ,  

2/)( 22
1, ][ tzNtpz

eeE t  


.This shows that the process

}0;{ 1,  tNtp t converges weakly to }0);({ ttB , 

therefore, the surplus process }0);({ ttX converges 

weakly to the surplus process }0);({ ttX .Then we 

conclude that )()(lim ,
0

xVxV bb 





, and 

1)()(lim ''

,
0
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

bVbV bb 


. □ 

 

4. Example  

 

4.1 Exponentially Distributed Claim Sizes 

Now consider the case when claim sizes are exponentially 

distributed with parameter  , that is
yeyp  )(  for

0y and 0 .The equation (3.1) change into: 
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So (4.1.1) change into 

0)()()()()(
2 0

'''
2

 


x
yx

bbb dyeyVexVqxpVxV 


 (4.1.2) 

Furthermore we differentiate (4.1.2) with respect to x , we get 
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So (4.1.2)change into: 
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Then we can get 
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which is a third-order differential equation with constant 

coefficients. 

It follows that )(xVb
 takes the form 

xrxrxr

b eCeCeCxV 321

321)(  , 0x  

where 1r , 2r and 3r are the three roots of the equation 
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(4.1.3) 

1C , 2C and 3C are fully determined by the following 

boundary conditions: 
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or equivalently 
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With some algebraic calculations, we can show that the 

value function of a firm that chooses a target cash reserves 

level b is given by 
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We check straight forward that )(xVb is a solution of 

(4.1.1).We have thus found the firm value when it adopts a 

barrier strategy. Maximizing )(xVb with respect to b , it 

turns out that the optimal barrier 
b  satisfies 0)('' bf ,  
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Now, let 10 , 2 , 15p , 1.0q , 1 , 

The roots of equation (4.1.3) are 

01.01 r , 3067.12 r , 7033.303 r , Then 

6262.6b . 

 

 

4.2 Mixed exponentially distributed claim sizes 

 

Let us consider the case when claim sizes are mixed 

exponentially distributed, that is 

yy eeyp 2

2

1
)(   .The equation (3.1)change into: 
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Equivalent to 
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So (4.2.2) change into 
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Furthermore we differentiate (4.2.3) with respect to x , we get 
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Furthermore we differentiate (4.2.4) with respect to x , we get 
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While 0 , (4.2.5) change into: 
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which is a third-order differential equation with constant coefficients. 

It follows that )(xVb  takes the form 

xnxnxn

b eAeAeAxV 321

321)(  , 0x  

where 1n , 2n and 3n are the three roots of the equation 
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1A , 2A and 3A are fully determined by the following boundary conditions: 





























0

1

0

0)0(

1)(

0)0(

332211

332211

321

'

' 321

nAnAnA

enAenAenA

AAA

V

bV

V

bnbnbn

b

b

b

 

 

With some algebraic calculations, we can show that the 

value function of a firm that chooses a target cash reserves 

level b is given by 
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We check straight forward that )(xVb is a solution of 

(4.2.1).We have thus found the firm value when it adopts a 

barrier strategy. Maximizing )(xVb with respect to b , it 

turns out that the optimal barrier 
b  satisfies 0)('' bg ,  
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Now, let 1 , 2p , 1.0q , 0 , The roots of 

equation (4.2.6) are  

0772.01 n , 7145.02 n , 8128.13 n .Then 

9160.0* b . 
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