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Abstract: The purpose of this paper is to apply the two monotone process repair model to a two-component cold standby repairable 

system with one repairman. Now it may be assumed that the component 2 after repair is ‘‘as good as new’’ while component 1 follows 

the geometric process repair, but component 1 has priority in use and repair, and each component after repair is not ‘‘as good as new’’. 

Under these assumptions, by using two monotone processes, we studied a replacement policy N based on the number of repairs of 

component 1. The problem is to determine an optimal replacement policy N* such that the long-run expected reward per unit time is 

minimized. 
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1. Introduction 
 

In order to improve the system reliability or raise the 

availability, a two-component redundant system is often 

used. In the earlier study some important reliability indices 

of the system have been derived by using Markov process 

theory or Markov renewal process theory, under the 

conditions that the working time and the repair time of the 

components in the system both have exponential or general 

distributions. Later, a priority rule for repair or use of a 

component has been introduced. Nakagawa and Osaki 

[1975] obtained some interesting reliability indices of the 

system using Markov renewal theory. It assumed that both 

the working time and the repair time of the priority 

component have a general distribution while both the 

working time and the repair time of the non-priority 

component have an exponential distribution. In these 

studies, they assumed that a system (or a component) after 

repair is „„as good as new‟‟. This is a perfect repair model. 

However, this assumption is not always true. In practice, 

most repairable systems are deteriorative because of the 

ageing effect and the accumulative wear. Barlow and Hunter 

[1959] first proposed a minimal repair model under which 

the minimal repair does not change the age of the system. 

Brown and Proschan [1983] investigated an imperfect repair 

model in which the repair is perfect repair with probability p 

or minimal with probability 1-p. For a deteriorating 

repairable system, it is quite reasonable to assume that the 

successive working times of the system after repair will 

become shorter and shorter while the consecutive repair 

times of the system after failure will become longer and 

longer. Ultimately, it cannot work any longer, neither can it 

be repaired.  

 

For such a stochastic phenomenon, Lam [1988a,b] first 

introduced a geometric process repair model to approach it. 

Under this model, he studied two kinds of replacement 

policy for a one-component repairable system with one 

repairman (called a simple repairable system), one based on 

the working age T of the system and the other based on the 

failure number N of the system. The explicit expressions of 

the long-run average cost per unit time under these two 

kinds of policy are respectively calculated. Finkelstein 

[1993] presented a general repair model based on a scale 

transformation after each repair to generalize Lam‟s work. 

Zhang [1994] generalized Lam‟s work by a bivariate 

replacement policy (T,N) under which the system is replaced 

at the working age T or at the time of the Nth failure, 

whichever occurs first. Many replacement policies have 

been done by  Feldman[1976] ,Stadje and Zuckerman 

[1992], Stanley [1993], Zhang et al.[2001,2002,2007], 

Zhang [1994,1999,2002,2004], Lam and Zhang 

[2003,2004], and others under the geometric process repair 

model.  

  

In practical applications, a two-component cold standby 

repairable system with one repairman and priority in use is 

often used. For example, in the operating room of a hospital, 

a patient on the operating table has to discontinue his/her 

operation as soon as the power source is cut (i.e. the power 

station failures). Usually, there is a standby power station 

(e.g. a storage battery) in the operating room. Thus, the 

power station (e.g. write as component 1) and the storage 

battery (e.g. write as component 2) form a cold standby 

repairable lighting system. Obviously, it is reasonable to 

assume that the power station has priority in use due to the 

operating cost of the power station is cheaper than the 

operating cost of the storage battery, and the storage battery 

after repair is as good as new due to its used time being 

smaller than the power station, and the repair of the storage 

battery is also convenient.  

 

The purpose of this paper is to apply the two monotone 

process repair model to a two-component cold standby 

repairable system with one repairman. Now it may be 

assumed that the component 2 after repair is „„as good as 
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new‟‟ while component 1 follows the geometric process 

repair, but component 1 has priority in use and assumed that 

each component after repair is not „„as good as new‟‟. Under 

these assumptions, by using two monotone processes, we 

studied a replacement policy N based on the number of 

repairs of component 1. The problem is to determine an 

optimal replacement policy N* such that the long-run 

expected reward per unit time is minimized. In modeling 

these deteriorating systems, the definitions according to Lam 

[1988 a] are considered. 

 

2. The Model 
 

To study problem for a two- dissimilar- component cold 

standby repairable system with use priority, the following 

assumptions are considered 

1) At the beginning, the two components are both new, and 

component1 is in a working state while component 2 is 

in a cold standby state. 

2) Both components after repair are not “as good as new” 

and follow a monotone process repair. When both 

components are good, component 1 ha use priority. The 

repair rule is “first- in- first- out”. If a component fails 

during the repair of the other,it must wait for repair and 

the system is down. 

3) The time interval between the completion of the (n-1)th 

repair and completion of nth repair of of component i 

(for i=1,2,3….,n) is called nth cycle. Note that a 

component either begins to work or enters a cold 

standby state of the next cycle when its repair is 

completed. Because component 1 has use priority, the 

repair time of component 2 may be zero in some cycles. 

4) A sequence  ,....3,2,1,)( iX i

n  and a sequence

 ,....3,2,1,)( iY i

n  are independent mutually. 

5) Let  ,....3,2,1,)( iX i

n  be the sequence of the 

working times for a decreasing alpha series process 

while  ,....3,2,1,)( iY i

n  be the sequence of repair 

times of ith component and form a geometric process. 

6) Let the distribution function of 
)(i

nX and 
)(i

nY  be 

)()( i

n

i

n GAndF
, 

 are respectively,for i=1,2. 

7) Let  
( )i

nX  and  
( )i

nY   be successive working time 

follows decreasing a  -series process, the successive 

repair times form an increasing geometric process 

respectively and both the processes are exposing to 

exponential failure law. Where i=1, 2 and n=1, 2, 3….. . 

8) Let 
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be the distribution function of  
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respectively, and n=1,2,…. where αi>0 and 0 < bi < 

1,for i=1,2 . 
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11) A component neither produces the working reward 

during the cold standby period, nor incurs cost during 

the waiting time for repair. 

12) The replacement policy N based on the number of 

failures of component 1 is used. The system is replaced 

by anew and an identical one at the time of N th failure 

of component 1, and replacement time is negligible. 

13) The repair cost rate of component 1 and 2 are Cr1 and 

Cr2   respectively. While working reward of the two 

components is same Cw. And the replacement cost of 

the system is C. 

 

3. The Long-run Average Cost Rate Under 

Policy N 
 

According to the assumption of the model two components 

appears alternatively in the system. When the failure number 

of the component 1 reaches N, component 2 is either in the 

cold standby state of the Nth cycle or in the repair state of 

the (N-1) th cycle. Normally, a reasonable replacement 

policy N should be that if component 2 is in former state, it 

works until failure in the N
th

 cycle. Thus the renewal point 

under policy is efficiently established. 

 

Let   be the first replacement time of the system, and 

)2( nn be the time between the (n-1)th replacement  and 

nth replacement of the system under policy N. Thus,

 ,....,, 321   form a renewal process, and inter arrival 

time between two consecutive replacements called a renewal 

cycle. Let C(N) be average cost rate of the system under 

policy N. According to renewal reward theorem (see Ross 

[1970]) 

cyclerenewalainlengthectedThe

cyclerenewalainincurredtectedThe
NC

exp

cosexp
)(     

(3.1) 

Because component 1 has use priority, component 1 only 

exist the working state. Therefore based on the renewal point 

under policy N we have the following length of renewal 

cycle. 
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                                            (3.2) 

Where the first , second and third term are respectively the 

length working time, the length of repair time, and the length 

of waiting for repair of component before the number of 

failures of component1 reaches N. And I is the indicator 

function such that 

 1    if event A occurs.

0   if event A does't occurs.AI   

According to the assumption of the model, and definition of 

the convolution, the probability density functions of 

)()( )1()2()1()2(

1 kkkk YXandXY  are  
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respectively, )(uk and )(vk ,namely: 

)(*)()(
)1()2(

1 ufugu kkk  
                  (3.3)

 

)(*)()( )1()2( vgvfv kkk  ,                      (3.4) 

Where * denotes the convolution. Therefore 
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By using equation (3.1) 
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According to assumptions 8 ,9 and equation (3.5), we have 
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The total working time of the system in a renewal cycle is: 
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The total repair time of the system in a renewal cycle is: 

V2+V1=V                                               (3.11) 

Where V1 and V2 denote, respectively, the repair time of the 

component1 and 2 in a renewal cycle, namely 
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Now we evaluate expectation of  „U‟  V1, and V2: 
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According to Equations (5.3.5) and assumption 8, we have: 
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Using equation (3.7) and assumption 9, we have
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Using equatios (3.16) and (3.17), Equation (3.11) becomes 
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Since, it is assumed that  .2,1,)()( iforYandX i
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all exponential, then their distribution functions are given 
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According to the assumptions of the model, definition of 

probability density function, convolution and Jacobian 

transformations , the probability density functions of 

)()( )1()2()1()2(

1 kkkk YXvandXYu   are 

respectively, )(uk and )(vk . 
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Therefore 

 

Where * denotes the convolution. Therefore 
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Using equation (3.25), equation (3.15) becomes 
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Using equations (3.23) and (3.27), equation (3.8) becomes: 
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Therefore, substituting the equations (3.16), (3.17),  (3.28), 

and (3.29) into the expression (3.1),then the average cost 

rate of the system under policy N is given by )(
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which is an expression for the long run average cost per unit 

time.

 

The next section provides Numerical results to highlight the 

theoretical results. 

 

4. Numerical Results and Conclusions 
 

For the given hypothetical values of C=3500, Cw=40, C
1

r=8, 

Cr2=40, λ1=0.01, µ1=1.5,   λ2=0.2, and µ2=0.15 the 

average cost rate is given by: 

 

Table 4.1: The long-run average cost   rate values under 

policy N 

               α1=0.75,α2=0.6,β1=0.65,β2=0.35, 

N C(N) N C(N) 

2 -17.9802 11 -23.8357 

3 -22.0263 12 -23.2149 

4 -23.9363 13 -22.5372 

5 -24.8781 14 -21.8142 

6 -25.2797 15 -21.055 

7 -25.3417 16 -20.2668 

8 -25.1732 17 -19.4553 

9 -24.8399 18 -18.6251 

10 -24.3843 19 -17.7801 

  20 -16.9235 

 

Table 4.2: The long-run average cost   rate values under 

policy N 

α1=0.95,α2=0.85, β1=0.65,β2=0.35, 

N C(N) N C(N) 

2 -16.7568 11 -18.8414 

3 -20.3264 12 -17.7658 

4 -21.8627 13 -16.6314 

5 -22.4333 14 -15.4512 

6 -22.4463 15 -14.2357 

7 -22.1011 16 -12.9931 

8 -21.5094 17 -11.7303 

9 -20.7406 18 -10.4527 

10 -19.8407 19 -9.16485 

  20 -7.87071 

 

5. Conclusions 
 

a) From the table 4.1 and graph 4.1, We can examine that 

the long-run average cost per unit time at the time C (7) 

= -25.3417   is minimum .We should replace the system 

at the time of 7
th

 failure. 

b) From the table 4.2 and graph 4.2, we observe that the 

long-run average cost per unit time at the time C (6) = -

22.4463 is minimum. We should replace the system at 

the time of 6
th

 failure.  
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