# Sorption Studies of Rhodamine-B by Glossocardia linearifolia Stem

# C. Jayajothi<sup>1</sup>, Dr. M. M. Senthamilselvi<sup>2</sup>, S. Arivoli<sup>3</sup>, N. Muruganantham<sup>4</sup>

<sup>1</sup>Research scholar, Periyar E.V.R. College, Tiruchirappalli, Tamil Nadu, India

<sup>2</sup>Reginol joint Director, Department of collegiate education, Tiruchirappalli, Tamil Nadu, India

<sup>3</sup>Associate Professor, Department of Chemistry, Thiru. Vi.Ka. Government Arts College Thiruvarur, Tamil Nadu, India

<sup>4</sup>Assistant Professor, Department of Chemistry, Sri Ramakirshna College of Engineering, Perambalur, Tamil Nadu, India

Abstract: The present research work deals with utilization of Glossocardia linearifolia stem carbon as an adsorbent for the removal of RhB dyes from the aqueous solutions. The effect of contact time, initial dye concentration, dose of sorbent, chloride ions and pH were considered. Adsorption isotherm data were tested with using Langmuir and Freundlich modes and the adsorption follows both models. The kinetic studies made with pseudo second order, Elovich model and intra- particle diffusion model. Thermodynamic parameters such as  $\Delta H^0$ ,  $\Delta S^0$  and  $\Delta G^0$  were evaluated which indicated that the adsorption was spontaneous and endothermic nature.

Keywords: Isotherm, Kinetics, AGLS, Rhodamine – B, Thermodynamics

# 1. Introduction

A large quantity of highly coloured wastewater effluent is discharged by the textile industries into the nearly assisted lands or river without showing any treatment due to the reason that the conventional treatment was very expensive. At the same time, low cost technologies don't allow a wishful color removal and this lead to certain disadvantages. This shows that the removal of color from effluents is one of the major environmental problems. Coagulation, electro coagulation, flotation, chemical oxidation, filtration, ozonation, membrane separation, ion-exchange, aerobic and anaerobic microbial degradation are said to be the possible method of color removal from the textile effluents. All of these methods having any one limitation and none is said to be successful in removing the color from waste water completely. The adsorption process has been found to be an effective method for the treatment of dye containing wastewater [1, 2].

# 2. Material and Methods

## 2.1 Absorbent

The Glossocardia linearifolia stem obtained from agricultural area was activated at  $600^{\circ}$ C in a muffle furnace for 5 hrs, then it was taken out ground well to fine powder and stored in a vacuum desiccators.

# 2.2 Adsorbate

The stock solution of RhB was prepared by dissolving 1 g of dye in 1000 ml of distilled water. The experimental solutions say (50 to 250 mg/L) from stock solution were prepared by diluting to desired concentrations in accurate proportion. The

structural formula of RhB and characteristics (Table .1) are given in below.



Structure of Rhodamine- B

| Table 1: C | Characteristics | of Rhodamine- | -B dye |
|------------|-----------------|---------------|--------|
|------------|-----------------|---------------|--------|

| Colour Index No.           | 45170          |
|----------------------------|----------------|
| Formula                    | C28 H31 N2O3Cl |
| Formula Weight             | 479.02         |
| O <sub>max</sub> (nm)      | 554            |
| $H(dm^3 mol^{-1} cm^{-1})$ | 60000.00       |

## 2.3 Batch adsorption experiments

Batch adsorption experiments were carried out in a mechanical shaker at a constant speed of 150 rpm at  $30^{\circ}$ C using 250 glass-stopper flask containing 25mg AGLS with 50 ml of dyes solution at different concentration with various initial pH values. The samples were withdrawn from the agitating flask at specific time introvals. The adsorbent were separated from the solution by centrifugation (REMI Make) at 1500 rpm for 50 minutes. The supernatant solution was analyzed to

determine the residual dye concentration using UV-Visible spectrophotometer at  $\lambda max = 553.8$  nm.

Dyes amount adsorbed at time t, qt (mg/g) and equilibrium adsorption  $q_e$  (mg/g) was calculated from the mass balance principle

$$q_t = (C_i - C_t)V/W$$
 .....(1)

Where  $q_t$  is the amount of dye adsorbed (mg/g) and  $C_t$  (mg/L) is the liquid phase concentration of dye at time t,  $C_0$  is the initial concentration of dye solution (mg/L), V is the volume of the solution (L), W (g) is the mass of dry adsorbents when t is equal to contact time of equilibrium  $C_t = C_e q_t = q_e$  then equation (1) becomes

$$q_e = (C_i - C_e) V/W$$
 .....(2)

The amount of dye adsorbed was calculated from the equation (2). The dye removal percentage determined from the equation (3)

$$R\% = (C_i - C_t) \times 100/C_i$$
 .....(3)

# 3. Results and Discussion

#### 3.1 Effect of contact time and initial concentrations

The influence of dyes concentration and contact time on the adsorption uptake of RhB with different initial concentration (50 to 250 mg/L), was mixed with 25 mg of AGLS. The Figure 1 reveals that, the dyes uptake was rapid for first 50 minutes. After 50 minutes it was constant with increase in contact time. Based on the results 50 minutes was taken as the contact time to the adsorption process., The equilibrium adsorption capacity ( $q_e$ ) of RhB dyes on to AGLS increased from 90.856 mg/g to 228.241 mg/g. This result indicates that the initial concentration strongly affects the adsorption capacity.



investigated by adsorbent dose varied from 10 to 250 mg agitating with 50 ml of different concentration of dye solution. The Figure 2 shows the adsorption of RhB dyes increases rapidly with increase the amount of Glossocardia linearifolia stem carbon due to greater availability of the adsorbent surface area at higher concentration. The significant change in RhB dyes was observed when dosage was increased from 10 to 250 mg and the further addition of the sorbent beyond this did not show big change in the sorption process. This is due to overlapping of adsorption sites as a result of overcrowding of AGLS particles [3].



#### 3.3 Effect of pH

The pH value of the solution was an important controlling parameter in the adsorption process. The effect of pH on RhB dye adsorption onto Glossocardia linearifolia stem carbon was analysed over the pH range of 3.0- 10.0 and the results are shown in Figure. 3. RhB dye adsorption was found to increase with increase in the initial solution pH up to 6.5. When pH > 6.5 removal of RhB dye was decreased. This may be due to the occupation of sites by anionic species which retards the approach of such ions further towards the adsorbent surface. The experimental results showed that the optimum pH range for the adsorption RhB dye is 2.0 to 6.5.

#### 3.2 Effect of adsorbent dosage

The effect of adsorbent dose was analyzed for the removal of dyes from the aqueous solution. The experiments were



#### **3.4 Effect of ionic strength**

The Figure 4 shows the effect of sodium chloride on the adsorption of Rhodamine-B on AGLS was studied by the addition of NaCl. The low concentrate NaCl solution had little influence on the adsorption capacity. When the concentration of NaCl increases, the ionic strength is raised. At higher ionic strength, the adsorption of Rhodamine-B will be high owing to the partial neutralization of the positive charge on the AGLS surface and a consequent compression of the electrical double layer by the Cl<sup>-</sup> anion. The chloride ion also enhances adsorption of Rhodamine -B ion by pairing their charges, and hence reducing the repulsion between the RhB molecules adsorbed on the surface. This initiates AGLS to adsorbs more positive Rhodamine-B ions [4, 5, 6,7]



#### 3.5 Adsorption isotherms

The distribution of dyes between the liquid phase and solid phase can be described by several isotherms. Langmuir and Freundlich isotherm equations have been used in this study.

#### 3.5.1. Langmuir isotherm

The Langmuir model assumes that the uptake of dye occurs on the homogeneous surface by monolayer adsorption without any interaction between adsorbed dyes. The Langmuir isotherm [8] has been represented as

 $C_e/q_e = (1/Q_0b) + (C_e/Q_0)$ ------(4) Where  $q_e$  (mg/g) is the amount of dye adsorbed onto per unit mass Langmuir isotherm model confirms the homogeneous nature of Glossocardia linearifolia stem carbon. The results also enhance confrim the formation monolayer coverage of RhB dye molecule at surface of AGLS. Similar results were reported by adsorption of cango red dye on activated carbon from coir pith[9 10]. Ce (mg/L) is the equilibrium concentration of the dye ions,  $Q_0$  (mg/g) and b (mg/L) are Langmuir constants related to the adsorption and energy of adsorption respectively. The plot of Ce/qe against Ce gives straight line .The constant Q<sub>0</sub> and b can be calculated from the slope and intercept and their values are given in Table .2. This indicates that the adsorption of RhB on to Glossocardia linearifolia stem carbon follows the Langmuir isotherm. The essential feature of the Langmuir isotherm can be explained in terms of a dimensionless equilibrium parameter which is defined by following equation [11, 12]

**Table 2:** Equilibrium parameters for adsorption of RhB dye onto AGLS

| C     | Ce (Mg / L) |          |         | Qe (Mg / g) |          |          | R (%)    |          |         |         |         |         |
|-------|-------------|----------|---------|-------------|----------|----------|----------|----------|---------|---------|---------|---------|
| $C_0$ | 30° C       | 40° C    | 50° C   | 60° C       | 30° C    | 40° C    | 50° C    | 60° C    | 30° C   | 40° C   | 50° C   | 60° C   |
| 50    | 4.5720      | 4.1824   | 3.8496  | 3.6432      | 90.856   | 91.6352  | 92.3008  | 92.7136  | 90.856  | 91.6352 | 92.3008 | 92.7136 |
| 100   | 16.4696     | 14.8200  | 12.5976 | 11.0048     | 167.0608 | 170.36   | 174.8048 | 177.9904 | 83.5304 | 85.1800 | 87.4024 | 88.9952 |
| 150   | 35.8792     | 32.2032  | 28.6728 | 25.5552     | 228.2416 | 235.5936 | 242.6544 | 248.8896 | 76.0805 | 78.5312 | 80.8848 | 82.9632 |
| 200   | 70.0368     | 65.3768  | 28.6728 | 55.6192     | 259.9264 | 269.2464 | 342.6544 | 288.7616 | 64.9816 | 67.3116 | 85.6636 | 72.1904 |
| 250   | 113.5560    | 107.6576 | 60.4792 | 96.3480     | 272.888  | 284.6848 | 379.0416 | 307.304  | 54.5776 | 56.9369 | 75.8083 | 61.4608 |

 $R_L = 1/1 + bC_0$  ----- (5) c

where b (L/mg) is the Langmuir constants related to the energy of adsorption and  $C_0$  is the initial dye concentration (mg/L).The values of  $R_L$  indicate the types of isotherm process and are given as below

| $R_L$ values  | Adsorption    |
|---------------|---------------|
| RL > 1        | Un favourable |
| RL =1         | Linear        |
| $0 < R_L < 1$ | Favourable    |
| RL =0         | Irreversible  |

## 3.5.2. Freundlich isotherm model

The Freundlich isotherm is an empirical equation. It is based on multilayer adsorption on heterogeneous surface [13]. The linear form of Freundlich equation is given as

 $\log q_e = \log k_f + 1/n \log C_e - (6)$ 

where  $q_e$  is the amount of dye adsorbed per unit gram of adsorbent (mg/L), Ce is the equilibrium concentration in solution after adsorption(mg/L),  $K_f$  (mg/g(L/mg) is the Freundlich constant related to binding energy and n (g/L) is the heterogeneity factor. The values of  $K_f$  and n were obtained from the intercepts (logk<sub>f</sub>) and slope (1/n) of the plot of log  $q_e$ vs log C<sub>e.</sub> Values of K<sub>f</sub> and n are given the Table .3. The values of 1/n is less than unity, it is indicating the favorable adsorption [14]. The plot of logq<sub>e</sub> versus log C<sub>e</sub> gives a straight line with slope 1/n which indicates that the adsorption of RhB on to AGLS follows the Freundlich isotherm mode.

 
 Table 3: Langmuir and freundlich isotherm parameters for adsorption of RhB on to AGLS

| Temperature     | Langumuir I | Parameter | Fruendlich Parameter |        |  |  |
|-----------------|-------------|-----------|----------------------|--------|--|--|
| <sup>-0</sup> C | $Q_0$       | b         | K <sub>f</sub>       | n      |  |  |
| 30°             | 301.3624    | 0.0857    | 5.842156             | 2.8586 |  |  |
| 40°             | 314.1805    | 0.0901    | 5.9434510            | 2.8154 |  |  |
| 50°             | 499.2253    | 0.0485    | 5.27933              | 1.8840 |  |  |
| 60°             | 338.244     | 0.1042    | 6.17865              | 2.7442 |  |  |

# **3.6 Thermodynamics Parameters**

Thermodynamic parameters like  $\Delta H^0$ ,  $\Delta S^0$  and  $\Delta G^0$  can be determined at different temperature namely 303, 313, 323 and 333 K by using the following relations

$$K0 = Cd / Ce$$
 -----(7)

$$\Delta G0 = -RT \ln K_0 \tag{8}$$

$$\log K_{o} = \Delta S^{0} / 2.303 R - \Delta H^{0} / 2.303 R T -----$$
(9)

Where  $K_0$  is the equilibrium constant, Cad is the solid phase concentration at equilibrium (mg/L), Ce is the equilibrium concentration of the dye solution (mg/L), R is the gas constant and T is the absolute solution temperature in Kelvin. The  $\Delta H^0$ and  $\Delta S^0$  values for dye sorption can be determined from the slope and intercept of the linear plot of logK<sub>0</sub> Vs 1/T .The values are presented in Table 4. The positive values of  $\Delta H^0$  confirm the endothermic adsorption of RhB on to AGLS. The more negative values of  $\Delta G^0$  indicate the feasibility of dye adsorption and its process is spontaneous nature. The positive values of  $\Delta S^0$ shows the increased randomness at the solid – solution interface. In desorption of dye the adsorbed water molecules, and which are displaced by the adsorbate species, gain more translational entropy than it is lost by the adsorbate molecules, thus allowing prevalence of randomness in the system [15,16].

| Initial                 |        | Temperature °C      |         |         |  |  |  |  |  |
|-------------------------|--------|---------------------|---------|---------|--|--|--|--|--|
| Concentration ( $C_0$ ) | 30°C   | 30°C 40°C 50°C 60°C |         |         |  |  |  |  |  |
| 50                      | 0.1892 | 0.1816              | 0.2916  | 0.16097 |  |  |  |  |  |
| 100                     | 0.1044 | 0.0998              | 0.1707  | 0.0875  |  |  |  |  |  |
| 150                     | 0.0721 | 0.0688              | 0.12069 | 0.0601  |  |  |  |  |  |
| 200                     | 0.0551 | 0.05255             | 0.0933  | 0.0457  |  |  |  |  |  |
| 250                     | 0.0446 | 0.0424              | 0.0760  | 0.0369  |  |  |  |  |  |

 Table 4: Dimensionless separation factor (RL) for adsorption
 of RhB on to AGLS

## 3.7 Pseudo- second – order kinetic model

The linear form of the pseudo second order kinetic rate equation [17] is expressed as

$$t/q_t = 1/K_{2ad} qe^2 + 1/q_e(t)$$
 .....(10)

Where  $k_2(g/mg min)$  is the second order rate constant,  $q_e$  is the amount of dye adsorbed on the per unit mass of adsorbent(mg/g) at equilibrium,  $q_t$  is the amount of dye adsorbed at time t, per unit mass of adsorbent(mg/g)

The values of  $k_2$  and equilibrium capacity  $(q_e)$  can be calculated from the slope and intercepts of the curve plot of t/qt versus 1/qe. The second – order rate constant  $k_2$  calculated h values and  $(\gamma)$  values are given in table. A plot of t/qt versus 1/qe gives a straight line. It reveals that the adsorption process follows pseudo- second- order kinetic model

 
 Table 5: Thermodynamic parameters for the adsorption of RhB on to AGLS

| Co  |                         | ۸U٥        | $\Delta S^{\circ}$ |            |         |         |
|-----|-------------------------|------------|--------------------|------------|---------|---------|
| Co  | 30° C 40° C 50° C 60° C |            |                    |            | ΔΠ      |         |
| 50  | - 5784.398              | - 6229.299 | - 6670.417         | - 7041.853 | 6.9963  | 42.2260 |
| 100 | - 4090.317              | - 4550.842 | - 5201.707         | - 5786.989 | 13.2972 | 57.2473 |
| 150 | - 2914.899              | - 3374.887 | - 3873.834         | - 4382.693 | 11.9331 | 48.9613 |
| 200 | - 1557.41               | - 1879.66  | - 4800.531         | - 2641.003 | 17.8549 | 64.7018 |
| 250 | - 462.5602              | - 726.7643 | - 3067.287         | - 1292.153 | 14.7502 | 50.7482 |

# **3.8 The Elovich equation**

The Elovich model is a rate equation, for the heterogeneous absorbing surface is heterogeneous [18, 19] It is generally represented as

 $dq_t/d_t = \alpha \exp(-\beta q_t)$  .....(11) where  $\alpha$  is the initial adsorption (mg.g<sup>-1</sup>min<sup>-1</sup>), $\beta$  is the adsorption constant(g/mg) during any one experiment. To simplify the Elovich equation, it is assumed that  $\alpha \beta t >> T$  and

Volume 6 Issue 5, May 2017 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY by applying the boundary conditions  $q_t = 0$  at t=0 and  $q_t = q_t$  at t=t equation (11) becomes

$$q_t = 1/\beta \ln (\alpha\beta) + 1/\beta \ln(t)$$
 .....(12)

A plot of  $\ln q_t$  vs  $\ln t$  should yield a linear trace with a slope of  $(1/\beta)$  and an intercept of  $(1/\beta) \ln (\alpha\beta)$ . The plots are linear with good correlation coefficient and the results are tabulated in Table.6.

## **3.9** The intra- particle diffusion model

The intra- particle diffusion model from Weber and Morris [20] following equation

 $q_t = k_{ipd} \cdot t^{1/2} + Ci$  ------ (12)

Where  $K_{ipd}$  is the intra – particle diffusion rate constant (mg/g min),  $q_t$  is the amount of dye adsorbed on to adsorbent at time t (mg/g),  $C_i$  is the intercept which gives an idea about the thickness of the boundary layer. The plot of qt against t <sup>1/2</sup> gives multi-linearity, it shows two linear portions. The first part of the curve is attributed to boundary layer diffusion while the final liner part shows intra- particle diffusion. Since the line does not pass through the origin, it is clear that intra-particle diffusion is involved in the adsorption process but it is not involved in the rate limiting steps. The diffusion parameters are presented in Table 6.

|--|

| Ca  | Temp °C | PSEUDO SECOND ORDER |                  |        | ELOVICH MODEL |          |          | INTRAPARTICLE DIFFUSION |                  |        |        |
|-----|---------|---------------------|------------------|--------|---------------|----------|----------|-------------------------|------------------|--------|--------|
| Co  |         | q <sub>e</sub>      | K <sub>2ad</sub> | γ      | h             | α        | β        | γ                       | K <sub>IPD</sub> | γ      | Ci     |
|     | 30      | 100.8416            | 0.00128          | 0.9922 | 13.1031       | 116.813  | 0.06918  | 0.9962                  | 1.6297           | 0.9981 | 0.1813 |
| 50  | 40      | 100.9679            | 0.00136          | 0.9921 | 13.8596       | 155.5612 | 0.07242  | 0.9972                  | 1.6513           | 0.9985 | 0.1707 |
| 50  | 50      | 101.0214            | 0.00144          | 0.9918 | 14.7907       | 211.4376 | 0.0758   | 0.9943                  | 1.6717           | 0.9975 | 0.1609 |
|     | 60      | 101.6164            | 0.001429         | 0.9915 | 14.7512       | 198.9897 | 0.07455  | 0.9933                  | 1.6702           | 0.9988 | 0.1630 |
|     | 30      | 185.7339            | 0.00067          | 0.9914 | 23.3008       | 188.3596 | 0.036776 | 0.9937                  | 1.5828           | 0.9976 | 0.1866 |
| 100 | 40      | 188.8360            | 0.000679         | 0.9913 | 24.2185       | 222.6997 | 0.0371   | 0.9939                  | 1.6020           | 0.9989 | 0.1801 |
| 100 | 50      | 192.4480            | 0.00072          | 0.9919 | 26.7034       | 298.5088 | 0.0400   | 0.9938                  | 1.6311           | 0.9977 | 0.1707 |
|     | 60      | 196.1968            | 0.00071          | 0.9927 | 27.4316       | 296.7924 | 0.0370   | 0.9948                  | 1.6381           | 0.9991 | 0.1719 |
|     | 30      | 257.8151            | 0.00042          | 0.9929 | 28.2159       | 168.2467 | 0.0246   | 0.9961                  | 1.5069           | 0.9992 | 0.2061 |
| 150 | 40      | 263.6841            | 0.00044          | 0.9930 | 31.2017       | 218.3458 | 0.0250   | 0.9964                  | 1.5407           | 0.9995 | 0.1951 |
| 150 | 50      | 270.8011            | 0.00046          | 0.9933 | 34.1309       | 270.5353 | 0.0251   | 0.9969                  | 1.5695           | 0.9984 | 0.1874 |
|     | 60      | 275.2979            | 0.000383         | 0.9935 | 29.0319       | 335.5586 | 0.0268   | 0.9970                  | 1.5857           | 0.9978 | 0.1724 |
|     | 30      | 303.5679            | 0.00028          | 0.9945 | 25.9927       | 96.3851  | 0.0183   | 0.9966                  | 1.3586           | 0.9917 | 0.2506 |
| 200 | 40      | 311.11633           | 0.00029          | 0.9949 | 28.4424       | 119.392  | 0.01862  | 0.9965                  | 1.3980           | 0.9901 | 0.2367 |
| 200 | 50      | 319.9139            | 0.00030          | 0.9953 | 31.0343       | 144.0399 | 0.01864  | 0.9977                  | 1.4320           | 0.9906 | 0.2266 |
|     | 60      | 327.5337            | 0.00033          | 0.9959 | 35.4715       | 193.6464 | 0.01900  | 0.9915                  | 1.4755           | 0.9907 | 0.2120 |
|     | 30      | 332.9001            | 0.00019          | 0.9962 | 22.0311       | 60.2233  | 0.0150   | 0.9918                  | 1.1910           | 0.9909 | 0.3016 |
| 250 | 40      | 344.2053            | 0.0002           | 0.9967 | 23.6782       | 67.5429  | 0.0148   | 0.9937                  | 1.2245           | 0.9912 | 0.2927 |
| 230 | 50      | 359.2018            | 0.00018          | 0.9974 | 24.2962       | 69.2362  | 0.01418  | 0.9968                  | 1.2392           | 0.9914 | 0.2937 |
|     | 60      | 364.5738            | 0.00021          | 0.9975 | 27.9942       | 88.5406  | 0.0145   | 0.9992                  | 1.2937           | 0.9915 | 0.2730 |

# 4. Conclusion

The experimental results show that the Glossocardia linearifolia stem carbon for the adsorption of RhB dye was effective. The adsorption of RhB dye adsorption was increased with increase in the dosage of sorbent and decreasing with increasing initial concentration. The adsorption data's were well fit in both Freundlich and Langmuir model and was well described by pseudo- second–order kinetics model. A series of experiments were conducted by batch system and it was observed that more than 90% of dye removal was archived by using 25 mg of Glossocardia linearifolia stem carbon.

# References

- [1] Ozacar M, Sengil I A, , Eniviron., Geol., 45(2004) 762-768
- [2] E. Lorenc- Grabowska .,G.Gryglewicz.., Dyes pigments 74 (2007)
- [3] Senthil Kumar P., Kiruthika K., (2009) J. Eng. Sci. Tech 4: 351-363

- [4] S.Arivoli., B.R.Vengatraman., T.Rajachandrasekara and M.Hema .,Res J Chem Environ., Vol .17(2007) 70-78
- [5] S.Arivoli.,K.Kalpana., R.Sudha and T.Rajachandrasekar E J Chem.,Vol. 4(**2007**) 238- 254.
- [6] Yupeng Guo., Jingzhu Zhao., Hui Zang., Shaofeng Yang., Zichen Wang and Hongding Xu., Dyes and Pigment. Vol. 66(2005) 123-128.
- [7] M.K. Sreedhar., T.S Anirudhan ., Indian J Environ Protect., Vol.19(1999) 8
- [8] I.Langmuir., J. Am. Soc., 579 (1918) 1361 1403.
- [9] C. Namasivayam., D. Kavitha., Dyes Pigments Vol.54 (2002) 47-58.
- [10] P.K. Malik., J. Hazard. Mater. Vol. 113(2004) 81-88
- [11] T.W. Weber R.K Chakravorti., J. Am. Inst. Chem. Eng.20 (1974) 228.
- [12] G. McKay, H. S. Blair, J. R. Gardner. I. Equilibrium Studies., J. AAGLSI. Polym. Sci. 27 (1982) 3043 – 3057.
- [13] H. Frendlich., Z Phys. Chem., 57 (1906) 385 470
- [14] A.K. Samnata., U.K. Basu ., G.Kundu., Ind.J. Environ. Protection., 20(10) (2000) 754.

# Volume 6 Issue 5, May 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

- [15] B. Stepen Inbaraj ., N. Sulochana., Ind. J. Chem Technology, 9 (2002) 201.
- [16] C.Namasivayam ., R.T.Yamuna., Environ Pollut., 89(1995) 1.
- [17] Y.S. Ho. G.McKay, Water Res. 34 (**2000**) 735 742.
- [18] S.H. Chien. W.R. Clayton., Soil Sci. Sco. Am. J. 44 (1980) 265 – 268.
- [19] D.L. Spark., (1986) CRC. Press, Boca Raton.
- [20] W. J. Weber, J.C. Morris., J. Sanitary Eng. Div. 90 (**1964**) 79.