Analysis of Risks Exploration Campaign Iron on Site Akom2

K. Njeudjang¹, N. Djongyang², J. K. Domra³, R. Tchinda⁴

¹Department of Quality Industrial Safety and Environment, Institute of Mines and Oil Industries ,University of Maroua ,Cameroon PO.Box:46 Maroua

²Department of Renewable, Higher Institute of the Sahel University of Maroua, Cameroon PO.Box:46 Maroua

³Department of oil exploration and gas Petroleum, Institute of Mines and oil Industries, University of Maroua ,Cameroon PO.Box:46 Maroua

⁴LISIE, Fotso Victor University Institute of Technology, University of Dschang, Bandjoun, Cameroon PO.Box:134 Bandjoun

Abstract: The evaluation of occupational and environmental hazards is one of the main levers of professional prevention approach in the exploration of mapping during the campaign. It represents a way of preserving the health and safety of Geologists .Our study aims to identify the level of occupational and environmental risks in order to put a policy of prevention in the case of mapping on the site of Akom2. The risk analysis is based on the most exhaustive inventory possible to all the scenario of accidents that may occur in the workplace. As part of this study, it is necessary to start from the preliminary risk analysis to identify, evaluate their level and then take steps to put a reliable safety device on our site. The summary tables as practical support for conducting discussion and summarize the results of the analysis have allowed us to realize that the risk rating between 6 and 12. We need to educate staff on security during the mapping, train geologists and casuals (workers) on aid techniques. We must have a box full pharmacy and mosquito nets for different campaigns. We must improve diet and buy mattresses that will allow our workers to have a great rest in order to produce the expected results.

Keywords: Exploration, Risk, Security, Akom2, Mining.

1. Introduction

The laws in place regarding safety and environment are applied through the regulations of the mining code, environment and labor. Companies concerned about their image and having understood the place of safety and the environment does not hesitate to put the necessary resources to provide a pleasant working environment for their workers finally to limit the impacts of activities on the natural environment. Safety-Health-Environment Policy (HSE) plans to identify and implement measures to protect the environment and reduce workplace accidents. The evaluation of occupational and environmental hazards is one of the main levers of professional prevention approach in the exploration of mapping during the campaign [1] .It represents a way to protect the health and safety of geologists. Our study aims to identify the level of occupational and environmental risks in order to put a policy of prevention in the case of mapping the site AKOM2.Our analysis has collected information about the mapping [2]. It is based on the number of occupational accidents and negative impacts on the various operators and geologists during these campaigns. The present work aims to contribute to the continuous improvement of safety and environmental management system and the implementation of preventive measures for identified risks. Throughout this work, we will seek to answer the following fundamental questions: What are the occupational hazards encountered during the mapping on the site AKOM2 .What are possible mitigation measures that may be made during this phase of exploration on AKOM 2 website?

Present techniques used by geologists for mapping; Identify all the risks associated with activities related to this activity; evaluate the safety and environmental provisions and to suggest corrective measures for the main occupational and environmental risks associated with this activity. It is question for us to bring out the first method used to process risk analysis.

2. Risk Analysis Method

Risk analysis is based on the most exhaustive survey of all possible accident scenarios likely to occur in the workplace. As part of this study, it is necessary to start from the preliminary risk analysis (PRA) to identify, assess their level and then take steps to put a reliable safety device on our site. [3] It is based on a process of continuous improvement of working conditions and environmental protection. It allows to make necessary corrections and continuous improvement.

2.1 Identifying workplace

Akom 2 is located in the extreme south-western Cameroon, this area is a typical ferralitique soil moderately and heavily distorted yellow brown. The study area has a humid tropical climate and watered by streams depending on two water sheds. As part of our study we identified risks by sector. The mapping is performed by four teams consisting of a geologist and three casuals on Akom2. After identifying the different activities of the mapping, we identified the different workplaces requiring a preliminary risk analysis [4]. The preliminary risk analysis is a method of identification, risk assessment and consequence. The

To achieve this, we undertook to work specifically to:

Volume 6 Issue 5, May 2017 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY objective of the risk analysis will deduct the means and the corrective actions to eliminate or at least master the dangerous situations and potential accidents highlighted. The risks to be taken into account when mapping are [5]: risk of insect bite, mosquitoes may bite by reptiles such as snake, scorpion, risk of falling or burial, drowning or

hazardous lianas, risk of accidental oil pollution or runoff, etc.

2.2 Risk Analysis Approach

Figure 1: Risk analysis approach (Source: IEC 300-3-9, 1995)

The methods that catch our attention in this study are:

- Preliminary risk analysis (PRA);
- Analysis methods failures of their effects and criticality(FMEA);
- Fault tree.

3. Development of Analysis

Safety management practices comprising this system can be conceptualized as global data point .[6] describes global data points as being top-town and largely within the control of organizational managers. [7] further describes them objective group properties that vary between group but not within them. This is how the framework is consistent with the conclusion that the application of systems thinking methods afford the opportunity to take a far more holistic approach system [8].Our analysis should be directed to improve strategies of action designed to prevent accident and occupational diseases and promote a systematic approach to safety and health management. In addition, we noticed that motivation is related to the degree of participation [9].Future researches will have to focus on these managerial and organizational factors. As part of this campaign we face data lot of difficulties on the ground we took some pictures to illustrated this. The following images illustrate some risks in the field.

Volume 6 Issue 5, May 2017 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

Figure 2: Difficulties encountered during the mapping.

a: Saw Operator clearing tree trunks blocking the way, b: Poor visibility of the old forest road, c: Appearance of an outcrop of GN in the field, d:A view of a portion of the old forest road overgrown with grass and tree trunks. The different tables and figures present the preliminary analysis method of risk (APR) with which we do our study during our iron exploration campaign on the site Akom2.

Table 1: Trading probability used for the evaluation of
occupational hazards

Probability	Scale	Comments
level		
1	Improbable	Annually or un likely or never met
	Able rarely	Occur several times a year on the
2		workplace
3	Able likely	Occurence a month on the
		workplace
4	Able inevitable	Inevitable occur several month on
		the workplace

 Table 2: Gravity quotation used for the evaluation of occupational hazards

Severity	Scale	Comments
1	Low	Noor little damage without a work
		stoppage(AT,PM)
2	medium	Low Damage, stopping work(AT,PM)

3	reversible	Severe damage, resulting in permanent partial disability (AT, PM)
4	Very serious	Irreversible damage: total disability or death(AT,PM)

MP represents Vocational Disease, and AT Crash Labour. The Farmer diagram establishes the criticality of risks and prioritizes them based on color codes. The criticality of risk is the product of the probability of occurrence of the damage C = P * D(1)

T	2	D' 1	•	• 1
Table	3:	K1SK	scoring	grid

	S	everity	v of inj	ury
Probability of occurrence	1	2	3	4
	2	4	6	8
	3	6	9	12
	4	8	12	16

The risk is reduced to the highest level.
The risk must be reduced: no emergency work.
The risk must be reduced or eliminated: urgent action.
Any activity causing such risks should be discontinued.

3.1 Professional risk analysis synthesis.

Table 4:	Evaluation	of Environmental	risk [10]
----------	------------	------------------	-----------

Unit:									Day	:		
Designation	Dangerous	Predictive	Protection Equipment					Listingthe	Level of Prevention			Corrective
spots	situation	Risk	Good	means	missing	Potential	Occurrence	risk	Good	means	missing	action
					-	severity	probability				-	

Table 5 : Environmenta	l risk asse	essment criteria	ı [10].
------------------------	-------------	------------------	---------

Evaluation criteria	Ratings	Definitions			
Frequency	1	1 to several times a year			
	4	1 to several times month			
	7	1 to several times a week			
	10	Everyday			
Severity	1	Negligibleconsequences			
	4	Temporary consequences			
	7	Durable but reservible consequences			
	10	Lasting and irreversible consequences			
Environnemental	1	Low : No sensitive area			
sensitivity	4	Average : Little vegetation or implacable environment			
	7	Sensible: Urban area, near streams,			
	10	Very sensitive: Sites or protected species, formal regulatory protection, specific to site stopped,			

Volume 6 Issue 5, May 2017

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/ART20173064

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

		sensitive institution,
Risk control	1	No control.
	4	Impact partially controlled : specific actions
	7	Controlled impact and reduced: safety devices and procedures.
	10	Impact avoided: Protective devices and operational procedures, means and appropriate resources,
		organization of checks, emergency test

The evaluation of the environmental impact "E" is the product of the frequency, severity and sensitivity of the environment, weighted by the means of mastering: 2)

$$E = F * G * S/M \tag{2}$$

3.2 Summary	used for the	e environmental	risk assessment
or outfinding	ubcu ioi une	, chi i n onnichtui	i ibix abbebbilient

Evaluation	Priorite	Actions
E≥250	1	Very significant impact:
		Actions to implement a
		priority and monitor

		regularly.
50 <e<250< th=""><th>2</th><th>Significant impact: Actions</th></e<250<>	2	Significant impact: Actions
		to implement as soon as
		possible, followed to define.
E≤50	3	Insignificant impact: non-
		priority actions that can be
		medium to long term

	Unit :			Day :					
Environnemental aspect	Environnemental impact	Frequency(F)	Severit y(G)	Environnemental Sensitivity (S)	Mastery level (M)	Evaluation E=F*G*S/M	Protection action/contingency		
aspect	impact		y(G)	Sensitivity (S)	level (M)	E=F*G*S/M	action/conti provisio		

4. Results and Discussions

				Day: 15	/02/2017	1						
Désignation	Dangerous	Predictive	Protec	ction Eq	uipment	Potential						Correctives
spots	Situation	Risk				Severity	Occurrence	Listing	Level	l of pre	vention	actions
							Probability	the				
			Good	Means	Missing			risk	Good	Means	Missing	
Walking	No wearing of	Insect bites	Х			Serious	Likely					Awareness of
	PPE or not							9				gloves.
	suitable PPE									Х		
Walking	No wearing of	Bite by a		Х		Very	Likely					Use suitable
	PPE or not	snake				serious		12				footwear and
	suitable PPE										Х	machetes.
Wheelchair	Bridge	Serious		Х		Very	Likely					Sensitization to
car accident	defective	injury with				serious						taking short
on Old		trauma,						12		Х		breaks
Bridge		fractures,										operators to
		drowning										guard long
												distances
												without rest.
Walking	Slipperywhenwet,	Fall,burial,		Х		Very	Likely					Geologists and
	tired	drowning in				serious		12		Х		casuals must be
		the flooded										trained and
		areas.										made aware of
												the aid.

Table 8: Syntheses as practical supports for conducting reflection and summarize the results of the analysis [11].

Unit :forest	D	ay: 15/02/2	2017									
Designation	Dangerous			Protect	ion			Listing				
Spot	Situation	Predictive]	Equipm	ent	Potentiel	Occurrence	the	Leve	l of pre	vention	Correctives
		Risk	Good	Means	Missing	severity	Probability	risk	Good	Means	Missing	actions
walking	Shifting	Falling				Very	Likely	12				Geologists and
	Geologists and	treesor vines				serious				Х		casuals should be
	Casuals in a			Х								trained and sensitized
	virgin forest.											to aid
walking	Generalized					Very						Use good ointments.
_	tiredness	Aches.				serious	Likely			Х		
				Х				6				
walking	Crossing the river	Drowning,				Very	Likely	6				Trained and
		fractures.		Х		serious	-			Х		sensitized first aid
												and swimming.

Volume 6 Issue 5, May 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Breaking rocks	Bad geologist	injury	v	Very	Likely	6	Х	Wear gloves and
by geologists	nammer Handning		Λ	serious				suitable eye
								protection.
		malaria		Very	Likely	6	Х	Sleeping under a
Camp	Mosquito bite		Х	serious				mosquito net.
Camp	Attack wild	Injuries		Very	Likely	6		
	animals in the	serious	Х	serious			х	Make fire.
	night							

Our risk rating between 6 and 12. We need to educate staff on security during the mapping, train geologists and casuals on first aid techniques. We must have a box full pharmacy and mosquito nets for different campaigns. We must improve diet and buy mattresses that will allow our workers to have a great rest in order to produce the expected results.

Table 9: Environmental Risks

	Unit : forest					Day: 15/02/2	2017
Environnemental	Environnemental	Fréquency	Severity	Environnementa	Mastery	Evaluation	Protection
Aspect	Impact	(F)	(G)	l Sensitivity (S)	level (M)	(E=F*G*S/M)	action/contingency
							provisions
Production of	Soil pollution and	Everyday	Durable and	Very sensitive	Impact	175	Implement a waste sorting.
hazardous waste	degradation of	(10)	reversible	(10)	mastery and		
(solid and liquid)	flora		effects (7)		reduced (4)		
Production of	Air pollution	1 to several	Temporary	Very sensitive	Impact		All repairs should do with
exhaust fumes		times per	consequences	(10)	partially	140	all the engines stopped, the
		week (7)	(4)		mastered (2)		need to start the engine just
							for verification.

 Table 10:
 Key environmental impacts may occur in areas or

 workplace

	1						
Environmental Risks	Impact on humans and the						
	environment						
Dangerous toxic	Waste Environmental degradation and						
	proliferation of diseases.						
Improper destruction	Climate change and global warning.						
of trees and lianas.							
Dumping of oils	Carried by runoff into lakes or rivers						
from accidental	downstream of the extraction area of						
vehicles.	materials.						
Waters	Water related diseases (typhoid,						
	diarrhea, skin).						

5. Conclusion

After this campaign, it is a question of drawing the attention of mining companies on issues accident risks on our workers. We left the facts found in the field to present the various occupational and environmental hazards. This study will undoubtedly improve the working conditions of geologists and Casuals (workers) for this project in the making. Our study will improve the managerial system of our explorers for future campaigns. As recommendation, it would be necessary in the short term to provide for antivenoms for teams doing the mapping; boxes of pharmacy with special ointments and products for malaria; black stones; PPE and waterproof; vehicles with tires suited for each season (dry and rainy); predict talking walking to inform the supervisor geologist on site; high performance devices (GPS) adapted to a dense forest environment in particular. In the long run, making swimming and first aid training for geologists.

6. Acknowledgements

Kasi Njeudjang would like to acknowledge Bocom Petroleum who funded this research on safety management practices and worker engagement. Kasi Njeudjang thanks Dr Ghogomu Richard Tanwi (the head of department of Quality Industrial Safety and Environment at the Institute of Mines and Oil Industries University of Maroua ,Cameroon) for creating a good environment with perfect balance between teaching and research time.

References

- [1] ISO 31010.Risk Management -Risk assessment Techniques, 2009.
- Belhadad, F. Works geology practices / series: mapping / maps and geological sections; University Mohammed V-Agdal / Science Faculty - Rabat / earth sciences department level first year, 2008.
- [3] Industrial Security the notebooks. Consultation, dangers Studies,2009.
- [4] INRS, safety in quarries, 2002b.
- [5] Chartier. R., M. Lansiart Guidance on the health risks linked to careers - reflexions on components "Sources of danger" and "transfer" of the final study .Rapport impact.BRGM / RP-53246-FR, 2004.
- [6] Klein, K.J.,Kozlowski, SW.,2000. From micro to meso: critical steps in conceptualizing and conducting multilevel research. Organizational Research Methods 3 (3), 211-236
- [7] Bliese, P.D., Jex , S. M., 2002.Incorporating a multilevel perspective into occupational stress research: theoretical, methodological , and pratical implications. Journal of occupational Health Psychology 7 (3),265-276
- [8] Hedlund, A., Gummeson, K., Rydell, A. and Anderson , M.(2016), "Safety motivation at work:Evaluation of changes from six interventions", Safety science, Vol.82, pp.155-163.
- [9] Salmon , P.M., Lenné, M.G., 2015 . Miles away or justaround the corner? Systems thinking road safety research and practice., Accid.Anal.Prev.74,243-249

Licensed Under Creative Commons Attribution CC BY

- [10] K., Njeudjang, .Evaluation occupational and environmental risks associated with the operation of a quarry: the case of Ramongo career (Burkina Faso). Engineer Master of Memory specializes in sustainable mining management (International Engineering Institute of Water and Environment, 2014.
- [11] Caisse Régionale D'Assurance Maladie Rhone -Alpes Professional Risk .Evaluations in the building and public works, 2004.

Volume 6 Issue 5, May 2017 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY