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Abstract: In this paper, we propose a discrete parametric programming problem in which the feasible region is a set of the waiting time
schemes, and beginning and closing times of the stuffs for work are alternated strictly with an invariable ratio (parameter). The
objective function is represented by min-max operator. We study change of feasible region and minimum of the objective function

according to change of the parameter/l. Moreover we study relations of the parametric programming problem and a multi-objective

problem.
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1. Introduction

Generally, parametric programming problems are those of
mathematical programming problems which investigate how
to change the optimal solutions according to the change of
parameters contained in the problems.

The discrete parametric min-max problems appear in many
fields of sciences, engineering, and productions.

A solving method for the linear min-max problems using the
principle of simplex methods of linear programming has
been studied in [1]. The discrete min-max problem with
linear constraints and continuously differentiable objective

functions fioo, 1=1m can be solved by using derived
gradient methods [1, 2]. The papers [3, 4] proposed an
algorithm for solving the location problem of the immediate
service facilities described as a piecewise linear min-max
problem.

In [5] authors considered the so-called machine-time
scheduling problem for minimizing the losses due to
violations of requirements at the beginning time of works in
the manufacture production. They reduced the problem to a
discrete min-max problem. Also, the resource allocation
problems and position problems of service center can be
formulate as the non-linear min-max problems, see [6, 7].
The solving methods for the discrete min-max problems in

foo . . .
the case where is quasi-convex, concave or quasi-
monotonous are studied in [1, 8],and these methods are
applied to the optimal design of the ultra-short waves’
circuit, and the several technical control problems [8,9, 2].
Authors of [12,13] suggested the generalized discrete min-
max fractional programming, and obtained the so-called
parameter-free sufficient optimality conditions and the

duality results.

Model and solving methods of the discrete min-max
problems can be applied to solve system of convex

. L. Fo< = L .

inequalities f' ®w<0, 1=1m , since it is equivalent to the
minimization problem of the function

(p(x)=max{max f., 0

1<i<m

} See [1].

The heuristic search methods including the hereditary
algorithms,ACO (Ant ColonyOptimization) are also widely
used for solving the discrete min-max problems
[10,14,15,16].

On the other hand, the discrete min-max principle is used to
treat multiple objective optimization problems, and is studied
in the relations between optimal solutions of the discrete
min-max problems and Pareto optimal solutions of multi-
objective programming problems [11].

In this paper we propose and analyze a discrete parametric
programming problem in which the feasible region is set of
the waiting time's scheme and objective function is
represented by min-max operator or multi objective form,
and beginning and closing times of the stuffs for work is
alternated strictly in an invariable ratio (parameter).

This form of problem has occurred in a number of practical
problems including alternative production organization
which is enacted strictly according to the variable supply
limit of resources, the design of CNC multi-complex
processing team, the cutting in multiple processing technique
of software, etc.

Now let's try to show an actual problem in the realization of
reasonable control systems of the 1-comma filming process
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with a control computer.

The reasonable control systems of the line-drawing camera
equipment, with a control computer require that the stuffs for
work disposed by each implements have different process
time and their orders of priority are arbitrary, finishing up
quickly and accurately in the most short time for the
guarantee crank speed.

An important way of ensuring the film's quality and crank
speed, lowering the filming costs is that to make exactly the
moving steps of camera implements, shorten the 1-comma
crank time and prevent a lot of consumption of electricity at
first starting time under the situation that many electric
motors are used at the same time.

Generally, in the cinemas, the number of running scenes
(moving picture) for one second is 24pieces, namely 24-
comma. So, after all, it is important for us to shorten the 1-
comma crank time in order to attain a high crank speed.
Usually, in taking a motion picture, it is important to keep up
well the speeds of the different moving implements so that
the effects designed previously may occur quickly and
accurately, making to carry out mutually and independently
the several actions at the same time. This problem can be
solved only by controlling the stepping electro motors and
the several moving implements with a control computer on
the base of the reasonable control algorithms. However, the
processing speeds of stuffs for work of the several moving
implements are defined by the corresponding step's humbers
of the stepping electro motors and these numbers are
determined variously according to the structures of contents
of scenarios. Besides, in the action process of the step
electric motors there arephenomena of losing their impulses
at the beginning and closing parts of work, and to remove
these we must make the speed rates lower than the
responding frequencies of the step electric motors, or equal
to the latters. However, the running distances (step's number)
and expending times of step electric motors become very
long, since the frequencies are very low.

This problem can be solved by the following methods.

This problem can be solved by the following methods.

1) We prevent the loss of steps by letting the step electric
motor start smoothly with lower speed rate than the
maximum responding frequency.

2) Next, let the step electric motor accelerate smoothly and
gradually to the working frequency (the chain working
frequency is usually 2501 300 steps/S).

3) And then, let it pass for the most part of the whole
distance with the chain working frequency.

4) After a while, let the speed rate decrease to that lower
than the responding frequency before approaching to the
end point.

5) Lastly, let it remove its sliding to stop exactly at the end
point by letting the stepping electric motor run with speed
rate less than the responding frequency for a short time.

Therefore, in the 1-comma filming process based on
automatic accelerating and decelerating speed control
principle as above, there occurs inevitably accelerating and
decelerating timeat the work's starting and closing time of

each moving implement, which is usually given in
proportion to the number of its moving steps

And this process is required to be handled so as for its
accelerating and decelerating time not to happen at the same
time.

Let's consider the following optimization's problem on the
basis of an actual task discussed above.

In an automatic filming process, let's suppose that a 1-
comma filming K is completed by operating all the m

machines R, (i =1,_m) performing the different tasks.

This time each machine R, (i =1 m)deals individually

with independent stuffs for work by means of step electric
motors connected to control computer.

Let @ (second)denote the time required for one step's
moving of each machine, then the time required for the 1-

comma filming equal to t;=6-7;, i =1,m. Denote as
t,,(i=1Lm)the rearrangement of the above data

ti, (i :1,_m) in order of size(namely, t; >t, >--->1 ).

The vector t=(t,,t,, -
the stuffs for work.

-, t,) is said to be time data of

Obviously, the time data of stuffs for work
t=(t,t, -, t ) is given differently according to
changing the 1-comma filming scenarios K.

Now, let Abe an allowed ratio of the accelerating and
decelerating times of each machine R;, (i =1, m) required

at the beginning and closing time of the works. We prevent

the loss of steps by letting the step electric motor start

smoothly with lower speed rate than the maximum
responding frequency.

1) Next, let the step electric motor accelerate smoothly and
gradually to the working frequency (the chain working
frequency is usually 25011 300 steps /S).

2) And then, let it pass for the most part of the whole
distance with the chain working frequency.

3) After a while, let the speed rate decrease to that lower
than the responding frequency before approaching to the
end point.

4) Lastly, let it remove its sliding to stop exactly at the end
point by letting the stepping electric motor run with speed
rate less than the responding frequency for a short time.

Therefore, in the 1-comma filming process based on
automatic accelerating and decelerating speed control
principle as above, there occurs inevitably accelerating and
decelerating timeat the work's starting and closing time of
each moving implement, which is usually given in
proportion to the number of its moving steps
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And this process is required to be handled so as for its
accelerating and decelerating time not to happen at the same
time.

Let's consider the following optimization's problem on the
basis of an actual task discussed above.

In an automatic filming process, let's suppose that a 1-
comma filming K is completed by operating all the m

machines R, (i =1,_m) performing the different tasks.

This time each machine R;, (i :1,_m) deals individually

with independent stuffs for work by means of step electric
motors connected to control computer.

Let @ (second)denote the time required for one step's
moving of each machine, then the time required for the 1-

comma filming equal to t'i =07, i=1,_m. Denote as
t,, (i =l,_m)the rearrangement of the above data
ti, (i :1,_m) in order of size(namely, t, >t, >--->t ).

The vector t=(t,,t,,
the stuffs for work.

-, t,) is said to be time data of

Obviously, the time data of stuffs for work
t=(t,t, -, t) is given differently according to
changing the 1-comma filming scenarios K.

Now, let A be an allowed ratio of the accelerating and
decelerating times of each machine R;, (i =1, m) required
at the beginning and closing time of the works.

In the whole process from the time of each machine
beginning to works to the time of 1-comma filming ending
each machine must be located at the suitable position, and it

is denoted by waiting time R, (i =1,_m) decision variables
X=(Xy, X,, +

under the strict constraint condition that the accelerating and
decelerating control cannot be performed at the same
moment.

Each machine R;

*, X,,), in dimension of which machine

requires thetime  f0 =X, +1;,

(i =1, m) to handle its stuff for work.
We use the notation x +t = ( f,x9, f,0,, f00) -

Now, the problem determining the waiting time scheme
X=(X;, X,, ==+, X,,) of each machine R so thattotal time

to end 1-comma filming process (the time taken to the
machine whose operation ends last) may be minimized, is
formulated as a parametric discrete min-max problem
ormulti-objective problem. More generally, we can consider
problems of the following form.

We use following sets:

X ={x=(X, X,, -, X, )eR"
X =X, (i#]), i,j=1m}
-I:Z{tz(tlvtza"'vtm) (t|ER+\{O}1|=11_m)

A(t >t i=Lm-1)}
Forany A € (0, 0.5) define following sets.

i+1?

A =[x, X, + At U, + (A=)t X, +t,), i=Lm
C.=[x,+4At, x,(+(@A-A)t), i=1m
B,=A,UC,, i=1m.

A vector t=(t,, t,, -+, t )eT is called a time data of

stuff for work. The feasible set is as follows:

Gy ={xe x\ ANA =¢ (i#]), i, j=1m}.
RWXEGun%tef, the fio=X+1t s
performance time of i-th stuff for work.

called the

For the feasible region and objective function defined above,
we consider the following problems.

minmax f.

X 1<i<m

XeGu:y
{min( o0, F00,
X

(1.1)

s Fao )(1.2)

XeGu;
[Definition 1.1] Let (1,t) € (0, 0.5)xT .

m
If min max fi(x)=tl,t1 < min max f-(x)<zti,
i-1

XeG ;1) 1<i<m XeG,,p) 1<i<m :

m
min max f,o =D t,
i=1

XeG;.¢y 1<i<m

Then we call the X=arg min max f, ) A -foremost

XeG ;) I<ism
optimal solution, A -middle optimal solution and A -free
optimal solution respectively. We denote the set of all A -
foremost optimal solutions, the set of all A -middle optimal
solutions and the set of all A -free optimal solutions by

G(M), G(/I;t) and é(i;t) respectively.

In this paper we study following problems.

First, we study the relations of variations of the feasible sets
and optimal values of objective functions according to

parameter A .

Second, we propose a solving method of parametric discrete
min-max problem (1.1) in the relation of multi objective
problem (1.2).

Third, we study the theoretical and methodological problems
how to obtain the critical intervals of parameter
corresponding to the foremost, the middle and the worst
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(free) situations in the problem (1.1).

The paper is composed of as follows. In section 2, we give
some definitions and consider the relations of variations of
the feasible sets and optimal values of objective functions
according to parameter A, and prove some results in
connection with sufficient optimality conditions. In section
3, based on the results of section 2, we obtain a solution of
parametric discrete min-max problem (1.1) in the relation of
multi objective problem (1.2). In section 4, we describe the
research results of the third problem above.

2. Parameter-sufficient optimality conditions

First, we describe the basic conceptions and notations.
[Definition 2.1] Let 1 (0, 0.5) and t €T be given.
We denote (1-24)t,—t; as A
(i<j,i=12--,m-1 j=23---m).

If A;; >0, then we say that B, is assignable B, by Ain

for all i, j

the first order and then A,; is called first order freedom
degree of assignation to B, of BJ.. If Aij <0, then we say
that B exclude Bj by A in the first order and then Ay is

called first order freedom degree of exclusion by B; of Bj .
When A;;>0, we denote the value A;; —At, simple as

Eijs for all

G, j,0) e{l---, m—23x{2, -, m—T}={3,---m}
suchthati < j < /.

If¢. ., >0, then we say that B;is assignable Bj and B, by

ije —

A in the second order and then & ., is called second order

ije
freedom degree of assignation to B; of BJ. and B,.

If &, <0, then we say that B; exclude B; and B, by 1
in the second order and then &;;,is called second order
freedom degree of exclusion of B; and B, to B;.

From above definition, if Aij is the first order freedom
t, -t

degree of assignation (Aij >0),then A <

,if Aij is

1
the first order freedom degree of exclusion (Aij <0), then

t; —tj -t
, and then the value

J is called the first

A>

order ratio of assignation (exclusion) of Bj to B;,

respectively.

t, -t
Similarly, if &, >0 then A < ——, if &, <0 then

t. -t

! J

2t, +t,

j

is called the first order ratio of assignation of Bj to

B

B

t—t,
And ————
2t, +t,

is called second order ratio of assignation

(exclusion) of Bj and B, to B, respectively.

i_tj

by A 4
YA o
i 12t +t,

In particular, if j=i+1 and/=1i+2, then we denote

We denote by £,

simply as Aij (is called 1 -th first order adjoining freedom

degree of assignation (exclusion)) and as Eijs (is called i -

th second order adjoining freedom degree of assignation
(exclusion)) by A; and &, , respectively.

ti _ti+1 ti _ti

2t, e 2t +t,,

order adjoining assignation (exclusion) ratio, and

second order adjoining assignation (exclusion)
ti _ti+l ti _ti

and —% asA .,
2ti Zti+ti+2 I

M ; , respectively. We use the following notations:

+1

Moreover, are called 1-th first

I -th
ratio,

respectively. We denote

A,=min 4;,, A"=max 1,(21)
1<i<m-1 1<i<m-1
H zlgpg?n)fgﬂii+lm(2'2)

Notice that there exists i,€{L,2,---,m—1} such that for
any j €{ig+L ig+2, - ,m} A, <A
We denote simply this relation as (A io i ™.

[Definition 2.2] Let @ = (A,,4,,-+*, A ,,;) where A, is |
-th first order adjoining assignationratio (i =1,m——1) The
components in  [A,, A7] of the vector are called
assignation points of A, corresponding to @. We call the
number of assignation points of A, the order of/Il and

denote asindex’ .
A

In like manner, we call the components in [A,,4,)
exclusion points of ﬂ,l corresponding to @ and call their

number the order (of exclusion) of A. and denote as

1
index @.

z
Moreover, we denote the process reducing the number of

exclusion points of A, as (index” @ ).
A1

[Lemma 2.1] For any A, A" € (0, 0.5) such that
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A'> A" the followings hold true:
Gury D Guny,
min max f, o < min max f, ..

xeG(a; 1) 1<i<m xeGx; t) I<i<m

ProofLets denote A; and C; corresponding to 4= A" (and
A=A =A"+& (Ve>0) by A7, C",(i=1,m) and
A’ C' respectively.

1
Then A\ D A", C! oC', (i=1m).
Hence, Gty © Gy
so min maxf(x)> min max f,com

xeGx:t) 1<i<m XeG ;1) 1<i<m

[Corollary 2.2]
Givent e T, if min max f,x =t, for an

xeG; t) 1<i<m

A'€(0,0.5), then min max f=t, for any

xeG(a'; 1) 1<i<m

A"=0 (A"<A ) too. m

[Corollary 2.3]
Givent e T , if min max f W—Zt foran A" € (0,0.5),

XeG ;1) 1I<i<m i1

then also

VA"<05(A'<A"), min maxf(x)—Zti .

XeG4"; 1) 1<i<m

Define followings:

A t, -t
A =min Al’% (2.3)

2 (Ztl _tm)

t
A% =miny A", — (2.4)

23,
i=1

/i:max{%, /‘le}(%)

[Lemma 2.4]

Foranyt=(t,,t,,---,t, ) eT,
t, -t

A, <1—</1 (2.6)

Z(Zt

tl_tm < tl

m - m
20t -t,) 2>t

i=1 i=1

Ain > A" (28)
Proof
First, prove (2.6). From the definition of A,, A~ for any

teT,

2.7)

1-22.)t, >t ,
1-22°)t, <t,

i=1m-1
=

i=1m-1

i+1?

m-1

mz4(1_2ﬁ’*) t, > Ztm
i-1 i-1
§(1_2/1*)ti Sftm
i-1 i=1
t1 —tm >2A, fti

i=1
t1 —tm <21 nih

i=1

(2D 22,5 +(1-22)t,
i=1

t, <Y 247t +(1-22")t,
i=1

Next, (2.7) is satisfied from the inequality

m

m
t, t-t, tm(éti -t)

Z_Zm:ti i Z(Zm:ti_tm) i Z_Zm:ti(zm:ti_tm)

Finally, prove (2.8).

t. t _
%(1— ey gty ot

t o2
t.
because ——> -~ i=1m-1.
b
t. -t t, -t
Hence, ‘i i 1 m’ i=1lm-1
2t, 2t1
S0 1max{/1 <1,
<i<m

From the inequalities (2.6)-(2.8), the following results are

obtained.

> 1,29

3
i=1
t,—

>—t>z (2.10)

Z(Zt

From the lemma 2.4, for all t eT ,

A

im
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0<A, <i<i” <1<05(@211)

This shows that the interval (0, 0.5) can be always divided
into 0<A, <A, <A"<1<05 foranyteT.

[Theorem 2.5] (Parameter-sufficient foremost optimality
condition)

GiventeT, if 1€ (0,4.], then
min max f.co= min f =t

XxeG(4; 1) 1<i<m (%) XxeG(4; 1) 1) 1

Proof

From corollary 2.2 it is sufficient to prove that

min max f,co=min f,=t, atA=4,.

XeG(a*; t) 1<i<m XeG (A 1)

According to (2.1), (VteT, 1=1,)=

(A<A, i=lm-l) (A, 20, i=1lm-1)<
(@-22)t >t ,, i=Lm-1)

i+1?

< (uE)=mB,.,):
i=1,m-1), where £ is length of interval.

Hence, selecting some X, € Ga.;t) S0 that

X:=O,CiDB i=1,m-1 we have

i+1?

fo =1, fioo > fiaen  i=1m=1, where X isthe

first component of X, .

Therefore, max f;x,) = f,x) =t,, s0
1<i<m
max f oo = fi 0 2t for  allxeGu.n, hence,
1<i<m
min max f,o > min f o >t,.
XeG (44;1) 1<i<m XEG (Ay;t)
From thiswe have
min max f..o== min f o=t,.
XE G (14;t) 1<i<m '(X) Xe G (44:t) 100 1-®
[Theorem 2.6] (Parameter-sufficient free optimality
condition)
LetteT.
m
1 .
If = . then min max f.,o= >t for an
* 3>ﬂ'1m xeG(2;1) 1<ism i) ; ! y
Ae[l,0.5).
m
o If gﬁxllm, then min max fi(x):Zti for any
i=1

xeG(a;t) 1<i<m

Ae(4,05).
Proof According to corollary 2.3, it is sufficient to prove

m
min max f=>t, ati=7 in the first case and
i=1

XeG(i;t) 1<ism

m
min max fn=>t a A=A, +& for all

XEG (g e t) 1<i<m i1

g€(0,05-24,,,) inthe second case.

. =1 1
In the first case, we have/lzg. Now, let ,1:5, then

B,NB;=¢, (i#]), i,j=Lmfor al X € G(l;v since

(/1=%)c>((1—2/1) oAt i-Im)o (u(C))=

M, i=1
2
(1> Ay) & (L2201, <t,) & (u(C) < u(B,))(212)

'...'m)

Hence, ,u(UBi):Z,u(Bi)for allXeG;;yand then
i=1

i=1

m
min max fe= >t .
i=1

XeG(1;t) 1<ism

1 1
Next, in case 0f§ <A, ., using the fact that (1 > 5) S (

uc) <48

c€(0, 0.5-4,,)and

Im»

=1---,m) atA=A4,;+¢& for any

(2.12), we have

B,NB, =g, (i=j)i,j=1m forall XeGasns:0).

Hence, y(LmJ B)= Zm:ﬂ(Bi) for all X € G(a,,+¢ : 1) and finally

i=1 i=1
i m
XEer(r}1:mr+1€;t) E?.Zr)n( f0= ;ti .
According to the theor;m 2.5 and the theorem 2.6, we
know that the intervals (0,4,] and [4,0.5) ((Z,0.5)in

1
case ofgéilm) are the parametric effective intervals

where the optimal values of objective function approach best
and worst (free) situations for all t €T , respectively.

Theorem 2.7] (Parameter-sufficient middle optimality
condition)

If c then i - (x N _for all
A (A1 A1l t1<xer2|(9[)£22?n( fi )<iZ:1:tl

teT.

Proof

Since (4> 4,) < (1-2A4)t, <t,) & (1, > Hey)

max f,(x) >t, for any X €Ga;r) where A > A, . Hence,

1<i<m
min max f,o >t, forall 1e (1, 4,1

xe G(z;1) I<i<m

In addition, for any t eT there exists a point X € G(1,,:1)
such that

m

max fi(g) = Zti —-t,. So,

1<i<m i1

min  max f, < Zm:ti —-t, < Zm:ti :
i=1 i=1

X€ G (4 1p; t) 1i<m
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Therefore, from the lemma 2.1, min max f. (x)<Zt

xe G(it) I<i<m

forall Ae (4,, 1,,].=

[Definition 2.3] Let t beinT .
If Ell(t)c(O 0.5) min max f.o =t; forall ﬂel

XeG (4 ;1) 1<i<m

, then lis called A -foremost optimization interval, if

3n<(0,0.5), min max f —Zti for all

XeG (2;1) 1<i<m

Ae |~(t), then |~(t) is called A -free optimization interval, if

Ell(t)c(O 0.5), t,< min maXf(x)<Zti forall
=1

XeG (4;1) 1<i<m
Ae |_<t) , then I_(t) is A -middle optimization interval.

From the theorems 2.5-2.7 the intervals (0, 1,1, [ 4, 0.5)(

(1,0.5) in case of%ﬁilm) and (4,, 4,,] are A-

foremost optimization interval, A -freeoptimization interval
and A -middle optimization interval respectively.

From the lemma 2.1 and definition 2.3, it can be easily
verified that the following facts are true.

Forall A", A" ) (ﬂ' < ﬂ"), é(,v';t) C é(g';t) ,

Forall A, A" e Iy (A’ <A"), Guriy < Gy,

Forall 2',4" € i (4’ <2"), Gurin=Guv .

We denote the supremum of A -foremost optimization
sup IA(t) and the A -middle

interval supremum  of

optimization interval sup l@ as Pé(t) and P,

respectively.

3. Solving the problem according to sufficient
optimality condition
A set of A -foremost optimal solutions éu;t) defined in

section 2 can be also written as

G ={XxeBul|(x,=0)A (B, =DBi )}
Given 1€ (0, 1,], denote the set -
{xeGy; t)| CoB,, i=1Lm-1}@31)

by D:t) . Then obviously D@ty é(i;t).
Now,we consider thefollowing optimization problem for a

given 1€(0, 1,] :
min f,
flo>fi0, i=1m-1382)

xeGu:y

According to the theorem 2.5 and its proving process we can
see easily that any X € D:v is the solution of (3.2) when

0<A<A,

[Theorem 3.1] The following feasible solution X € é(ﬂ;t) is

the solution of (3.2) (the optimal solution of problem (1.1))
and the pareto-optimal solution of problem (1.2) for any

A1e(0,1,]:

0, i=1
R o=<i1 _
"D @t+A 0, i=2m

n=1

N ER))

whereg, €[0, 1], (n=1m-1)is arbitrary constant and

=(@-2A)t, —t,,,(Nn=1,m=1) is n-th first order

adjoining freedom degree of assignation.
Furthermore, Min max f, ()= m|n fLoo =t,.

xeG(a;t) 1<i<m G(a;t)
Proof First, prove that X is the solution of (3.2) when
0< A< A,. Obviously,

i1
fo—f 0= Z(ﬂtn +A,0,)+t —

n=1
[i(ﬂ’tn+AnGn)+ti+l]=
n=1
=(1-A)t—(t,+A,0,), i=l,m-1.
And, we have (1-21) t, >t, ,+A, 0, i=1,m-1,s0
@-A)t, -t ,+A,0)24t, i=Lm-1
Hence, f;(0 — ;0 > At, >0, i=1m-1. o

fio> fiam, i=1,m-1.

It is clear that eGuy, and fl(x):tl, S0

min f 0 = f,x =t,.
xeG(z;t)

Next, prove that Xis the praetor-optimal solution of the
problem (1.2).

i-1
fio=%+t;=> (At,+A 0,)+t <
Since n=1

i-1
<Y (At +A )+, i=2m
n=1

i—1
letting  &,) =Y (At,+A,)+t, i=2m, R is the

optimal solution of the following €(1) -constraint problem.
mxin f,0
fio<&w, 1=2,m
x e G

Therefore, X is the pareto-optimal solution of problem (1.2)
forallA€(0,1,]. m

[Lemma 3.2] Assumem > 3. Then there exists t,e T such
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that 1" < A, and éu;to)z Dt forall Ae(u’, ,].
Proof First, prove that there exists some t, eT such that
O<u <A,.

For this, it is sufficient to prove that there exist some
0 0 0 r
t, = (tl,t2,~--,tm) eT

such that
t7 —t7,=d (0O<d(constant) ._t
2(m-3)
o i=1m=1andd, > U, »r1n-
Indeed,
0 —t° -
f=t o i) and
2t 2t]
to -t d [
P L , (i=1Lm-2
Hitm 2t04+t° 2t°+t° ( )
are the monotonic increase series with 1 ,
. d
S0 = -] = and
/I* 19"]1!“[11{2 I} /11 th
. d
H :12?_(2{ﬂii+1 m}::um—Z m-im— 2t;72+t%'
Moreover,

0

t, o
(d <m)—>(2(m—3)d <t;)—

(2t —t;,) <ty) > (2t <2t , +t7)

Therefore, 1, > 14 5o 1m-

Next, prove that G(,.1,) = Dat, forall A e (", 2.1
From the definition, D;.«,) < Gty forall 2e(u, 4.]-

If there exists Ae(u", 1,] and Xe é‘(i;to) such that

X Duity), then XeGu)\Dwuity. And  then,

C, »B,, atsome io€{1,2,--~,m—1}andBlszjBi- on
i=1

the other hand,
(ﬂ, >IU*) —>(ﬂ >luii+1m;i Zl,m—Z) d

MA')},izl,m—l)
2

either C.oB, for all

(0< Heo—Hep<min {
Therefore,

B,=JB;
i=1
This leads to contradiction. m
[Lemma 3.3]
Fortpin the lemma 3.2 min max f, ) >t,,where&is

XEG(1*+5;10) 1<ism
arbitrary positive number.
Proof.

From the lemma 3.2, if X € G(4.:t,) then X € D(1,:1,) .

However, if,=4,at someiye {1,2,-+,m-1}, then

B,,.@C, forall X €G e ity) (Ve >0). Furthermore,

from the proof of lemma 3.2 when A > 11", B, # U B, for

i-1

all xe Gz ze:t,) and therefore X &Gty . Itiseasy to

see max f;(x 2t1+(/1i0+£) t, >tV XeGupeit) -
1<i<m

Hence, min max f, o>t m

X€G (4 #e:tp) 1<i<m
[Lemma 3.4]

If there exist somef e T such thatd, =A4,, then

min  max f,o>t, foralle >0.

XeG(aq+e ;) 1<i<m
Proof

Indeed, for  all X € Gyqe;t) (B, 2B,) >

— (B, % JB) > (max f>1,) because (1 =1, +¢) —>
i=1 B

(A>A4,) > (A, <0)for alle>0.0n the other hand,

max f,o >t +(4,+¢) t,>t, forallx e G, ..ty -

I<i<m

Hence, min max foo>t, =

X€G (11+¢;) 1<i<m

According to the lemma 3.2 and the theorem 3.1, we have
the following result.

[Corollary 3.5]
Thereis t, € T (for which &< A, such that a solution of

the problem (1.1) is represented by the expression (3.3) for
al Le(u',1.].

We denote the sets of all teT satisfying the conditions
H'<A, or Ay=4, as Ty, , T, respectively. Then,
using lemma 3.3 and lemma 3.4, the following result is
obtained.

[Corollary 3.6]

suplo=P,y=4, forall teTy, UT:.

Now, let's find the optimal solution satisfying the parameter-
free sufficient optimality condition. Denote the set of all

permutations of the set |I={, 2,---, m} by
Hm(|Hm|:m!) and

T = .
al az oo am

For any 7,7, €Il , the relation 7; <7, is defined as

letr eIl,,

() 2 (x,) and the relation X' < x” for X', X" € Guin

by Px)< P , where 1]z is the reversed number of 7
m ~

and P = in (xeGu:).
i=1

Given any A€[1,0.5), we define the mapping
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g:1I1, —>G(/1;t) as follows X=g(;r)(7zeHm),

X= (X, Xy, 0 0%, )" G where X, =0,

X"’i= Ztan’(i =2'_m) and
n=1

(Ko Xyt o0 % )™ = (X0 X0 X))

Then, g is an isomorphism of 11 _ onto G(m) .
[Lemma 3.7]
‘G(m)‘= m! for all 1e[1,0.5)(Ae(4,0.5) in case

1
f gé A,) and the solution of problem (1.1) giving the

minimum value to O (x) exists uniquely.
Proof.
The fact that ‘G(m)‘zm!for all  A€e[A4,0.5)(

= 1
A €(1,0.5) in case Of§ < A1), is obvious because T
and Gu .y are mutually isomorphism.
m
Py = Z X;
i=1

(m-Dt,+(M-2)t, +--+ Zt%jtamz

m-1 m-

(m-s)t, > Z(m s)t, ., forall xeGu.y-
s=1

m

3%, =35t -

i= i=1l n=

Besides,

s=1 =

And, settling on 7, = 1 2.m , we obtain
m m-1---1

Xo =)= (0, X1y X oy X5, X1 )™

= (X1’ Xy, mel’o)

t,.0)eGuy -

m m
=t Dt
n=2 n=3

Moreover, P y,) is the minimum value of p(x) since

m-1
(M=2)t, +- 42t +t, =Y (M-s)t

s=1

p(xo) = (m—l)tm +

m-s+1 *

Hence, the minimum of p(x is unique because { is one to
one mapping. m

Now, consider the following problem when A €[4,0.5)(
A€ (1,0.5) in case of% <Ain):
mxin f .o
fo> fia0, i=1m-1(3.4)
xeGu .1

Using the lemma 3.7, we obtain the following result.
[Theorem 3.8]

The following point X eéu;t) is a solution of (3.4) (the
solution of problem (1.1)) and the Pareto-optimal solution of

problem (L.2) for all A €[4,0.5) (A e (1,0.5) in case of
1

gsg“lm)-
0, i=m
X =< . (35
Dt i=Lm-1 9
n=i+1

And then min max f, = min fl(x)—Zti,
l:t .

xeG (4 ;) 1<i<m

Proof. For % e G,y defined by (3.5), we have

- |+1 zt +t - Zt +t|+1)_

n=i+l n=i+2 i=1lm-1
=t + Z t,+t - Z t, -t =t
n=i+2 n=i+2
Hence, f,—f. x>0, i=1m-1.
And oo =x +t >t
Moreover, fm(z) :tm and accordingly

mxin f,c0o="f,®=t,. Furthermore, the Xis an optimal
solution of a following lexicographic problem:
min f_ 9
X 1

i-1

fai(x):zi:tan, (a; e \{a}; i=2,m)-
n=1

k=1
Xe G(). t)

Hence, the X corresponding to

7y = L 2.m cI1. is a Pareto-optimal solution of
mm-1---1 "

point

problem (1.2). m
Given te'I:, the algorithm finding the optimal solution of
problem (1.1) is as follows:

First, compute the values A, and A.

Second, divide the interval (0, 0.5) into three parts, namely
(0,2,1,(4,,4) and [4,0.5)((1,0.5)

in case of

1
ggﬂ’lm)-

Third, find the solutions of the problem (1.1) corresponding
to the values of 1. If 4€(0,4,] then (3.3) gives a

solution, if Ae[l,05) (Ae(4,05) in case of

1 : :
§ < A,,) then (3.5) gives a solution.

4. The relaxation of parameter-sufficient
optimality conditions

[Lemma4.1] Lett’, t" e T .
If t'=at”" (ae(0,+x)),
hen }“i’j :ﬂ’i”j and /Ll;j/ :ﬂ;’jrz'.
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Now, define following set dependent on 1.
A={o=(Ay Ay Ana)

. (4.2)
|2,<4,<A%, i=Lm-1}

Moreover, we define a mapping ¢ :T — A as follows:
= (/11,/12,-.-,/1 ) =o(t),

—t.,
A, /”L(t)— - 2 j=Im-1.

{-l:w}wel\ )

Let's consider a family of sets where

To= go{i,) (weA).

[Lemma 42] T=) T, and Tois selfsimilar set, i.e.

weA

t'=at" forall t',t" €T, (Ja €(0,+0))n

(1 2 - m-1
Let ={1,2,---,m-1}, 7=
{ | k, k, - k

We define a mapping ¢ coeA—)y ell

€I, _,.weA.

m-1

ﬂ(k)Dmld(k A}k, eJ\U{k} i=1m-1,(42)

1<j<m

where mid(k): K;-th middle index (K;-th smaller
number) operator considering even the repeated number and

i-1 PR
J \U{ks){zm—i, i=Lm-1.
s=1
For example, mid(2){0.1,0.3,0.2}= 1% =0.2,
1<j<3

Ljs3 1<j<3
According to the above definition, mid@{4,}= min {1}
1<j<m-1 1<j<m-1

and mid(m-1){4}= max {7}

I<j<m-1

Consider a family of sets {Ay }

where A, =¢ (ye I1,,.,),
A ={(A%), 259, . gty ¢ A‘ A0

7ellpy

(4.3)
=mid (k ){ﬂ,},k,eJ\U{k} i=1m-1}

1<j<m-1
Let’s denote the lexicographic order of y,, 7, as 7, <7,

and define the order @, < @, as @,€ A, and ®,€A,,.

Then the mapping@: A — I _ ,is an order homomorphism

and I1_, is homomorphismto A .

The order @' <@ for all o, @"€ A, means
m-1 )

7T, (@) < T, () ,where;zy(w) - Z/ii ) (4.4)
i=1

Moreover, the order

Ay1 <A ” for

A71’A72€ {Ay }76 n,, means 7 < 7,.

[Lemma 4.3] A =Z A, and Aitis a linearly ordered

yellyy
set. m
Now, let's denote the composition mapping of ¢:T — A

and  g:A—>TI,, by h=gop:T >, and let
=h"(1)=(¢°9) " (), (weA, yell, ).

From the lemma 4.2 and lemma4.3 we have the following
result.

[Theorem 4.4] T :Z Z To, (-I:a)(y)zz fw) and it is

yelly weA, weA,
linearly ordered set with the following order in the following
meaning. Let t', t" T . If t’ eT, t"eT,, ® # " then
P(t") < p(t") (0 < @")either, if
t', t" e T, then t’ <t” means t: <t')i =1m.m

t' <t" means

Let J,=J\{} and denote the set of all permutation
y 12 - m-1
Vo=0w= ,
0 () 1 kz kmfl
J, i=2
k. e i-1 -
! Jl\U{ks}, i=3m-1

Then, H(”l cIl,
[Lemma 4.5] sup I ) zﬂ* for all te'I:w(,,)

as Hr(ny_i).

where ye T17¢

Lety, {1 ;

' m—l] ,and denote

m-1

=¢ (7e) WDy (r)= argmlnﬂy(w)—argmlnz/l(” and

weA Yo

T“’o(Ye) = ¢ (a)o(,'/e)) :

[Corollary 4.6] sup IA(t) =A,= Pé ) for all te'lzmo(m ,

and A, =4,=P. 0.
Now, we consider the following problem.

P,:max(A—A1,) 4.5)
min max f,o =t,, 1 €[4,, 1,](4.6)

xeG(1;t) I<i<m

=P w.
let A, :{weA| k,=q}, q =1,m-1,

A= ZAq for the set {Aq}q |

qed

If /1( op 1 IS the solution of P then, obviously, /1

Now, then

And according to the mapping @ =@ ), (vteT)there

exist three components of the vector w e A that equal 2, A{”

and A", respectivelyand if A% =4, (9=1), then
A5 =P, w= 24, fromthe lemma 4.5.
Now, consider the method searching the solution
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/10pt P. of problem P, wheni{” =1, (#1),
W 28 (i )i, j=1m-1.
We know that, if t;>t; for all i,je{2,3, m-I}x

{3,4,---,m} such that i< j,then A;; <A,; and vice
versa. Furthermore, from the definition 2.2, obviously,
indexX’w=m-q, index o=q-1.

/11“” Ai(q)
Therefore, the points for searching Pé(t) have to be chosen
so that the number of exclusion points of Z(lq) for
components of @ belonging to [/1*,/1(1q)) may be no more

than (0 —1), and along the direction in which the first order

freedom degrees of assignationA,; (i=2,m) increase
(A, M (ort;,i=1,m decrease).

[Lemma 4.7]

For all weZAq:a):gp(t),(tef), the  solution

qel

P . ..
ﬂ,(op°t) = P, of problem P, is the minimum value among
the (g-1) exclusion points for /”L(lq) in the direction

(index” ol A A, T)and the corresponding second
)'1
assignation ratios, where ( index" ol AAT)is the
Z’l

direction along which in((j()ex‘ @ decrease and A, ; increase.
2

Proof
First, prove that the solution ﬂopt = Pé @ of problem P,

exists among the exclusion points for Z(lq) belonging to the

interval  [A4,,AP] and the corresponding second
assignation ratios.

Lets contradict the above conclusion, then, obviously,when
30,eM, /1(0p°t) =P, )e(ijz B /1(%)) accordingto the above
assumption, Jipell, 2, %*_Pl}’
€ ie 120,p=10-1and A;20  for all

je{d,,9,+1 -+, 0}, where M [J {1,2,~'-,q}. Hence,

from the definition 2.1, /1(Op°t) SHij sty P =1 Q,-1
and A7) < A

opt <A forall je{q,,05+1 .-+, 0}
lets = rgijn{ﬂipipﬂaq ST A} then,

Now, obviously,the

condition (4.6) is satisfied also for A= PG )+ 0. This

means that Pé () is not the solution of problem P,. Now,

because the value of A decreases along the direction

(lindex” @l A A, T) the conclusion of the theorem is
ﬂ’l

true. m

Now, by using order relations

0<i(1) <ﬂ(2) < ,,<A(':I—l) <A(C|) <ﬂ(l‘4+1) <een
Qg aq Qg

< ﬂ(m 2) < AmD

Pmy

We can divide the interval (0, 1" ] as follows:

q m-g-1
(0,4 ]=(UA5}U[ U Bf],

s=1 =1
where Ag = (l(s_l), /1(5) 1,s=1,4;
B — (/’L((HT l) l(q+r)]
20 =0, A0 — 4 1 X(Q) =l(lq).

Denote K [] {8+AS} where 0" Ag [ /1(5)

=1 m—-qgq-1 and

seM

s—1
as el \U{av}, s=1 4
v=l

G-S+1 .
Moo M\ J{s+v-13 s=2, 0,

v=l

Now, we break the problem P, into the multistage problems

k
0 J, \U{“sv}' sieM,

as follows.
The firststage problem is as follows:
max (A —A,)

Y min max fo =t, Ae[i, A0]

X I<i<ag +1

where S, s thatislqu,asleJyasfgfgm{as}* and

A0 /1‘;'1) .

Let /1(0,3 be a solution of the problem P, and consider the

following second stage problem.
“max(A-4,)
2'min  max f x) =

X 1<|<a+l

t, /le[iza /I(OPSZ

0-§;+1
Now, assume 3S,e U{Sl +v-1},
v=l
- As}’ S, #S,

0 € +
" erAL

Then3s,e M, , Jased, . as=min{a} where
1 seM;

q-$,+1

M,0M \[ U{§l+n—1}U{sl} J and 1,047

ﬁ,( 2)

opt De a solution of problem P, and

Similarly, let
consider the following third stage problem.
max (A—1,)

P
3 min max f(x>—t1,/16[13,/1(op2t)

X 1<|<a+
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qul o) As‘ , SAzatS2
Assume 3S,e| s, +v-1 , 1 % e ! ,
2 = 2 opt {a A } _
then

3s;eM, , 3as e, o= inar:{as}’ where
. 9-§ 41 7 (s5)
M,IM\ U{§2 +n-3 s, 5,3 J and 1, /1%3

Generally, let AP

opt  be a solution of problem P, ; and

consider the following k-th stage problem.

max(A-4,)
k- (Pead 1’
mxlnLl;TlaX fl(x)_tl'ﬂe[ﬂ“kl opktl
§k—1"+'skfl’

G-§y 4+ A
Assumeaékile U {5, +v-1, /10?!1 Ses
vl {é‘*AS }, Se1 =Sk

o= min {a} where

Ekl

Jand}tkD E:Z)

then3s, e M, , , Ja, e J%H’

QS+1

M0 M| ( U{Skl+n 1})U(U{ })

Finally, let APn)

opt be a solution of problem P, ,, and

consider the following N-th stage problem.
max(A-4,)

N _ A (Pna)q”
mxlnLrIn<§3<+ fioo=t,, 1e[ly, Aopi ]
Assume

-S4 +L A .
. S #S
St N-1 7 SN
NleU{SN 2tV /102”{1 L . :
{0 As,H}l Sna =Sha

Jsye MN—l !(MN—l\{SN}=® ),

then , where
Jdag €J, ,as=min{a}
N SN—l seMy 4
i R 1 and } (s)
M0 M (U G- UJUGTH) Ayl AQSN
n=1 r=1

[Theorem 4.8]

The value /10;3 defined by

//L(()P;t) =max U{ﬁkj Iujj+las+l } ’ k:l,_N (47)
1 ‘

is a solution of the partial problem P, (k=1 N), where

B is given as follows;
k-1
Py
O I gy, a2 Uopid 1=1 a1l for all
Yoot

kK—1}, then B, ;01 5.
Ive{l2,---, k-1}, Eljoe{l,z,...,%k_l},

ve{l 2, -,
@ If
k-1
ﬂjoio+1asf1€u{ﬂt()zlt)}’ then Byy=0 and (asj-lzask)<:>(
il

B, 1 &y )i (agtlzag ) (By, 10 Vi, ) Where

l(sk)
sy (sk)
,u ' :ujj+1ask+1 < j’ask
jitHla+1
k (50) (Pe) (48)
k k-1
§kjE 11 iask <,ujj+1as+1 < ﬂ’opl
k
(Px1)
ﬂ’upk; > 2 (Pe4)
' ,u“+1a +1 = opt
lujj+1a5+1
k
)L(Sk)
I ) < //L(Sk)
! as atl = TVag
)7 7Sk k
asﬁaskasﬁl
a,, [ B Y N 4.9)
kag ' ag ‘stas‘*‘l opt
v k v
ﬂ”‘sﬁ’zskask*l
(Pes)
j'OF't 2 > (Pea)
! ag agtl T opt
u v Sk
ag aska5+l
(sy)
/Iask < ﬂ,(sk)
1 'u‘zsj“sfz‘lsfl_ asg,
luasgasﬂ askﬂ v
g (4.10)
s, A5 e dgh (sx) (Pea)
}/kasvj U ’ ﬂ'ask < /uasjrzsﬂas;rl /Iopt
‘lsﬁasﬂ a5k+1 !
(Pkfl)
Aopt (Py1)
' lua a +2a +1— opt
ﬂas‘asfl ask+1

Proof It is easily proved by using (4.8) — (4.10) and the

lemma 4.7 and the optimality principle for the problem Po(

optimality principle for dynamical programming). m
[Remark 4.8-1]

If 3KoefL2 N}, 2g0s € Ay then oo o .

[Remark 4.8-2]

From the Ilemma 4.1 and the lemma 4.7,
P ~

ﬂ(op(’t) =P.ty=Pg) for all t',t"eT such that

t'=at”, (Va €(0,+x)) .
Now, we describe a numerical example finding the solution
Pé (t,y of the problem Pyand the corresponding solution

Xo€ é(PG(tO);to)Of the problem (1.1) with the given data

toeT.
Let t,=(23,17,13,12,10,8, 7) T (m=7). Then the
vector @, = (i 3 i i 1 i) A and  the

23'17'26'12'10'16
123456

651342

mappings @,

permutation Y =( ]e I1, are determined according

to  some =p(t,) and

Y0 =P (w0)

Jrespectively.

Hence, o, = (A, 19,29,29 29 1) e A, and
1 . 3

A=AV =" A =220 =2
26 23

Now the problem P, is formulated as follows.
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A— O]
o mex (2-A)

®" min max f =t,, 1e[49, 19]
XeG(z;t,) I=i<7

The first stage problem is

max (41— 4%)
tminmax fp=t,, 2e€[A9,20
. 6
Since $;=9,a,=2 and f1,, 1= H1,3= 09" we have
1 51
2
6 _ <
/U12asie-1 < //{’2 - 17 '
Therefore, according to (4.8) B, = A7 and using (4.7),
11—
ﬂlZaSIl
2
A(Pl) — 1(5) ==
opt 2 17

The second stage problem is
o max (4 -A9)

2 _ 1) ,(P)
mxlnrgg o=t 1€[4; J‘oplt]

o
Then 25 < u, sagn < Hiza 0 < A
2

(Py)
opt’

smceszzl,aSZ:B and Mz 1= Hi2g= g
2

29

2 1 P 2
- =< 0= andF=2
/123(15451 Hozg 23’ "3 T o opt =77

Hence, according to (4.8) [, = ,, =1 and from (4.7) we

obtain

(P) _ _ _ — 3
)i’opt = max{/llzaszuv ﬂzsaszl } _lulZozszrl_ /1124—5-

Also, considering the problem
max (4 —A19)
P @7

minmax f .y =t;, 21€[AD, 4.},

X I<i<5
©) (P2) ; — —
we have A <;123%3+1</10pl <45 since S3—3,as3_4

1 3 1 ®n _ 3
and #23(15;1:#235=ﬁ’ Ass :2_6’1(43) :Eandlopt ZE'
Therefore, according to (4.8) and (4.9),

(P2)
t
B31=0, B3, =1and B, =,
34agl
3
And then, using (4.8), we obtain
(P3) (P2) (P2)
ﬂ’opt = max{/“lZSaS;rl’ j“opt }:ﬂ“opt =
3

= ﬂ12a52+1= Hi24= 2_9
The fourth problem is

- max(4-4¢)

4" (P3)] '

minmax f o =t,, 21€[A, 4,

X 1<i<6

. 2
Slnces4—4,a54_5 and/’lZSasz—l_:u236_z’
3 1 ®) 3
— =—, /1(4)=_and /1 ) _ % . we
/u35as-:1 H 356 34 5 710 opt = g
4 (P3)
have /’l35a32—1< /'123(152—1< A5 < Aopt-
Hence, from (4.8)—(4.10),
214 14 i
Bur=0, B, =——, fi=—— and using (4.7)
H23a4 Haaaz
1

(P) _ M _ 5@ _
we have A0 _max{,15 }_/15 T
The last stage problem is
o max (1 - A%)

> minmax f oy =t,, 1e[2?, 2"

X 1<i<7 opt
) 2 4
Since Sg= 2, = 6 and ,u23a55+1:/1237_ﬂv
1 2 5
/”350:5:1:/“357:ﬁ’ ﬂ56a5;1:ﬂ567:E’ ﬂseasgfﬂsng’
1 ) 1 (2)
A%Z):E and ﬂopl:ﬂv(sﬂ'):ﬁ we have ZG <lu56055‘5+1 <
(Py)
1u35as+1 <ﬂ23a5+1 <ﬂ’0;t<lu36as+l .
5 5 5
Hence, from (4.8)—(4.10), ﬂ51 =0, ,352 =1,
(Py)
opt _
Pss=———— and S =1.
,U34a55+1

The searching process of solution is finished because
M, \{s.}=T;

1
and we conclude that A7) = 2% = = — 0.1,

opt opt 10
The distribution of first order adjoining assignation and
exclusion points in the corresponding subintervals
partitioned along the searching line, and the search directions
are tabulated as follows.

TABLE 1
M | A | | 6| D | B A e A |
index™ el 23 (323 |17 (27|13 | 1/2e | 12| 1A2| 10| 1110 | & | 1118| 7
0,1/26] + + + + + +
(1/26,1/16] + + - + + +
(116,112] + + - + + -
{1/12.1/10] + + - - ¢ 0O
T N
(1110,2/17] + P 4= 2O O -
T N
(2/17,3/23] & 30 - - - -

The signs “+” and “ - of table 1 mean individually the

N . ki) .
state of assignation and exclusion of /1(i) in the

corresponding subintervals partitioned along the search
directions respectively and”@”, and”©”denote the search
nodes and “—” indicate the search procedure and
directions.
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On the other hand, according to remark 4.8-2 we are sure
that

theT, th=at, (@=05),
(Po) 1

ﬂ'opot = PG (te) = PG (t'o):B-

Now, we show the performance schedule of the work for

stuff for work-time data t,=(11.585656,54,35)¢T,

under ; _p . _ 1
i—Pé(ro>—lo

o.1in followingGantt chart.

0 Ko+l

115 = 9.2 5:|H5
‘0, 085
85 — 6.8 —] |

L s,
5.2 —

0.65
B5 &%13%1:

35

t
figure 1.
From the figure 1 we have X;=arg min max f,u) =

X'eG (01t 1<i<7

(0,1.15,3.8,2.8,2,3.4,4.45), X, =arg min max f, oy =2x =

><€G(o1;lo) I<i<7

(0,23 76, 56, 4, 6.8 89).

Now we consider a necessary and sufficient condition under
which the solution of problem (1.1)-(1.2) is A -free optimal
solution.

[Theorem 4.9] (A -free optimality necessary and sufficient
condition)

Let teT. The point X €G .y is A -free optimal solution
of the problem (1.1)-(1.2) if and only if

(um Sl J (i< j)

Hny
Al Hec) =
o2 o025

max <mi y]4.11
(Kigm M) Kismﬂ(B.))( )
Proof

(— ) Itis sufficient to prove that
iy, joefl, 2,---,m}, (ip < Jo),

HA; ) Ha; Vv
He) > —" |A| M) > il
2 2

( max i) > {gisgﬂ(si)) :>( min max f; < ZtiJ

L<i<m XeGya:y 1<i<m —

(4.12)
By using

:u(Aio)

ILJ(CiO) :(1_21)ti0'(/’l(cjo) :(1—2/1)‘:]0 y

:/uio{‘u(%@:,ujo]

max s, =(1-24)t, and {nin#(Bith ,We  see
1<i<m : <ism

(4.12) is equivalent to the following fact.

}Jv(ﬂsﬁlm) =

. t; t;
A<min{——, S
t, +2, b +2t, (4.13)

( min max f, < Dt; j

XeG(a;t ) 1<i<m =y

t, t.
Considering o >1, o 1 g
t, +2t, 3t +2t; 3
. t, t. t.
letting 7 = min{———, -k, the (413)
0 tj0+2ti0 tio+2tj0 tio+2tju

can be written as follows.

[(/1 <A)v(A sﬁlm)J :>£ min max f; ) < iti j

XeG(4;t) 1<i<m =y

Then, we can choose some X;e€ G,;ty so that

';22% fi(xo)zzti _(1_/10)'[;0-

i=1

m
Hence, min max fi(x)SZti —(@=2,)t; . Thus, from

XEG(/'»OH) 1<i<m -1

the lemma 2.1

min max f,(x) <> t; —(1-2,) t;, <D, for  all
i=1 i=1

XEG(4;1) 1<i<m

wehave

A€(0, 4,].
Similarly, we can choose some X e G,,;t)s0 that
m
max f =iZ=1:ti -t
m
Hence, min max fm <Dt —t,.

XEGUlm;”) 1<i<m i—1

From the lemma 2.1,
min max fo <Dt —t, <>t forall 2€(0,4,,].
i=1 i=1

XeG(s;y 1<ism

(—) The condition (4.11) can be written as follows.

4> min{—" 5 A>A
>m|n{t.+2ti’ ti+2tj} A3 A1)

]

t.
| A>max{f——, 1
[ {t +2tj 1m}J

for all that

i<].

(i,j)efl 2, m—D3x{2,3,---m} such
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t
Now, let A7, =max{—_—
t, +2t

i i

B,NB; = forall XeG (9 whenl>ﬂ,i°j.

y /Ijl_m}l then

m
Hence, /J(Q B) ZE“(BO for all
m-1 m
X €G (a;ty when 4> maXU U{ﬂioj} :
i=1 j=i+l

m

Thus, letting A°= maXU U{/IO } and considering

i=1 j=i+l

corollary 2.3, we obtain  min max f. —Zt for all

X€G(1;9 1<ism

Ae(A°05). u

Now, we consider the searching method of critical parameter
A° = P5 () according to teT.

[Lemma 4.10]

For anyteT such that t >3t , we have
/1°:P6(t):/11m
Proof

The condition (4.11) is equivalent to the following fact.
m-1 m . -
asmax U} Y et 2 m-D2,3omy: 1<)

i-1 j=itl

(4.14)
And, since(tlzgt )@(/’L 21} and __ i <}for all
) t, +2t

im 3 3
Lje{L2, -, m-0x{2,3,---m} such that j < j, we have
t
ifj:max{t—‘

. y 1 :ﬂ« '
i +2tj 1m} 1im
m-1 m

Therefore, 1° = maxU U{/Ifj }:,11m -
i=1 j=itl
[Lemma 4.11]
Let teT A, <3t if A<A,, (ori>2, ) then
A°= Po=4,, (ord’° = P.o =1), where

=ma} Ol

i=1l j=i+1
Proof We use (4.14) equivalent to the condition (4.11).

Since, ifZS/Ilm, then
2° = 4 A Y= wehave

ij—max{m, 1md=Aim

o m-1 m o
A°=max| J {47 }=2

-1 j=itl
And, if A = maXU U > Ay, then
i=1 j=i+l i J

m-1

maxl ng{t +2t, }

maxnU Lmj{m 5 , Alm}}z
1 +2t,

i=1l j=i+
1
}—Z. n

-1 o
Ui
The algorithm finding According the critical parameter
A°= P.o (vt eT ) is as follows:

and i according to
remJ 0]

i=1 j=i+1{ Vi

= max
j=i+l

Hence, 1° maxUleJ{t t2t
+

=1 j=i+l

Step 1. Find 4,

the given datet eT.

Step2. If t, >3t then let P.cy=A4, .If t; <3t then
go to step 3.
Step3. If A <A, then Poy=4,,, if 4 >4, then
Pa(t) =1.

For example,let T, = (50,46,40,35)eT . Then
50-35 t;
= and 7
1 2x50 A= maxng{t +2t, }
{ 46 40 35 40

x 50+2x46  50+2x40 50+2x35" 46+2x40’
35 35 } 23

=0.15

, =£250324-
46+2x35'40+2x35] 71

And, we see t, <3t, since t, =50 and 3t, =105-

Obviously, 7, < 7,hence p (i) =17 = % ~0.324-

Finally, the relaxed A - free optimization interval for a data
fo=(50,46,40,35)T is(22 (5.
71

5. Conclusions

In this paper, we proposed a new form of parametric discrete
min-max problem and studied the parameter sufficient
optimality conditions for it and developed solving methods.

It is our view that the solved contents have the actual
significance.

The results of the paper are useful to calculate the reasonable
distributions of the jobs so that the total necessary time is
minimize when thestuffs for workhave the structures and
constraints enacted strictly according to the variable supply
limit of resources.

Moreover, it is our expectation that those will contribute to the
development of theory and method for the discrete parametric
programming.
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