Synthesis and Reactions of 3- Cyano 4, 6- Diphenyl (2-Substituted)-Pyridine Likely to Possess Antimicrobial Activity

Amal F. Seliem

Chemistry Department, Faculty of Science, Najran University, Saudi Arabia

Abstract: Heterocycles containing pyridine moiety are representatives of a major structure type in medicinal chemistry and agriculture. Reaction of 2-chloro-4,6-diphenylpyridine-3-carbonitrile $\underline{2}$ with each of hydrazine hydrate ,hydroxylamine and anthranilic acid afforded the corresponding pyrazolo , isoxazolo and quinazolino pyridine derivatives $\underline{3, 4}$ and $\underline{5}$ respectively . While on alkylation of 2-mercapto-4,6-diphenyl pyridine -3-carbonitrile $\underline{7}$ with each of ethyl chloroacetate and phenacyl bromide followed by cyclisation in presence of NaOH gave the corresponding 4,6-diphenyl pyridine thienopyridine derivatives $\underline{9}$ and $\underline{12}$. Diazotization of ethyl 3-amino-4,6-diphenylylthio[2,3-b]pyridine-2-carboxylate $\underline{9}$ followed by reaction with each of thiourea, guanidine carbonate and hydroxylamine hydrochloride gave the corresponding thienopyridine derivatives $\underline{15}$, $\underline{16}$ and $\underline{17}$ respectively . The biological activity of some newly synthesized compounds has been discussed.

1. Introduction

In the course of our ongoing screening program for new and selective antibacterial and antifungal compounds, we have previously reported several series of antifungal compounds obtained from natural and synthetic sources¹⁻². Considerable attentions have been given to pyridine derivatives due to their widespread occurrence in nature and divers biological activity. Also, it is well known that pyridine derivatives have considerable biological and pharmaceutical activities, such as antitumor, antiviral³, antitubercular⁴, antiulcer⁵, antineoplastic, and cardiotonic properties⁶. In view of the above mentioned facts and in continuation of our research interest for the synthesis of biologically active heterocycles, we report here, the synthesis of a variety of heterocyclic ring systems for biological is a highly versatile and useful building block for the synthesis of a variety thieno pyrazolo isoxazolo and quinazolino derivatives incorporating pyridine moiety of potential biological activity.

In conjugation with our previous works⁷⁻⁸ about thieno compounds annulated with various five and six membered heterocycles and the considerable biological activity of pyridine derivatives as fungicidal ,antibacterial, antifungal⁹,antimycotic¹⁰ and antidepressant agents¹¹, as well as thienopyridines as antithrombotic agents¹²against the platelet aggregation stimulated our interest in the synthesis of several newly pyridine derivatives .

In the present investigation 2-hydroxy-4,6-diphenylpyridine-3-carbonitrile <u>1</u> has been prepared via reaction of cyanoacetamide and acetyl acetone in boiling n- butanol in the presence of few drops of piperidine .The structure of <u>1</u> was confirmed from its correct analytical and spectral data, IR spectrum showed absorption bands at the regions 2240cm⁻¹(CN) and 3350cm-1 (OH) groups . Treatment of <u>1</u> with POCl₃ gave 2-chloro-4,6-diphenylpyridine-3carbonitrile <u>2</u>. IR spectrum of <u>2</u> showed absorption bands at 2240cm-1(CN)and absence of the absorption of OH group and ¹H NMR showed a signals at and δ 7.7-8.5(m,11H, aromatic protons). Heterocycles containing 1, 2-diazine moiety are representatives of a major structure type in medicinal chemistry and agriculture ¹³. This led us to prepare pyrazole derivatives attached to pyridine ring via reaction of compound $\underline{2}$ with hydrazine hydrate in boiling n-butanol¹⁴ gave 3-amino-4,6-dimethyl-pyrazolo-[3,4-b]- pyridine 3. The structure of 3 was confirmed from its analytical and spectral data , IR spectrum of $\underline{3}$ showed absorption bands at 1620 (vC=N), 3300 (vNH) and 3470 (vNH₂), while ¹HNMR spectrum showed signals at δ 4.0(s,1H,NH), δ 7.1-8.3(m,11H, aromatic protons) and $\delta 10.5-11.2$ (s,2H,NH₂).

The development of new efficient methods to synthesize nitrogen containing heterocyclic compounds with structural diversity is one of the major interests of modern synthetic chemists. This promoted us to synthesis new heterocyclic moieties attached to pyridine rings through treatment of the 2-chloro-4,6-diphenylpyridine-3-carbonitrile with 2 hydroxylamine hydrochloride in refluxing dry toluene and triethyl amine afforded the 3-amino-4,6-diphenyl -isoxazolo-[3,4-b]-pyridine <u>4</u>.IR spectrum of <u>4</u> showed absorption bands at 3300 - 3430 cm⁻¹ (ν NH₂) and at 1620cm⁻¹(ν C=N). ¹ H NMR of **4** showed a signals at $\delta 7.1-7.9(m,11H)$, aromatic protons) and $\delta 10.0-11.5$ (s,2H,NH₂). On the other hand, when compound 2 was allowed to react with anthranilic acid it gave 1-cyano-2,4-diphenyl -5-pyrido-[2,1b]-quinazolin-5-one 5. The structure of 5 was elucidated from its correct analytical and spectral data, IR spectrum showed absorption bands at the regions 2220cm⁻¹(vCN), 1667cm⁻¹ (vC=O) and at 1618cm⁻¹ (vC=N). Also, when compound 2 was allowed to react with toluene-4sulfonylhydrazine in refluxing n-butanol¹⁵ yielded the corresponding 7- cyano-4,6-dimethyl-(3-oxo-3-*p*-tolyl)thia-(1,2,4)-triazolo-[4,5-a]-pyridine <u>6</u>. The structure of compound 6 was confirmed from its correct analytical and spectral data. IR spectrum of $\underline{6}$ showed absorption bands at the regions 2220cm^{-1} (vCN), 1610cm^{-1} (vC=N), 1330cm^{-1} (v S=O) and at 1370 cm⁻¹ (vS=N), while ¹H NMR showed signals at δ 2.4 (s , 3H ,CH₃) , δ 7.3(1H , H₅) and δ 7.5-8.0(m, 15H, aromatic protons). Scheme 1

DOI: 10.21275/ART20173227

Scheme 1

On the other hand the reaction of 2-hydroxy-4, 6diphenylpyridine-3-carbonitrile $\underline{1}$ with thiourea in nbutanol¹⁶ gave the corresponding 2-mercapto-4,6dimethylpyridine-3-carbonitrile $\underline{7}$. When compound $\underline{7}$ was allowed to react with ethyl chloroacetate in presence of ethoxide¹⁷ yielded sodium ethyl 2-(3-cyano-4,6diphenylpyrine-2-ylthio)acetate $\underline{\boldsymbol{8}}$, which on cyclization in 10% ethanolic KOH afforded ethyl 3-amino-4,6-diphenyl thio[2,3-b]pyridine-2-caboxylate $\underline{9}$. IR spectrum of $\underline{9}$ showed the disappearance of (CN) band while, ¹HNMR showed signals at $\delta 1.3(t, 3H.CH_2-CH_3)$, $\delta 4.1(q, 2H,CH_2-CH_3)$ CH_3) and $\delta7.1-8.4(m, 11H, aromatic protons)$...

Thieno moieties are of interest because they show pharmacological and antimicrobial activities like

antibacterial¹⁸ antifungal activity¹⁹ .These activities promoted the synthesis of a large number of thieno derivatives as promising antifungal agents due to the increase of fungal infections.

So, the reaction of **9** with hydrazine hydrate in boiling nbutanol gave the corresponding 3-amino-4, 6-diphenylthio [2, 3-b] pyridine- 2-carbohydra- zide <u>10</u> .IR spectrum of <u>10</u> showed absorption bands at 1620 (v C=N) , 1630 (vCO , hydrazide) and 3470-3140 (vNH and two NH₂) while its ¹HNMR spectrum showed signals at δ 5.6(s, 2H,CONH-<u>NH₂</u>), δ 6.5(s, 1H,CO<u>NH</u>-NH₂) , δ 7.3-8.1(m, 11H , aromatic protons) and δ 10.3-11.4 (s,2H,NH₂) . **Scheme 2**

Volume 6 Issue 5, May 2017 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

Scheme 2

Analogously , alkylation of pyridinethione $\underline{7}$ with phenacyl bromide in the presence of sodium ethoxide yielded 3amino-2-benzoyl-4,6-diphenylthieno[2,3-b]pyridine $\underline{11}$ which on cyclizatin in 10% KOH gave 3- amino 2-benzyl 4,6-dimethylthieno [2,3-b] pyridine $\underline{12}$. IR spectrum of $\underline{11}$ showed absorption bands at 1620(vC=N) and 2220 (vCN). ¹HNMR showed signals at $\delta 4.1(s, 2H, CH_2 \text{ benzyl})$, and $\delta 7.4-8.5(m, 16H, aromatic protons)$. Furthermore, when the 3-amino-2-benzoyl-4,6- diphenylthieno-[2,3-b]-pyridine <u>12</u> was allowed to react with malononitrile in refluxing dimethylformamide (DMF) in presence of anhydrous potassium carbonate, yielded <u>13</u>. Scheme (3)

Volume 6 Issue 5, May 2017 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/ART20173227

Scheme 3

IR spectra of each <u>9</u> and <u>12</u> were found free from nitrile function and instead the bands of the newly born NH₂group ,moreover ,the signals of methylene CH₂ protons were not revealed in ¹H-NMR spectrum proving that they were involved in the cyclization step through addition to the nitrile group. Diazotization of ethyl 3-amino-4,6- diphenylthio[2,3b]pyridine-2-caboxylate <u>9</u> afforded the diazo compound <u>14</u> which reacted with each of thiourea, guanidine carbonate and hydroxylamine hydrochloride to afford the tricyclic compounds <u>15</u>, <u>16</u> and <u>17</u> respectively.

The structure of the tricyclic compounds $\underline{15}$, $\underline{16}$ and $\underline{17}$ was elucidated from their correct analytical and spectral data . IR

spectrum of <u>15</u> showed absorption bands at 3323 (v NH CO) , 3188 cm⁻¹(v NH) and 1638cm⁻¹ (v C=O). ¹H NMR of <u>15</u> showed signals at δ 7.2-8.3(m, 11H, aromatic protons), and δ 10.6 (s , 2H,.2<u>NH</u>), while . IR spectrum of Compound <u>16</u> showed absorption bands at 3300-3160cm⁻¹ (vNH₂) , 3473 (vNH) , 1676cm⁻¹ (vC=O) and 1599 (vC=N),. IR spectrum of <u>17</u> showed absorption bands at the regions 3150 cm¹ (v NH) , 1710cm¹(v C=O) , 1593 cm¹ (v C=N) . ¹H NMR of <u>17</u> showed signals at 5.1(s, 1H, NH) and and δ 7.1-8.5(m, 11H , aromatic protons)..Charactrization and physical data are listed in **Table (1)** .

Table 1. Characterization and physical data							
Ser	Yield	M. p. (⁰ C)/	Mol. formula/	Analysis % calculated/ found			
	(%)	Solvent	formula wt.	С	Н	Ν	
1	77	235	$C_{18}H_{12}N_2O$	79.39	4.44	10.29	
			272.30	79.11	4.41	10.06	
2	66	278	C ₁₈ H ₁₁ ClN ₂	74.36	3.81	9.63	
			290.75	74.25	3.75	9.55	
3	60	215	$C_{18}H_{14}N_4$	75.50	4.93	19.57	
			286.33	75.41	4.88	19.50	
4	55	195	C ₁₈ H ₁₃ N ₃ O	75.25	4.56	14.63	
			287.32	75.20	4.51	14.55	
5	70	255	C ₂₅ H ₁₅ N ₃ O	80.41	4.05	11.25	
			373.41	80.33	4.02	11.18	
6	68	285	C ₂₅ H ₁₈ N ₄ OS	71.07	4.29	13.26	
			422.50	71.00	4.21	13.20	
7	66	265	$C_{18}H_{12}N_2S$	74.97	4.19	9.71	
			288.37	74.88	4.11	9.66	

Table 1: Characterization and physical data

Volume 6 Issue 5, May 2017 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

10	72	237	C ₂₀ H ₁₆ N ₄ OS	66.65	4.47	15.54
			360.43	66.55	4.46	15.50
13	60	212	$C_{28}H_{19}N_3S$	78.29	4.46	9.78
			429.54		4.40	9.70
15	52	185	$C_{21}H_{13}N_3OS_2$	65.09	3.38	10.84
			387.48	65.05	3.34	10.78
16	62	205	C ₂₁ H ₁₄ N ₄ OS	68.09	3.81	15.12
			370.43	68.05	3.78	15.09
17	65	244	$C_{20}H_{12}N_2O_2S$	69.75	3.51	8.13
			344.39	69.65	3.48	8.06

Antimicrobial activity:

The biological effect of compounds (3,4,5, 7,10,11, 14, 16, and 17) has been studied as antibiotics and against Gram positive bacteria (Staphylo coccus aureus) and Gram negative bacteria (Escherichia, Pseudomonas aerugonosa, Klebsiella Spp and Proteus vutgaris). The antimicrobial activity results are listed in Table (2). All these compounds were screened in vitro for their antimicrobial activity against, by agar diffusion method²⁵. A suspension of the organisms were added to sterile nutrient agar media at 45°C and the mixture was transferred to sterile Petri dishes and allowed to solidify. Holes of 10 mm in diameter were made using a cork borer. An amount of 0.1 ml of the synthesized compounds was poured inside the holes. A hole filled with DMSO was also used as control. The plates were left for 1 h at room temperature as a period of pre-incubation diffusion to minimize the effects of variation in time between the applications of the different solutions. The plates were then incubated at 37°C for 24 h and observed for antimicrobial activity. The diameters of zone of inhibition were measured and compared with that of the standard. Ciprofloxacin (50 µg/ml) and Fusidic acid (50 µg/ml) were used as standard for antibacterial and antifungal activity respectively.

No.		Inhibition zone					
190.	Solvent	S.aureus	E.coli	P.aer	K.spp	Pr.vul	
3	EtOH	+ve	++ve	++ve	++ve	++ve	
4	EtOH	++ve	++ve	++ve	+++ve	++ve	
5	EtOH	+ve	-ve	++ve	+ve	+++ve	
7	EtOH	++ve	+ve	++ve	+++ve	+++ve	
10	Acetone	+ve	+ve	+ve	++ve	+++ve	
11	Acetone	+ve	-ve	++ve	++ve	+++ve	
14	Acetone	++ve	+ve	++ve	+++ve	+++ve	
16	Acetone	+ve	-ve	+++ve	+ve	++ve	
17	AcOEt	+ve	-ve	++ve	+++ve	+++ve	
				1.0			

 Table 2: Antimicrobial activity

+ve = 8mm, ++ve = 12mm, +++ve = 18mm

2. Experimental

All melting points were uncorrected. IR spectra were measured in KBr on a Bruker FT-IR ISS 25 spectrophotometer (ν_{max} in cm⁻¹). ¹H NMR spectra (DMSO-d₆ and CDCl₃) were carried out on a Bruker Avance 300 MHz spectrometer using TMS as internal reference (chemical shifts in δ , ppm).

2-hydroxy-4, 6- diphenylpyridine-3-carbonitrile 1:

A mixture of cyanoacetamide , (0.01mol) , acetyl acetone (0.01mol) , and piperidine (3ml) , was refluxed for 6 hours in n-butanol (20ml) and the solid precipitate was collected and recrystallized from ethanol , to give a white crystalline solid .

2-chloro-4,6-diphenylpyridine-3-carbonitrile 2:

A mixture of $\underline{1}$ (0.01mol) with excess phosphorous oxychloride (30ml), was refluxed for 4 hours. The reaction mixture was left to cool; the precipitate was collected and recrystallized from methanol.

3-amino-4, 6- diphenyl-isoxazolo-[3, 4-b]-pyridine 3:

A mixture of $\underline{2}$ (0.01mol) and hydrazine hydrate (0.03mol) was refluxed for 6 hours in n-butanol (20ml). The reaction mixture was left to cool; the precipitate was collected and recrystallized from ethanol.

3-Amino-4,6- diphenyl -isoxazolo-[3,4-b]-pyridine 4:

A mixture of $\underline{2}$ (0.01mol) and hydroxylamine hydrochloride (0.01mol), was refluxed for 6 hours in dry toluene (20ml) in the presence of triethylamine (TEA) (3ml). The reaction mixture was left to cool, The precipitate was collected and recrystallized from benzene.

1-Cyano-2,4- diphenyl -pyrido-[2,1-b]-quinazolin-5-one <u>5</u> :

A mixture of $\underline{2}$ (0.01mol) and anthranilic acid (0.01mol), was refluxed for 10 hours in n-butanol (30ml). The reaction mixture was left to cool; the precipitate was collected and crystallized from toluene.

7-Cyano-4,6- diphenyl (3-oxo-3-*p*-tolyl)-thia-(1, 2,4)triazolo-[4,5-a]-pyridine_<u>6</u>:

A mixture of $\underline{2}$ (0.01mol) and *p*-toluenesulphonylhydrazide (0.01mol), was refluxed for 10 hours in n-butanol (30ml). The reaction mixture was left to cool, the precipitate was collected and recrystallized from benzene.

2-mercapto-4,6- diphenyl -pyridine-3-carbonitrile 7 :

A mixture of 2(0.01 mol) and thiourea (0.01 mole), was refluxed for 6 hours in n-butanol (20ml). The precipitate was washed with and recrystallized from ethanol.

Ethyl 2-(3-cyano-4,6- diphenyl pyridine-2-ylthio)acetate 8:

A mixture of $\underline{7}$ (0.01mol) and ethylchloroacetate (0.01mol) was treated with sodium metal (0.01 mol) in ethanol (30ml) and stirred for 2 hours, then poured gradually with ours stirring in ice cold water, the solid that formed was separated as oil to give the compound $\underline{8}$, which was treated 10% KOH in ethanol (30ml) and stirred for 2 hours, the precipitated solid was collected and recrystallized from ethanol to give compound $\underline{9}$.

3-amino-4, 6- diphenylthio[2,3-b]pyridine- 2cabohydrazide <u>10</u>.

A mixture of 9 (0.01mol) and hydrazine hydrate (0.01mol), was heated under reflux for 5 hours , the reaction mixture

Volume 6 Issue 5, May 2017

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

was left to cool . The precipitate was collected and recrystallized from ethanol, to give $\underline{10}$.

3-Amino-2-benzoyl-4,6- diphenyl -thieno-[2,3-b]-pyridine <u>11</u>.

A mixture of $\underline{7}$, (0.01mol) and phenacyl chloride (0.01mol) was treated with sodium metal (0.01 mol) in ethanol (30ml) and stirred for 2 hours then poured gradually with ours stirring in ice cold water. The precipitate was collected and crystallized from acetic acid into the compound $\underline{11}$, which was treated with 10%KOH in ethanol (30ml), the reaction mixture was poured in cold water, the solid product was collected and crystallized from acetic acid to give $\underline{12}$ in good yield.

2-amino-3-cyano-7,9 diphenyl 4-phenyl-pyrido-[5,4-b]thieno-[2,3-b]-pyridine <u>13</u>.

A mixture of $\underline{12}$ (0.002mol) and malononitrile (0.003mol), were heated under reflux for 9 hours in dimethylformamide (20ml) and anhydrous potassium carbonate (1gm). The reaction mixture was left to cool, and then poured into ice cold water. The precipitate was collected and crystallized from ethanol.

Diazo 3-amino-2-ethoy carbonyl-4,6- diphenyl - thieno-[2,3-b]-pyridine (14)

To an ice–cold solution of $\underline{9}$ (3gm) in dilute hydrochloric acid (25ml), contained in 250ml beaker, a solution of sodium nitrite (4gm) in water (20ml) was added slowly. The resulting diazonium salt solution was stirred for 15 min at 0°C and the diazonium salt solution was used in the next experiments without isolation.

7,9-Diphenyl -2-thio-1,3-dihydro-pyrido-[5,4-b]-thieno-[3,2-d]-pyrimidine-4-one . <u>15</u>

To the diazonium salt solution <u>14</u>, thiourea (0.01mol) was added and the mixture was stirred for 5 hours, concentrated by evaporation. The solid produced was collected and crystallized from ethanol, to give <u>15</u>.

2-Amino-7,9- diphenyl -pyrido-[5,4-b]-thieno-[3,2-d]pyrimidine-one 16:-

To the guanidine carbonate (0.01mol), diazonium salt solution <u>14</u>, was added .The reaction mixture was stirred for 5 hours , and concentrated by evaporation . The obtained solid was collected and recrystallized from benzene.

6,8 Diphenyl -isoxazolo-[4,3-b]-thieno-[5,4-b]- pyridine-3-one<u>17</u>.

To the diazonium salt solution $\underline{14}$, hydroxylamine hydrochchloride (0.01mol) was added and the reaction mixture was stirred for 5 hours, and concentrated by evaporation .The solid produced was collected and recrystallized from ethanol.

3. Acknowledgements

The author wish to thank prof. Fathy A. Yassin, Faculty of Science ,Zagazig University, Egypt and Prof Y. Ayouty for their technical and antimicrobial evaluation assistances.

References

- Abadi, A.H.; Abouel-Ella, D.A.; Lehmann, J.; Tinsley, H.N.; Gary, B.D.; Piazza, G.A. and Abdel-Fattah, M.A.O., *Eur. J. Med. Chem.*, 2010, <u>45</u>, 90-97.
- [2] Abou-Elkhair, R.A.I.; Moustafa, A.H.; Haikal, A.Z. and Ibraheem, A.M., *Eur. J. Med. Chem.*, 2014, <u>74</u>, 388-397.
- [3] Aggarwal, S.R.; Gogu, S.R.; Rangan, S.R. and Agrawal, K.C., *J. Med. Chem.*, 1990, <u>33</u>, 1505-1510.
- [4] Agrofoglio, L.A. and Challand, S.R. Acyclic, Carbocyclic and L-Nucleosides, Kluwer Academic: Dordrecht, 1998, 174–284.
- [5] Al-Said, M.S.; Bashandy, M.S.; Al-qasoumi, S.I. and Ghorab, M.M., *Eur. J. Med. Chem.*, 2011, <u>46</u>, 137-141.
- [6] Altomare, C.; Cellamare, S.; Summo, L.; Fossa, P.; Mosti, L. and Carotti, A., *Bioorg. Med. Chem.*, 2000, <u>8</u>, 909-916.
- [7] Fathy A. Yassin and Amal F. Seleim *Der Pharma Chemica* 4(3), 860-866(2012).
- [8] Fathy A. Yassin and Amal F. Seleim *Der Pharma Chemica* 5(3), 1-7 (2013).
- [9] Alvarez, R.; Velazquez, S.; San-Felix, A.; Aquaro, S.; De Clercq, E.; Perno, C.-F.; Karlsson, A.; Balzarini, J. and Camarasa, M.J., *J. Med. Chem.*, 1994, <u>37</u>, 4185-4194.
- [10] Alwan, S.M., molecules, 2012, <u>17</u>, 1025-1038.
- [11] Attia, A.M.E. and Elgemeie, G.E.H., *Carbohydr. Res.*, 1995, <u>268</u>, 295-300.
- [12] Attia, A.M.E. and Ismail, A.E.A., *Terahedron*, 2003, <u>59</u>, 1749-1752.
- [13] Attia, A.M.; Elgemeie, G.E. and Shahada, L.A., *Tetrahetron*, 1997, <u>51</u>, 17441-17448.
- [14] F.A. Yassin, J. of Chem. Research 270-273 (2005).
- [15] F.A. Yassin Egypt. J. Chem. <u>47</u>(4), 427, 2004.
- [16] G.A.Youngdale, U.S.Patent <u>4</u> 288-440 (1980). C.A. 96 ,6596c (1982).
- [17] A.H.Todd, Br. Patent 1 203 149 (1970).C.A. 73 120 508b (1970).
- [18] G.Lohaus, and W.Dittmar, S Afric. Patent 6 906 036 (1968). C.A. 73 120 308(1970).
- [19] C.Gachet, M.Cattanea, P.Ohlmann, B.Lecchi, J.,Cassel, P.Mannucci, and J.P. Cazenave , *Br.J.Haematol.* **91**,434(1995).
- [20] S.K.Yao, J.C.Ober, J.J.Ferguson, J.P.Maffrand, H.V.Anderson, L.M.Buja, and J.T.,Willerson *Am.J.Physiol.*488 (1994).
- [21] K.Umemura, H.Kawai, H.Ishihara, and M.Nakashima *Jpn.J.Pharmacol.***76**, 253 (1995).
- [22] A. Lawson, and R. B. Tnkler, *Chemical Review*, <u>70</u>, 593 (1970).
- [23] A. M. Kamal El-Dean, A. A. Geies, Th. A. Mohamed and A. H. Atalla, *Bull. Fac. Sci., Assiut Univ.*, <u>20</u>(1-B), 15-21(1991).
- [24] F.A. Attaby, M.A.A. Elneairy, and M.S. Elsayed, *Phosphorus, Sulfur Silicon Rela.* Elem., <u>149</u>, 49-64(1999).
- [25] Cruickshank R, Duguid JP, Marion BP, Swain RH (1975)
- [26] Medicinal Microbiology, twelfth ed., vol. II, Churchill Livingstone, London, 196-202.