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Abstract: In this paper, we propose a discrete parametric programming problem in which the feasible region is a set of the waiting time 

schemes, and beginning and closing times of the stuffs for work are alternated strictly with an invariable ratio (parameter). The 

objective function is represented by min-max operator. We study change of feasible region and minimum of the objective function 

according to change of the parameter . Moreover we study relations of the parametric programming problem and a multi-objective 
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1. Introduction 
 

Generally, parametric programming problems are those of 

mathematical programming problems which investigate how 

to change the optimal solutions according to the change of 

parameters contained in the problems.  

 

The discrete parametric min-max problems appear in many 

fields of sciences, engineering, and productions. 

 

A solving method for the linear min-max problems using the 

principle of simplex methods of linear programming has 

been studied in [1]. The discrete min-max problem with 

linear constraints and continuously differentiable objective 

functions 
( ) , 1,xif i m

 can be solved by using derived 

gradient methods [1, 2]. The papers [3, 4] proposed an 

algorithm for solving the location problem of the immediate 

service facilities described as a piecewise linear min-max 

problem. 

 

In [5] authors considered the so-called machine-time 

scheduling problem for minimizing the losses due to 

violations of requirements at the beginning time of works in 

the manufacture production. They reduced the problem to a 

discrete min-max problem. Also, the resource allocation 

problems and position problems of service center can be 

formulate as the non-linear min-max problems, see [6, 7]. 

The solving methods for the discrete min-max problems in 

the case where
( )xif  is quasi-convex, concave or quasi-

monotonous are studied in [1, 8],and these methods are 

applied to the optimal design of the ultra-short waves’ 

circuit, and the several technical control problems [8,9, 2]. 

Authors of [12,13] suggested the generalized discrete min-

max fractional programming, and obtained the so-called 

parameter-free sufficient optimality conditions and the 

duality results. 

 

Model and solving methods of the discrete min-max 

problems can be applied to solve system of convex 

inequalities
( ) 0, 1,xif i m 

, since it is equivalent to the 

minimization problem of the function 

 ( )( )
1

max max , 0xx i
i m

f
 


See [1]. 

 

The heuristic search methods including the hereditary 

algorithms,ACO (Ant ColonyOptimization) are also widely 

used for solving the discrete min-max problems 

[10,14,15,16]. 

 

On the other hand, the discrete min-max principle is used to 

treat multiple objective optimization problems, and is studied 

in the relations between optimal solutions of the discrete 

min-max problems and Pareto optimal solutions of multi-

objective programming problems [11]. 

 

In this paper we propose and analyze a discrete parametric 

programming problem in which the feasible region is set of 

the waiting time's scheme and objective function is 

represented by min-max operator or multi objective form, 

and beginning and closing times of the stuffs for work is 

alternated strictly in an invariable ratio (parameter). 

 

This form of problem has occurred in a number of practical 

problems including alternative production organization 

which is enacted strictly according to the variable supply 

limit of resources, the design of CNC multi-complex 

processing team, the cutting in multiple processing technique 

of software, etc. 

 

Now let's try to show an actual problem in the realization of 

reasonable control systems of the 1-comma filming process 
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with a control computer. 

 

The reasonable control systems of the line-drawing camera 

equipment, with a control computer require that the stuffs for 

work disposed by each implements have different process 

time and their orders of priority are arbitrary, finishing up 

quickly and accurately in the most short time for the 

guarantee crank speed. 

 

An important way of ensuring the film's quality and crank 

speed, lowering the filming costs is that to make exactly the 

moving steps of camera implements, shorten the 1-comma 

crank time and prevent a lot of consumption of electricity at 

first starting time under the situation that many electric 

motors are used at the same time. 

 

Generally, in the cinemas, the number of running scenes 

(moving picture) for one second is 24pieces, namely 24-

comma. So, after all, it is important for us to shorten the 1-

comma crank time in order to attain a high crank speed. 

Usually, in taking a motion picture, it is important to keep up 

well the speeds of the different moving implements so that 

the effects designed previously may occur quickly and 

accurately, making to carry out mutually and independently 

the several actions at the same time. This problem can be 

solved only by controlling the stepping electro motors and 

the several moving implements with a control computer on 

the base of the reasonable control algorithms. However, the 

processing speeds of stuffs for work of the several moving 

implements are defined by the corresponding step's numbers 

of the stepping electro motors and these numbers are 

determined variously according to the structures of contents 

of scenarios. Besides, in the action process of the step 

electric motors there arephenomena of losing their impulses 

at the beginning and closing parts of work, and to remove 

these we must make the speed rates lower than the 

responding frequencies of the step electric motors, or equal 

to the latters. However, the running distances (step's number) 

and expending times of step electric motors become very 

long, since the frequencies are very low. 

 

This problem can be solved by the following methods. 

 

This problem can be solved by the following methods. 

1) We prevent the loss of steps by letting the step electric 

motor start smoothly with lower speed rate than the 

maximum responding frequency.       

2) Next, let the step electric motor accelerate smoothly and 

gradually to the working frequency (the chain working 

frequency is usually 250  300 steps /s ). 

3) And then, let it pass for the most part of the whole 

distance with the chain working frequency. 

4) After a while, let the speed rate decrease to that lower 

than the responding frequency before approaching to the 

end point. 

5) Lastly, let it remove its sliding to stop exactly at the end 

point by letting the stepping electric motor run with speed 

rate less than the responding frequency for a short time. 

 

Therefore, in the 1-comma filming process based on 

automatic accelerating and decelerating speed control 

principle as above, there occurs inevitably accelerating and 

decelerating timeat the work's starting and closing time of 

each moving implement, which is usually given in 

proportion to the number of its moving steps 

 

And this process is required to be handled so as for its 

accelerating and decelerating time not to happen at the same 

time. 

 

Let's consider the following optimization's problem on the 

basis of an actual task discussed above. 

 

In an automatic filming process, let's suppose that a 1-

comma filming K is completed by operating all the m 

machines , ( 1, )iR i m  performing the different tasks.  

 

This time each machine , ( 1, )iR i m deals individually 

with independent stuffs for work by means of step electric 

motors connected to control computer. 

 

Let  (second)denote the time required for one step's 

moving of each machine, then the time required for the 1-

comma filming equal to , 1, .iit i m   Denote as 

, ( 1, )it i m the rearrangement of the above data 

, ( 1, )it i m  in order of size(namely, 
1 2 mt t t   ).  

 

The vector 
1 2( , , , )mt t t t  is said to be time data of 

the stuffs for work. 

 

Obviously, the time data of stuffs for work  

1 2( , , , )mt t t t   is given differently according to 

changing the 1-comma filming scenarios K.  

 

Now, let be an allowed ratio of the accelerating and 

decelerating times of each machine , ( 1, )iR i m required 

at the beginning and closing time of the works. We prevent 

the loss of steps by letting the step electric motor start 

smoothly with lower speed rate than the maximum 

responding frequency.       

1) Next, let the step electric motor accelerate smoothly and 

gradually to the working frequency (the chain working 

frequency is usually 250  300 steps /s ). 

2) And then, let it pass for the most part of the whole 

distance with the chain working frequency. 

3) After a while, let the speed rate decrease to that lower 

than the responding frequency before approaching to the 

end point. 

4) Lastly, let it remove its sliding to stop exactly at the end 

point by letting the stepping electric motor run with speed 

rate less than the responding frequency for a short time. 

 

Therefore, in the 1-comma filming process based on 

automatic accelerating and decelerating speed control 

principle as above, there occurs inevitably accelerating and 

decelerating timeat the work's starting and closing time of 

each moving implement, which is usually given in 

proportion to the number of its moving steps 
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And this process is required to be handled so as for its 

accelerating and decelerating time not to happen at the same 

time. 

 

Let's consider the following optimization's problem on the 

basis of an actual task discussed above. 

 

In an automatic filming process, let's suppose that a 1-

comma filming K is completed by operating all the m 

machines , ( 1, )iR i m  performing the different tasks.  

 

This time each machine , ( 1, )iR i m deals individually 

with independent stuffs for work by means of step electric 

motors connected to control computer. 

 

Let  (second)denote the time required for one step's 

moving of each machine, then the time required for the 1-

comma filming equal to , 1, .iit i m   Denote as 

, ( 1, )it i m the rearrangement of the above data 

, ( 1, )it i m  in order of size(namely, 
1 2 mt t t   ).  

The vector 
1 2( , , , )mt t t t  is said to be time data of 

the stuffs for work. 

 

Obviously, the time data of stuffs for work  

1 2( , , , )mt t t t   is given differently according to 

changing the 1-comma filming scenarios K.  

 

Now, let be an allowed ratio of the accelerating and 

decelerating times of each machine , ( 1, )iR i m required 

at the beginning and closing time of the works. 

 

In the whole process from the time of each machine 

beginning to works to the time of 1-comma filming ending 

each machine must be located at the suitable position, and it 

is denoted by waiting time , ( 1, )iR i m  decision variables

1 2( , , , )mx x x x  , in dimension of which machine 

under the strict constraint condition that the accelerating and 

decelerating control cannot be performed at the same 

moment. 

Each machine iR  requires thetime ( )xi i if x t  ,

( 1, )i m to handle its stuff for work.  

We use the notation ( ) ( ) ( )1 2( , , , )x x xmx t f f f   .  

 

Now, the problem determining the waiting time scheme 

1 2( , , , )mx x x x  of each machine iR so thattotal time 

to end  1-comma filming process (the time taken to the 

machine whose operation ends last) may be minimized, is 

formulated as a parametric discrete min-max problem 

ormulti-objective problem. More generally, we can consider 

problems of the following form.  

We use following sets: 

1 2
ˆ { ( , , , )

, ( ) , , 1, }

m

m

i j

X x x x x R

x x i j i j m

  

  


, 

1 2

1

{ ( , , , ) ( \{0}, 1, )

( , 1, 1)}

m i

i i

T t t t t t R i m

t t i m





   

   

 
. 

For any (0, 0.5)  define following sets.  

[ , ) [ (1 ) , ), 1,i i i i i i i iA x x t x t x t i m      

[ , (1 ) ), 1,i i i i iC x t x t i m       

, 1,i i iB A C i m  .                     

 

A vector 
1 2( , , , )mt t t t T    is called a time data of 

stuff for work. The feasible set is as follows: 

( ; )
ˆ{ , ( ), , 1, }t i jG x X A A i j i j m      . 

For ( ; ),tx G t T   , the ( )xi i if x t   is called the 

performance time of i-th stuff for work. 

 

For the feasible region and objective function defined above, 

we consider the following problems. 

( )
1

( ; )

min max xi
x i m

t

f

x G 

 





  (1.1) 

( ) ( ) ( )1 2

( ; )

min ( , , , )x x xm
x

t

f f f

x G 







(1.2) 

[Definition 1.1] Let ( , ) (0, 0.5)t T     . 

If
( ; )

( ) 1
1

min max
t

xi
x G i m

f t
  

 ,
( ; )

( )1
1

1

min max
t

m

xi i
x G i m

i

t f t
  



  , 

( ; )

( )
1

1

min max
t

m

xi i
x G i m

i

f t
  



  

Then we call the 
( ; )

( )
1

arg min max
t

xi
x G i m

x f
  

  -foremost 

optimal solution,  -middle optimal solution and  -free 

optimal solution respectively. We denote the set of all  -

foremost optimal solutions, the set of all -middle optimal 

solutions and the set of all -free optimal solutions by

( ; )
ˆ

tG  , ( ; )tG   and ( ; )tG 
  respectively. 

 

In this paper we study following problems. 

 

First, we study the relations of variations of the feasible sets 

and optimal values of objective functions according to 

parameter . 

 

Second, we propose a solving method of parametric discrete 

min-max problem (1.1) in the relation of multi objective 

problem (1.2). 

 

Third, we study the theoretical and methodological problems 

how to obtain the critical intervals of parameter 

corresponding to the foremost, the middle and the worst 
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(free) situations in the problem (1.1). 

 

The paper is composed of as follows. In section 2, we give 

some definitions and consider the relations of variations of 

the feasible sets and optimal values of objective functions 

according to parameter  , and prove some results in 

connection with sufficient optimality conditions. In section 

3, based on the results of section 2, we obtain a solution of 

parametric discrete min-max problem (1.1) in the relation of 

multi objective problem (1.2). In section 4, we describe the 

research results of the third problem above. 

 

2. Parameter-sufficient optimality conditions 
 

First, we describe the basic conceptions and notations. 

[Definition 2.1] Let )(0 0.5,  and t T   be given. 

We denote (1 2 ) i jt t   as 
i j  for all ,i j

( , , )1, 2, , 1 2, 3,i j i jm m    . 

If 0i j  , then we say that 
iB  is assignable 

jB  by  in 

the first order and then 
i j  is called first order freedom 

degree of assignation to 
iB  of 

jB . If 0i j  , then we say 

that iB  exclude 
jB  by   in the first order  and then 

i j  is 

called first order freedom degree of exclusion by iB  of 
jB . 

When >0i j , we denote the value 
i j t    simple as 

i j   for all 

( ), , {1, , 2} {2, , 1} {3, }i j m m m        

suchthat i j   . 

If 0i j  , then we say that iB is assignable 
jB  and B  by 

  in the second order  and then 
i j  is called second order 

freedom degree of assignation to iB  of 
jB  and B . 

 If 0i j  , then we say that 
iB  exclude 

jB  and B  by   

in the second order  and then 
i j  is called second order 

freedom degree of exclusion of 
jB  and B  to 

iB . 

From above definition, if 
i j  is the first order freedom 

degree of assignation ( 0i j  ), then
2

i j

i

t t

t



 , if 

i j  is 

the first order freedom degree of exclusion ( 0i j  ), then

2

i j

i

t t

t



 , and then the value 

2

i j

i

t t

t


is called the first 

order ratio of assignation (exclusion) of 
jB  to iB , 

respectively. 

Similarly, if 0i j   then
2

i j

i

t t

t t





 

, if 0i j   then

2

i j

i

t t

t t





 

. 

2

i j

i

t t

t


 is called the first order ratio of assignation of 

jB  to 

B . 

And 
2

i j

i

t t

t t



 

 is called second order ratio of assignation 

(exclusion) of 
jB  and B  to 

iB , respectively. 

We denote 
2

i j

i

t t

t


 by

i j , 
2

i j

i

t t

t t



 

 by
i j  .  

In particular, if 1j i   and 2i  , then we denote 

simply as 
i j

  (is called i -th first order adjoining freedom 

degree of assignation (exclusion)) and as 
i j   (is called i -

th second order adjoining freedom degree of assignation 

(exclusion)) by 
i  and 

i , respectively.  

Moreover, 
1

2

i i

i

t t

t


 and 

1

22

i i

i i

t t

t t








 are called i -th first 

order adjoining assignation (exclusion) ratio, and i -th 

second order adjoining assignation (exclusion) ratio, 

respectively. We denote 
1

2

i i

i

t t

t


 and 

1

22

i i

i i

t t

t t








 as

i , 

i , respectively. We use the following notations: 

1 1 1 1
min , maxi i
i m i m

   


     

  (2.1) 

1
1 2

= max i i m
i m

 


  

(2.2) 

Notice that there exists 
0 {1,2, , 1}i m   such that for 

any 0 0{ 1, 2, , }j i i m   
0 0 1i j i j   .  

We denote simply this relation as (
0i j  ). 

[Definition 2.2] Let 1 2 1( , , , )m      ,where 
i  is i

-th first order adjoining assignationratio ( 1, 1)i m  .The 

components in  1[ , ]  
 of the vector are called 

assignation points of 1  corresponding to  . We call the 

number of assignation points of 1  the order of
1  and 

denote as
1

index





. 

In like manner, we call the components in 1[ , )    

exclusion points of 
1  corresponding to   and call their 

number the order (of exclusion) of 
1  and denote as

1

index





.  

Moreover, we denote the process reducing the number of 

exclusion points of 
1  as 

1

( )index


  . 

[Lemma 2.1] For any ,   (0, 0.5)  such that
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   ,the followings hold true: 

( ; )( ; ) ttG G    , 

( ; ) ( ; )

( ) ( )
1 1

min max min max
t t

x xi i
x G x Gi m i m

f f
      

 . 

ProofLet's denote iA  and iC  corresponding to   (and 

        ( 0  )) by , , ( 1, )i iA C i m    and 

iA iC  respectively.  

Then ,i iA A  , ( 1, )i iC C i m   . 

Hence, ( ; ) ( ; )t tG G   ,  

so 
( ; ) ( ; )

( ) ( )
1 1

min max min max
t t

x xi i
x G x Gi m i m

f f
      

 ■ 

[Corollary 2.2] 

Given t T , if  
( ; )

( ) 1
1

min max
t

xi
x G i m

f t
  

  for an

,(0,0.5)  then 
( ; )

( ) 1
1

min max
t

xi
x G i m

f t
  

  for any

>0 ( <   ) too. ■ 

 

[Corollary 2.3] 

Given t T , if 
( ; )

( )
1

1

min max
t

m

xi i
x G i m

i

f t
  



  for an ,(0,0.5)  

then also  

0.5  (   ), 
( ; )

( )
1

1

min max
t

m

xi i
x G i m

i

f t
  



  . ■ 

Define followings: 

1

1

1

ˆ min ,

2 ( )

m

m

i m

i

t t

t t

 



 
  

  
 
  



(2.3) 

1

1

min ,

2
m

i

i

t

t

  



 
  

  
 
  



        (2.4) 

1

1
max ,

3
m 

 
  

 

 (2.5) 

[Lemma 2.4] 

For any 1 2( , , , )mt t t t T   , 

1

1

2( )

m

m

i m

i

t t

t t

  






 



(2.6) 

1 1

1 1

2( ) 2

m

m m

i m i

i i

t t t

t t t
 




 

(2.7) 

1 m   (2.8) 

Proof  

First, prove (2.6). From the definition of ,  

  for any 

t T  , 

1

1

1 1

1

1 1

1 1

1

1 1

(1 2 ) , 1, 1

(1 2 ) , 1, 1

(1 2 )

(1 2 )

i i

i i

m m

i i

i i

m m

i i

i i

t t i m

t t i m

t t

t t









 





 

 

 

 




 

    


   


 




  


 

 

 

1

1

1

1

1

1

1

1

1

1

2

2

2 (1 2 )

2 (1 2 )

m

m i

i

m

m i

i

m

i m

i

m

i m

i

t t t

t t t

t t t

t t t





 

 












 



 




 




  



  



   










1

1

1

1

2( )

2( )

m

m

i m

i

m

m

i m

i

t t

t t

t t

t t
















 


 
 










 

Next, (2.7) is satisfied from the inequality 

1
1 1 1

1 1 1 1

( )

0

2 2( ) 2 ( )

m

m i
m i

m m m m

i i m i i m

i i i i

t t t
t t t

t t t t t t



   




  

 



   

. 

 Finally, prove (2.8). 

1

1

1 1
(1 ) (1 ), 1, 1

2 2

i m

i

t t
i m

t t


     , 

because
1

1

, 1, 1
i m

i

t t
i m

t t


   . 

Hence, 1 1

1

, 1, 1
2 2

i i m

i

t t t t
i m

t t

 
   ,  

so 1
1 1
max { }i m

i m
 

  
 . ■  

From the inequalities (2.6)-(2.8), the following results are 

obtained. 

1

1

2
m

i

i

t

t

 






(2.9) 

1

1

1

2( )

m

m m

i m

i

t t

t t

  




 


(2.10)  

From the lemma 2.4, for all t T  , 
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ˆ0 0.5   


     (2.11) 

 

This shows that the interval (0, 0.5) can be always divided 

into 10 0.5   

      for any t T  . 

 

[Theorem 2.5] (Parameter-sufficient foremost optimality 

condition) 

Given t T  , if  ( ]0,  , then 

( ; ) ( ; )

( ) ( )1 1
1

min max min
t t

x xi
x G x Gi m

f f t
   

  . 

Proof  

From corollary 2.2 it is sufficient to prove that 

( *; ) ( *; )

( ) ( )1 1
1

min max min
t t

x xi
x G x Gi m

f f t
   

   at   . 

According to (2.1), ( , )t T      

( , 1, 1)i i m     ( 0, 1, 1i i m    )

1( (1 2 ) , 1, 1 )i it t i m     
1

( ,)( ) (i iC B 




1, 1 )i m  , where   is length of interval. 

Hence, selecting some ( ; )tx G   so that 

*

1 1
0, , 1, 1

ii
x i mBC 
     we have 

( ) ( ) ( )1 1 1 1, 1, ,x x xi if t f f i m      , where 
*

1x isthe 

first component of x .  

Therefore, ( ) ( )1 1
1
max x xi

i m
f f t 

 
  , so 

( ) ( )1 1
1
max x xi

i m
f f t

 
  for all ;( )tx G 

 , hence, 

( ; ) ( ; )

( ) ( )1 1
1

min max min
t t

x xi
x G x Gi m

f f t
    

  . 

From thiswe have 

( ; )

( )
1

min max
t

xi
x i mG

f
   


( ; )

( )1 1min
t

x
x G

f t
 

 . ■ 

[Theorem 2.6] (Parameter-sufficient free optimality 

condition) 

Let t T  .  

 If
1

1

3
m , then

( ; )

( )
1

1

min max
t

m

xi i
x G i m

i

f t
  



  for any

[ , 0.5)   . 

 If 1

1

3
m , then

( ; )

( )
1

1

min max
t

m

xi i
x G i m

i

f t
  



  for any

( ,0.5)   . 

Proof According to corollary 2.3, it is sufficient to prove 

( ; )

( )
1

1

min max
t

m

xi i
x i mG

i

f t
  






 at    in the first case and 

( ; )1

( )
1

1

min max
tm

m

xi i
x i mG

i

f t
   



  at 1 m     for all 

1(0, 0.5 )m    in the second case. 

In the first case, we have
1

=
3

 . Now, let 
1

3
  , then 

, ( ), , 1,i jB B i j i j m   for all 1( ; )
3

tx G since

1
( ) ((1 2 ) , 1, )

3
i it t i m         ( ( )iC =

( )
, 1, ,

2

iA
i m


  ) 

1 1( ) ((1 2 ) )m mt t       (
1( ) ( )mC B  )(2.12) 

Hence, 

11

( ) ( )
m m

i i

ii

B B 


 for all ( ; )tx G   and then

( ; )

( )
1

1

min max
t

m

xi i
x i mG

i

f t
  






. 

Next, in case of 1

1

3
m , using the fact that 

1
( )

3
    (

( )iC 
( )

, 1, ,
2

iA
i m


  ) at 1 m

    for any

1(0, 0.5 )m   and (2.12), we have 

, ( ), , 1,i jB B i j i j m    for all 1( ; )m tx G   . 

Hence, 

11

( ) ( )
m m

i i

ii

B B 


 for all 1( ; )m tx G   and finally

( ; )1

( )
1

1

min max
tm

m

xi i
x i mG

i

f t
   



 . ■ 

According to the theorem 2.5 and the theorem 2.6, we 

know that the intervals (0, ]  and [ ,0.5) ( ( ,0.5) in 

case of 1

1

3
m ) are the parametric effective intervals 

where the optimal values of objective function approach best 

and worst (free) situations for all t T  , respectively.     

[ 

Theorem 2.7] (Parameter-sufficient middle optimality 

condition) 

If  
1 1( , ]m   then 

( ; )

( )1
1

1

min max
t

m

xi i
x G i m

i

t f t
  



  for all 

t T  . 

Proof  

Since
12

( )( )1 1 2( ) ((1 2 ) ) ( )CBt t          ,

( ) 1
1
max xi

i m
f t

 
  for any ( ; )tx G  where 1  . Hence, 

( ; )

( ) 1
1

min max
t

xi
x G i m

f t
  

  for all 
1 1( , ]m   .  

In addition, for any t T   there exists a point x  1( ; )m tG   

such that 

( )
1

1

max
m

xi i m
i m

i

f t t
 



  .  So, 

( ; )1

( )
1

1 1

min max
tm

m m

xi i m i
x i mG

i i

f t t t
  

 

    . 
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Therefore, from the lemma 2.1, 
( ; )

( )
1

1

min max
t

m

xi i
x G i m

i

f t
  





for all 1 1( , ]m   . ■ 

 [Definition 2.3] Let t  be inT .  

If ( )
ˆ )(0, 0.5tI




( ; )

( ) 1
1

min max
t

xi
x G i m

f t
  

  for all ( )
ˆ

tI 

, then ( )
ˆ

tI is called  -foremost optimization interval, if

( ) )(0, 0.5 ,tI

 

( ; )

( )
1

1

min max
t

m

xi i
x G i m

i

f t
  



 for all 

( )tI   , then ( )tI  is called  -free optimization interval, if 

( ) )(0, 0.5 ,tI



( ; )

( )1
1

1

min max
t

m

xi i
x G i m

i

t f t
  



   forall

( )tI  , then ( )tI  is  -middle optimization interval. 

From the theorems 2.5-2.7 the intervals (0, ]
 , [ , 0.5) (

( ,0.5) in case of 1

1

3
m ) and 1 1( , ]m   are  -

foremost optimization interval, -freeoptimization interval 

and -middle optimization interval respectively. 

From the lemma 2.1 and definition 2.3, it can be easily 

verified that the following facts are true. 

For all ( )
ˆ, ( ),tI        ( ; )

ˆ
tG   ( ; )

ˆ
tG  , 

For all ( ), ( ),tI        ( ; )tG   ( ; )tG  , 

For all ( ), ( ),tI       
( ; )tG 
 = ( ; )tG 

 . 

We denote the supremum of -foremost optimization 

interval sup ( )
ˆ

tI  and the supremum of  -middle 

optimization interval sup ( )tI  as ( )ˆ t
G

P  and ( )t
G

P , 

respectively. 

 

3. Solving the problem according to sufficient 

optimality condition 

A set of  -foremost optimal solutions ( ; )
ˆ

tG   defined in 

section 2 can be also written as  

 ( ; ) ( ; ) 1 1

1

ˆ ( 0) ( )
m

t t i

i

G x G x B B 



     . 

Given (0, ],   denote the set  

( ; ) 1
ˆ{ , 1, 1}t i ix G C B i m     (3.1) 

by ( ; )tD   . Then obviously ( ; ) ( ; )
ˆ

t tD G  . 

Now,we consider thefollowing optimization problem for a 

given (0, ]    : 

( )1

( ) ( )1

( ; )

min

, 1, 1

ˆ

x
x

x xi i

t

f

f f i m

x G 






  




(3.2) 

According to the theorem 2.5 and its proving process we can 

see easily that any ( ; )tx D   is the solution of (3.2) when 

0      

[Theorem 3.1] The following feasible solution ( ; )
ˆˆ tx G  is 

the solution of (3.2) (the optimal solution of problem (1.1)) 

and the pareto-optimal solution of problem (1.2) for any 

(0, ]   : 

1

1

0, 1

ˆ
( ), 2,

i
i

n n n

n

i

x
t i m 








 
 




,     (3.3) 

where [0, 1], ( 1, 1)n n m    is arbitrary constant and 

1(1 2 ) , ( 1, 1)n n nt t n m        is n-th first order 

adjoining freedom degree of assignation. 

Furthermore, 
( ; )( ; )

( ) ( )1 1
1

min max min
tt

x xi
x G x Gi m

f f t
  

  . 

Proof First, prove that x̂  is the solution of (3.2) when 

0     . Obviously, 

1

ˆ( )ˆ( ) 1

1

1

1

( )

[ ( ) ]

i

xxi i n n n i

n

i

n n n i

n

f f t t

t t

 

 











     

   





1(1 ) ( ), 1, 1i i i it t i m         . 

And, we have 1(1 2 ) ,i i i it t     1, 1i m  , so 

1(1 ) ( ) , 1, 1i i i i it t t i m         . 

Hence, ˆ( )ˆ( ) 1 0, 1, 1xxi i i
f f t i m     , so 

ˆ ˆ( ) ( )1 , 1, 1x xi if f i m   . 

It is clear that ( ; )
ˆˆ tx G  , and ˆ( )1 1

xf t , so 

( ; )

ˆ( ) ( )1 1 1min
t

x x
x G

f f t


  . 

Next, prove that x̂ is the praetor-optimal solution of the 

problem (1.2). 

Since

1

ˆ( )

1

1

1

ˆ ( )

( ) , 2,

i

xi i i n n n i

n

i

n n i

n

f x t t t

t t i m

 











      

    





, 

letting 
1

( )

1

( ) , 2,
i

i n n i

n

t t i m 




     , x̂  is the 

optimal solution of the following ( ) -constraint problem. 

( )
1

( ) ( )

( ; )

min

, 2,

ˆ

x
x

xi i

t

f

f i m

x G










 




, 

Therefore, x̂  is the pareto-optimal solution of problem (1.2) 

for all (0, ]   .  ■ 

[Lemma 3.2] Assume 3m  . Then there exists 
0t T   such 
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that  

 and ( ; ) ( ; )
ˆ

ot toG D   for all ( , ] 

 . 

Proof First, prove that there exists some 0t T   such that

0  

  . 

For this, it is sufficient to prove that there exist some 

0 1 2( , , , )o o o

mt t t t T    

such that 

1 (0 (constant)o o

i it t d d   )
2( 3)

o

mt

m




, 1, 1i m   and 1 2 1m m m    .  

Indeed, 

1
, ( 1, 1)

2 2

o o

i i

i o o

i i

t t d
i m

t t



     and  

1

1
2

o o

i i

i i m o o

i m

t t

t t







 


, ( 1, 2)

2 o o

i m

d
i m

t t
 


 

are the monotonic increase series with i ,  

so 
1

1 1
1

min { }
2

i oi m

d

t
  

  
    and  

1 2 1
1 2

2

max { } .
2

i i m m m m o oi m
m m

d

t t
  

  
  



  


 

 Moreover, 

1 2 1 2

( ) (2( 3) )
2( 3)

(2( ) ) ( 2 2 )

o

m o

m

o o o o o o

m m m m

t
d m d t

m

t t t t t t 

    


    

.  

Therefore, 
1 2 1m m m    . 

Next, prove that 
00 ( ; )( ; )

ˆ
ttG D    for all ( , ]  

 .  

From the definition, 
00

( ; )( ; )
ˆ

ttD G    for all ( , ] 

 . 

If there exists ( , ] 

  and 0( ; )
ˆ

tx G   such that 

0( ; )tx D  , then 00 ( ; )( ; )
ˆ \ ttx G D  . And then, 

0 0 1i iC B   at some  0 1,2, , 1i m  and
1

1

m

i

i

B B


 . On 

the other hand, 

1

1

( )

( ) ( )
1

( ) ( , 1, 2 )

( 0 min , 1, 1 )
2

i

i i

i i m

A

C B
i m

i m

i m

  


 






 

     

 
     

 

.    

Therefore, either
1i iC B   for all  1,2, , 1i m  or 

1

1

m

i

i

B B


 . 

This leads to contradiction. ■ 

[Lemma 3.3] 

For 0t in the lemma 3.2
)( ; 0

( ) 1
1

min max
t

xi
x G i m

f t
   

 ,where is 

arbitrary positive number.   

Proof. 

From  the lemma 3.2, if x  0( ; )
ˆ

tG    then x 
0( ; )tD  

. 

However, if
0i   at some  0 ,1, 2, , 1i m  then

0 01i iB C  for all 00
( ; )i tx G   ( 0  ). Furthermore, 

from the proof of lemma 3.2 when   ,
1

1

m

i

i

B B


 for 

all 
00

( ; )i tx G   and therefore 0( ; )
ˆ

tx G  . It is easy to 

see 
0

( ) 11
1

)max (x mi i
i m

t tf t 
 

    , 00
( ; )i tx G   . 

Hence,
( ; )0

( ) 1
1

min max
t

xi
x G i m

f t
   

  ■  

[Lemma 3.4] 

If there exist some t T  such that 1   , then

( ; )1

( ) 1
1

min max
t

xi
x G i m

f t
   




 for all 0  . 

Proof 

Indeed, for all 
1( ; ) 1 2, ( )tx G B B   

( )1 1
1

1

( ) (max )
m

xi i
i m

i

B B f t
 



    because
1( )    

1 1( ) ( 0)     for all 0  .On the other hand,

( ) 1 1 2 1
1
max ( )xi

i m
f t t t 

 
     forall

1( ; )tx G    . 

Hence,
( ; )1

( ) 1
1

min max
t

xi
x G i m

f t
   




  ■ 

According to the lemma 3.2 and the theorem 3.1, we have 

the following result.  

 

[Corollary 3.5] 

There is 0t T  (for which  

 ) such that a solution of 

the problem (1.1) is represented by the expression (3.3) for 

all ( , ]  

 . 

We denote the sets of all t T   satisfying the conditions 

 

  or 1    as 
0t

T  , tT 
 , respectively. Then, 

using lemma 3.3 and lemma 3.4, the following result is 

obtained. 

 

[Corollary 3.6] 

( ) ( )ˆ
ˆsup t t

G
I P     for all 

ot tt T T 
  . 

Now, let's find the optimal solution satisfying the parameter-

free sufficient optimality condition. Denote the set of all 

permutations of the set {1, 2, , }I m   by 

( ! )m m m    and let m  , 

1 2

1 2

m

m


  

 
  
 




.  

 For any 1 2, m   , the relation 
1 2   is defined as 

21
( )( )    and the relation x x   for ( ; ), tx x G     

by ( ) ( )x x    , where ( ) is the reversed number of   

and ( ) ( ; )

1

 ( )
m

x ti

i

x x G 


   . 

Given any [ ,0.5)   , we define the mapping 
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( ; ): tmg G     as follows : ( )( ) mx g   ,

1 2
( ; )( , , , )

m

wo
tx x x x G      , where 

1
0x  ,

1

1

, ( 2, )
i n

i

n

x t i m 





   and 

1 2 1 2( , , , ) ( , , , )
m

wo

mx x x x x x     . 

Then, g is an isomorphism of 
m  onto ( ; )tG 

 . 

[Lemma 3.7] 

( ; ) !tG m   for all [ ,0.5)   ( ( ,0.5)    in case 

of 1

1

3
m ) and the solution of problem (1.1) giving the 

minimum value to ( )x  exists uniquely. 

Proof. 

The fact that ( ; ) !tG m  for all [ ,0.5)   (

( ,0.5)    in case of 1

1

3
m ), is obvious because 

m  

and ( ; )tG 
  are mutually isomorphism. 

Besides, 
1

( )

1 1 1 1

ni

m m m i

x i

i i i n

x x t


   

     

1 2 2 1
( 1) ( 2) 2 =

m m
m t m t t t    
       

1 1

1

1 1

( ) ( )
s

m m

m s

s s

m s t m s t

 

 

 

     for all ( ; )tx G   . 

And, settling on
0

1 2

1 1

m

m m


 
  

 




, we obtain  

0
( )0 1 2 2 1(0, , , , )wo

m mx g x x x x    

1 2 1( , , , ,0)mx x x    

( ; )

2 3

( , , , ,0)
m m

tn n m

n n

t t t G 

 

    . 

Moreover, 
0( )x is the minimum value of ( )x  since 

0( ) 1( 1) ( 2)x m mm t m t     
1

3 2 1

1

2 ( )
m

m s

s

t t m s t


 



    . 

Hence, the minimum of ( )x  is unique because g  is one to 

one mapping. ■ 

Now, consider the following problem when [ ,0.5)   (

( ,0.5)    in case of 1

1

3
m ): 

( )

( )( ) 1

( ; )

min

, 1, 1

xm
x

xxi i

t

f

f f i m

x G 






  





(3.4) 

Using the lemma 3.7, we obtain the following result. 

[Theorem 3.8] 

The following point ( ; )tx G    is a solution of (3.4) (the 

solution of problem (1.1)) and the Pareto-optimal solution of 

problem (1.2) for all [ ,0.5)   ( ( ,0.5)    in case of

1

1

3
m ). 

1

0,

, 1, 1
m

i

n

n i

i m

x
t i m

 




 
 




 ,     (3.5) 

And then
( ; )( ; )

( )( ) 1
1

1

min max min
tt

m

xxi i
x G x Gi m

i

f f t
  



  . 

Proof. For ( ; )tx G    defined by (3.5), we have 

( ) ( )1 1

1 2

1 1

2 2

( )

,

m m

x xi i n i n i

n i n i

m m

i n i n i i

n i n i

f f t t t t

t t t t t t

 

   

 

   

     

     

 

 

 

, 1, 1i m  . 

Hence, ( ) ( )1 0, 1, 1x xi if f i m     .  

And ( )xm m m m
f x t t   . 

Moreover, ( )xm mf t  and accordingly

( ) ( )min x xm m m
x

f f t  . Furthermore, the x is an optimal 

solution of a following lexicographic problem: 

 

1
( )

1

( )

1 1

( ; )

min

, ( \ ; 2, )
i n

x
x

ii

x i k

n k

t

f

f t I i m

x G



 



 


 





  

 





 . 

Hence, the point x corresponding to 

0

1 2

1 1
m

m

m m


 
  

 




 is a Pareto-optimal solution of 

problem (1.2). ■ 

Given t T  , the algorithm finding the optimal solution of 

problem (1.1) is as follows: 

First, compute the values   and  . 

Second, divide the interval (0, 0.5) into three parts, namely 

(0, ], ( , )   
  and [ ,0.5) ( ( ,0.5)  in case of

1

1

3
m ). 

Third, find the solutions of the problem (1.1) corresponding 

to the values of . If (0, ]    then (3.3) gives a 

solution, if [ , 0.5)    ( ( ,0.5)    in case of

1

1

3
m ) then (3.5) gives a solution. 

4. The relaxation of parameter-sufficient 

optimality conditions  
 

[Lemma 4.1] Let ,t t  T .  

If ( (0, ))t t     , 

then 
i j i j    and

i j i j   
.■ 
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Now, define following set dependent on t . 

1 2 1{ ( , , , )

, 1, 1 }

m

i i m

   

  







  

   


(4.1) 

Moreover, we define a mapping :T   as follows: 

1 2 1( , , , ) ( )m t      , 

1
( ) , 1, 1

2

i i

i i

i

t t
t i m

t
 


    . 

Let's consider a family of sets { }T 
 , where 

1
( ) ( )T    . 

 [Lemma 4.2] TT 



   and T
 is self-similar set, i.e. 

t t   for all ,t t T   ( (0, )   ).■ 

Let  1, 2, , 1J m  , 
1 2 1

1 2 1

m

m

k k k




 
  
 






1m , .  

We define a mapping : 1m     : 

1
( )

1 1
1

( ){ }, \ { }, 1, 1i

i
k

i i j i s
j m

s

m i d k k J k i m 


  


    ,(4.2) 

where ( )imi d k : ik -th middle index ( ik -th smaller 

number) operator considering even the repeated number and 
1

1

\ { } , 1, 1
i

s

s

J k m i i m




    .  

For example, (2)

3
1 3

(2){0.1,0.3,0.2} 0.2
j

mi d 
 

  , 

(2)

2
1 3

(2){0.1,0.3,0.3} 0.3
j

mi d 
 

   and (3)

3
1 3

(3){0.1,0.3,0.3} 0.3
j

mi d 
 

  . 

According to the above definition, 
1 11 1

(1){ } min { }j j
j mj m

mi d  
    



and
1 11 1

( 1){ } max { }j j
j mj m

mi d m  
    

  . 

Consider a family of sets 
1m

  
  

where 
1

( ) 1( )m  

    , 

1 2 1( ) ( ) ( ) ( )

1 2 1

1

1 1 1

{( , , , )

( ){ }, \ { }, 1, 1 }

m ik k k k

m i

i

i j i s
j m s

mi d k k J k i m

    









   

   

   




(4.3) 

Let’s denote the lexicographic order of 1 2,   as 
1 2   

and define the order 1 2   as 
11   and 

22   .  

Then the mapping 1: m  is an order homomorphism 

and 
1m  is homomorphism to  . 

The order     for all ,    means

( ) ( )     ,where
1

( )
( )

1

i

m
k

i

i

 




  (4.4) 

Moreover, the order 
1 2
     for 

 
11 2

,
m          means 1 2  . 

[Lemma 4.3] 

1m



 

    and  it is a linearly ordered 

set. ■ 

Now, let's denote the composition mapping of :T   

and 
1: m   by 

1: mh T    and let 

( )

1 1( ) ( ) ( ),T h       
1( , )m    . 

From the lemma 4.2 and lemma4.3 we have the following 

result. 

[Theorem 4.4] 
( )

1

, ( )
m

T T T T

 

 

    

        and it is 

linearly ordered set with the following order in the following 

meaning. Let ,t t T   . If , ,t T t T           then 

t t  means ( ) ( ) ( )t t        either, if 

,t t T   then t t  means , 1,i it t i m   . ■ 

Let 
1 \{1}J J  and denote the set of all permutation

( )0

2 1

1 2 1

1 m

m

k k
 



 
   

 




, 

1

1

1

2

, 2

\ { }, 3, 1
i

i

s

s

J i

k
J k i m









 




  as 
0( )

1m



 .  

Then, 
0( )

1 1m m



    . 

[Lemma 4.5] ( )
ˆsup tI    for all ( )t T    

where 
0( )

1m


   . ■ 

Let e
1 2 1

1 2 1

m

m

 
  

 




,and denote  

1( )
e e   

1
( )

( ) ( )0

1

arg min arg min
e e

e e

m
i

i

i
 

 
 

  


 


    and

( ) ( )0 0

1
( )e e

T     . 

[Corollary 4.6] ( )( ) ˆ
ˆsup tt

G
I P    for all ( )0 e

t T   , 

and ( )ˆ1
t

G
P    . 

Now, we consider the following problem. 

0 :P max ( )   (4.5) 

( ; )

( ) 1 1
1

min max , [ , ]
t

xi
x G i m

f t


  
  

  (4.6) 

If 
0( )P

o p t is the solution of 0P ,then, obviously, 
0( )

( )ˆ

P
to p t G

P  .  

Now, let
1{ }, 1, 1q k q q m      , then 

q

q J

   for the set  q q J
  

And according to the mapping ( )t  , ( )t T   there 

exist three components of the vector 
q  that equal  

, ( )

1

q  

and  
, respectively,and if ( )

1
( )1q q    , then 

0( )
( )ˆ

P
to p t G

P     from the lemma 4.5. 

Now, consider the method searching the solution

Paper ID: 26051705 DOI: 10.21275/26051705 2494 



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 6 Issue 5, May 2017 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

0( )
( )ˆ

P
to p t G

P   of problem 
0P  when

( )

1
( 1)q q  

 , 

( )( )
( ), , 1, 1ji

kk

i j i j i j m     . 

We know that, if i jt t  for all , {2,3, , 1}i j m  

{3,4, , }m  such that ,i j then 1 1i j    and vice 

versa. Furthermore, from the definition 2.2, obviously,  

( )
1

,
q

index m q





 
( )

1

1
q

index q





  . 

Therefore, the points for searching ( )ˆ t
G

P  have to be chosen 

so that the number of exclusion points of 
( )

1

q  for 

components of   belonging to 
( )

1[ , )q   may be no more 

than ( 1q ), and along the direction in which the first order 

freedom degrees of assignation 1 i ( 2, )i m  increase 

1( )i  (or it , 1,i m  decrease). 

[Lemma 4.7] 

For all 
( ): , ( )q t

q J

t T  


     , the solution 

0( )
( )ˆ

P
to p t G

P   of problem 0P  is the minimum value among 

the (q-1) exclusion points for 
( )

1

q  in the direction 

( )
1

1( )
q iindex





   and the corresponding second 

assignation ratios, where 
( )
1

1( )
q iindex





   is the 

direction along which 
( )
1
q

index





decrease and 1 i  increase. 

Proof 

First, prove that the solution 
0( )

( )ˆ

P
to p t G

P   of problem 0P  

exists among the exclusion points for 
( )

1

q  belonging to the 

interval 
( )

1[ , ]q   and the corresponding second 

assignation ratios.      

Let's contradict the above conclusion, then, obviously,when

0 00

1 00

( )1 ( )( )
( )ˆ0

( , ), ,
q q

q qP
to p t G

q PM   



  accordingto the above 

assumption, 
0

{1,2, , 1},p q p
i 


 

0

01 1
1, 1,0

p p q pi i
qp

 
  and 0j   for all 

0 0
{ , , , }1 qj q q   , where  1,2, ,qM  . Hence, 

from the definition 2.1, 0

0

( )

01 1
, 1, 1

p p q p

P

o p t i i
qp 

 
    

and 0( )P

o p t j   forall
0 0

{ , , , }1 qj q q   . 

Now, let
0

1 1,
min{ , }

p p q pi i jp j  
 

 ,then, obviously,the 

condition (4.6) is satisfied also for ( )ˆ t
G

P   . This 

means that ( )ˆ t
G

P  is not the solution of problem 0P . Now, 

because the value of   decreases along the direction 

( )
1

1( )
q iindex





   ,the conclusion of the theorem is 

true. ■ 

Now, by using order relations 

1 2 1 1

2 1

(1) (2) ( 1) ( ) ( 1)

( 2) ( 1)

0
q q q

m m

q q q

m m

    

 

    

 

 

 

 

 

      

 

 


  , 

We can divide the interval ]( 0, 
 as follows:    

1

1 1

(0, ]
q m q

S

S

A B




 



 

   
    
   

  , 

where
1

( 1) ( ) ;( , ], 1,
S S

s s

S
qA s  



 

1

( 1) ( )( , ],
q q

q qB
 

 
   

  

   1, 1qm     and 

0 1

(0) (1) ( ) ( )

10, ,
q

q q

         . 

Denote  S s M
K A


 ,where

( ) ,
S

s

SA 
   

1

1

\ { },
s

S J 



 




  1, qs  , 

1

1

\ { 1}, 2,

q S

S
qM M s s




 



    ;
1

1

}\ { ,
S

k

k

S k qJ J s M







   

Now, we break the problem 0P  into the multistage problems 

as follows. 

The firststage problem is as follows: 

1P :  

1

1

( )
( )

1 1 1
1 1

ˆmax ( )

ˆmin max , ][ ,
S

q
xi

x i
f t



 

  
  



 
, 

where 1s  is that:
1 11 1

, , min{ }
q

q S S S
S M

s M J  


   , and 

1

1

( )

1
ˆ

S

s

  . 

Let 
1( )P

o p t  be a solution of the problem 1P  and consider the 

following second stage problem. 

1

2

2

( )2
( ) 1 2

1 1

ˆmax ( )
: ˆmin max , ][ ,

S

P
xi o p t

x i

P
f t



 

  
  



 
. 

Now, assume 

1 1

1 1

1

ˆ { 1} ,

q S

s s




 



   

11

1

ˆ 1 1( )

1 1

ˆ,

ˆ{ },

SP

o p t

S

A s s

A s s







 

. 

Then
2 2

1 1

2 1
ˆ

ˆ , , min{ }
S

S S s
s M

s M J  


     ,where 

1
ˆ 1

1 1 1

1

ˆ ˆ\ { 1} { }

q S

n

M M s n s

 



 
  
 
 

    and 2

2

( )

2
ˆ

S

s

  . 

Similarly, let 
2( )P

o p t  be a solution of problem 2P  and 

consider the following third stage problem. 

2

3

3

( )3
( ) 1 3

1 1

ˆmax ( )
: ˆmin max , ][ ,

s

P
xi o pt

x i

P
f t



 

  
  



 
. 
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Assume 
2 1

2 2

1

ˆ { 1} ,

q S

s s




 



    22

2

ˆ 2 2( )

2 2

ˆ,

ˆ{ },

SP

o p t

S

A s s

A s s







 

, 

then 

33 2
2

3 2
ˆ

ˆ , , min{ }
SS S S

s M

s M J  


     , where 

2
ˆ 1

2 2 1 2

1

ˆ ˆ\ { 1} { , }

q S

n

M M s n s s





 
  
 
 

    and 3

3

( )

3
ˆ

S

s

  . 

Generally, let 
1( )kP

o p t 
 be a solution of problem 1kP   and 

consider the following k-th stage problem.  

1( )
( ) 1

1 1

ˆmax ( )
: ˆmin max , ][ ,

k

s i

k
Pk

xi k o p t
x i

P
f t



 

   

  



 
. 

Assume
1 1

1 1

1

ˆ { 1},
k

q S

k ks s



 

 



    11

1

ˆ 1 1( )

1 1

ˆ,

ˆ{ },

kk

k

k kSP

o p t

S k k

A s s

A s s






 



 




 

, 

then
1 1

1
ˆ

ˆ , , min { }
k kS

k k

k k S S S
MS

s M J  
 




     , where 

1
ˆ 1 1

1 1

1 1

ˆ ˆ\ ( { 1} ) ( { } )
k

q S k

k k r

n r

M M s n s


  

 

 

 
  
 
 

   
and

( )ˆ k

S k

s

k   . 

Finally, let 
1( )NP

o p t 
 be a solution of problem 1NP  , and 

consider the following N-th stage problem. 

1( )
( ) 1

1 1

ˆmax ( )
: ˆmin max , ][ ,

N

S
N

N

PN
xi N o p t

x i

P
f t



 

   

  



 
. 

Assume 
1 1

1 1

1

ˆ { 1} ,
N

q S

N Ns s



 

 



    11

1

ˆ 1 1( )

1 1

ˆ,

ˆ{ },

NN

N

N NSP

o p t

S N N

A s s

A s s






 



 




 

, 

then

1 1

1 1

ˆ

ˆ ˆ, ( \{ } ),

, min { }
N NS

N N

N N N N

S S s
s M

s M M s

J  
 

 



  

  
, where 

1
ˆ 1 1

1 1

1 1

ˆ ˆ\ ( { 1} ) ( { } )
N

q S N

N N r

n r

M M s n s


  

 

 

 
  
 
 

     and ( )ˆ N

S
N

s

N   . 

[Theorem 4.8] 

The value 
( )kP

o pt  defined by  

1

( )

1 1

1

max { } , 1,
S k

k

Sk

P

o pt k j j j

j

k N



 



 



  (4.7) 

is a solution of the partial problem kP  ( 1,k N ), where 

k j  is given as follows; 

① If 

1
( )

1 1

1

{ }, 1, 1t

kS

k
P

j j o p t S

t

j


  


 



    for all 

{1,2, , 1}k   , then k j k j  .  

② If 
0{1,2, , 1}, {1,2, , },1

kS
k j        

0 0

1
( )

1 1
1

{ }t

S

k
P

j j o p t

t


 


 





 , then 

0

0k j   and ( 1
k

SS


  


) (

S S
k k

 
  

 
 ) , ( 1

k
SS 

  


) (
S S

k k
 

  
 
 ), where 

1

1

1

( )

( )

1 1

1 1

( ) ( )

1 1

( )

( )

1 1

1 1

,

1 ,

,

k

S kk

SS kk

S
k

k k

S Sk k

k

k

S
k

S
k

s

s

j j

j j

s P

k j j j o p t

P

Po p t

j j o p t

j j



 



 






 



   


 









 

 

 

 

 


 




 







(4.8) 

1

1

1

( )

( )

1

1

1 ( ) ( )

1

1

( )

( )

1

1

,

,

,

k

S k k

S SS kk

S S Sk k

S S k kk

S SS Sk k

S S S
k k

k

k

S Sk

S S Sk k

s

s

s P

k o p t

P

Po p t

o p t

















  

  

 

   

  

 

  


 




   




 
























 




 






















(4.9) 

1

1

1

( )

( )

2 1

1 1

2 1 ( ) ( )

2 1

1 1

( )

( )

2 1

1 1

,

,

,

k

S k k

sS S S kk

s s s
k

S S S k kk

S SS S Sk k

S SS k

k

k

S S Sk

S SS k

s

s

s P

k o p t

P

Po p t

o p t

 

 

 

  

 

 

 



   

  

  

    

  

  

  


 




   




 









 

 

 

 

 

 

 


 




 







 

 

 

  

 

 

 



(4.10) 

Proof It is easily proved by using (4.8) ─ (4.10) and the 

lemma 4.7 and the optimality principle for the problem 0P ( 

optimality principle for dynamical programming). ■ 

[Remark 4.8-1]  

If 0
( )

10
{1,2, , },

kP

o p t
N Ak    ,then 0

1

( ) (1)P

o p t      . 

[Remark 4.8-2] 

From the lemma 4.1 and the lemma 4.7, 

0( )
( ) ( )ˆ ˆ

P
t to p t G G

P P     for all ,t t T    such that 

, ( (0, ))t t      . 

Now, we describe a numerical example finding the solution 

0
( )ˆ t

G
P of the problem 0P and the corresponding solution

ˆ 00
( ; )( )0

ˆ
G

P ttx G of the problem (1.1) with the given data 

0t T  .  

Let 0 (23, 17, 13, 12, 10, 8, 7)t T   (m=7). Then the 

vector 
0

3 2 1 1 1 1
( , , , , , )
23 17 26 12 10 16

    and the 

permutation 
0 6

1 2 3 4 5 6

6 5 1 3 4 2


 
  
 

 are determined according 

to some mappings 0 0(t )   and 
0( )0  

,respectively. 

Hence,
(6) (5) (1) (3) (4) (2)

0 1 2 3 4 5 6 6( , , , , , )         and

(1)

3

1

26
    , 

(6)

1 1

3

23
     .  

Now the problem 0P is formulated as follows. 
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0P :

( ; )
0

(1)

3

(1) (6)
( ) 1 3 1

1 7

max ( )

min max , ][ ,
t

xi
x iG

f t


 

 
  



 
 

The first stage problem is 
(5)

2

(5) (6)1
( ) 1 2 1

1 3

max ( )
:

min max , [ , ]xi
x i

P
f t

 

  
 



 
. 

Since 1 5s  ,
1

2
S

   and 
1

1 2 1 2 31

6

59S
 


 , we have 

1

(5)

12 21

2

17S
 


  . 

Therefore, according to (4.8) 

1

(5)

2

11

1 2 1
S






 

 and using (4.7), 

1( ) (5)

2

2

17

P

o p t   . 

 The second stage problem is 

1

(1)

3

( )2 (1)
( ) 1 3

1 4

max ( )
:

min max , [ , ]
P

xi o p t
x i

P
f t

 

  
 



 
. 

Then 1

22

( )(1)

3 2 3 1 21 1
SS

P

o p t     
   ,  

since 2 1s  ,
2

3S
  and 

2

1 2 12 41

3

29S
 


 , 

2
2 3 2341

2

23S
 


 , (1)

3

1

26
  ,and 1( ) 2

17

P

o p t  . 

Hence, according to (4.8) 21 22 1    and from (4.7) we 

obtain 

 2

2 2

( )

1 2 2 31 1
max ,

S S

P

o p t    
 


2

1 2 12 41

3

29S
 


  . 

Also, considering the problem 

2

(3)

4

( )3 (3)
( ) 1 4

1 5

max ( )
:

min max , [ , ]
P

xi o p t
x i

P
f t

 

  
 



 
,  

we have 2

3

( )(3)

4 2 3 3 51S

P

o p t   


    since 3 3s  ,
3

4
s

   

and
3

2 3 23 51

1

11S
 


 , 
3 5

3

26
  , (3)

4

1

12
  and 2( ) 3

29

P

o p t  . 

Therefore, according to (4.8) and (4.9),  

31 3 20, 1    and 

2

3

( )

3 3

3 4 1
S

P

o p t






 

 . 

And then, using (4.8), we obtain 

 3 2 2

3

2

( ) ( ) ( )

2 3 1

1 2 1 2 41

max ,

3

29

S

S

P P P

o p t o p t o p t



   

 





  

 

. 

The fourth problem is 

3

(4)

5

( )4 (4)
( ) 1 5

1 6

max ( )
:

min max , [ , ]
P

xi o p t
x i

P
f t

 

  
 



 
. 

Since 4 4s  ,
4

5s
  and

4
2 3 23 61

2

21S
 


 , 

4

3 5 3561

3

34S
 


 , 

(4)

5

1

10
  and 

3( ) 3

29

P

o p t   , we 

have 
3

4 4

( )(4)

3 5 1 2 3 1 5
S S

P

o p t        . 

Hence, from (4.8)─(4.10), 

4 4

(4) (4)

5 5

4 1 4 2 4 3

2 3 1 3 4 1

0, ,

s s 

 
  

  

    and using (4.7) 

we have  4( ) (4) (4)

5 5

1
max

10

P

o p t     . 

The last stage problem is 

4

(2)

6

( )5 (2)
( ) 1 6

1 7

max ( )
:

min max , [ , ]
P

xi o p t
x i

P
f t

 

  
 



 
. 

Since 5 2s  ,
5

6
s

   and 
5

2 3 23 71

4

41S
 


 , 

5

3 5 3571

1

11S
 


 , 
5

5 6 5671

2

27S
 


 , 
5

3 6 3671

5

33S
 


 , 

(2)

6

1

16
   and 4( ) (4)

5

1

10

P

o p t    we have 
(2)

6 <
5

5 6 1
S




<

5

3 5 1
S




<
5

2 3 1
S




<
4( )P

o p t <
5

3 6 1
S




. 

Hence, from (4.8)─(4.10), 51 0,  52 1, 

4

5

( )

5 3

34 1
S

P

o p t






 

  and 55 1  . 

The searching process of solution is finished because

4 5
ˆ \{ }M s  ;  

and we conclude that
0 5( ) ( ) 1

0.1
10

P P

o p t o p t    . 

The distribution of first order adjoining assignation and 

exclusion points in the corresponding subintervals 

partitioned along the searching line, and the search directions 

are tabulated as follows.   
TABLE 1 

 

The signs “+” and “－” of table 1 mean individually the 

state of assignation and exclusion of 
( )ik

i  in the 

corresponding subintervals partitioned along the search 

directions respectively and”⊕”, and”⊖”denote the search 

nodes and “” indicate the search procedure and 

directions. 
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On the other hand, according to remark 4.8-2 we are sure 

that 

00 0 0
): , ( 0.5t T t t       , 

0

0 0

( )
( ) ( )ˆ ˆ

1

10

P
t to p t G G

P P    . 

Now, we show the performance schedule of the work for 

stuff for work-time data 
0 (11.5,8.5,6.5,6,5, 4,3.5)t T  



  

under 
( )ˆ

1
0.1

10
t

G
P   

in followingGantt chart.         

 
figure 1. 

From the figure 1 we have 
(0.1; )

0

( )0
1 7

arg min max
t

xi
x G i

x f



  

  

(0, 1.15, 3.8, 2.8, 2,3.4,4.45) ,
)( 0.1; 0

( )0
1 7

arg min max
t

xi
x G i

x f
  


02 x 

(0, 2.3, 7.6, 5.6, 4, 6.8, 8.9) . 

Now we consider a necessary and sufficient condition under 

which the solution of problem (1.1)-(1.2) is -free optimal 

solution. 

[Theorem 4.9] ( -free optimality necessary and sufficient 

condition) 

Let t T  . The point ( ; )tx G   is  -free optimal solution 

of the problem (1.1)-(1.2) if and only if  

( ) ( )

( ) ( ) , ( ),
2 2

2,1, 1;

j i

i j

A A

C C i j

j mi m

 
 

    
               
 

   

 

 ( )( )
11

max min
ii

BC
i mi m

 
  

 (4.11) 

Proof   

( ) It is sufficient to prove that 

0 0

0 0

0 0 0 0

( ) ( )
( ) ( )

, {1, 2, , } , ( ),

2 2

j i

i j

A A
C C

i j m i j

 
 

   
 

    
         

     



 

 ( ) ( )
1 1
max mini i

C B
i m i m

 
   


( ; )

( )
1

1

min max
t

m

xi i
x i mG

i

f t
  



 
  

 
        

(4.12) 

 By using  

  0

0 00 0

0

0 0

( )

( ) ( )

( )

(1 2 ) , (1 2 ) ,
2

,
2

i

i j

j

A

C Ci j

A

i j

t t

t t


   


 

   

 
   

 

,

( ) 1
1
max (1 2 )

iC
i m

t 
 

  and ( )
1
min ,iB m

i m
t

 
 we see 

(4.12) is equivalent to the following fact. 

 0 0

0 0 0 0

( ; )

1

( )
1

1

min{ , }
2 2

min max
t

i j

m

j i i j

m

xi i
x i mG

i

t t

t t t t

f t


  

  


  
     
     

 
 

 


(4.13) 

Considering 0 0

0 0 0 0

1 1
,

2 3 2 3

i j

j i i j

t t

t t t t
 

 
 and 

letting 0 0 0

0 0 0 0 0 0

0 min{ , }
2 2 2

i j j

j i i j i j

t t t

t t t t t t
  

  
, the (4.13) 

can be written as follows. 

( ; )

( )0 1
1

1

( ) ( ) min max
t

m

xm i i
x i mG

i

f t


   
  



 
       

 
 . 

Then, we can choose some 0x 
0( ; )tG   so that 

0
0

( ) 0
1

1

max (1 )
m

xi i j
i m

i

f t t
 



   . 

Hence,
0

( ; )0

( ) 0
1

1

min max (1 )
t

m

xi i j
x i mG

i

f t t



  



   . Thus, from 

the lemma 2.1 wehave 

0
( ; )

0
1

1 1

min max ( ) (1 )
t

m m

i i j i
x i mG

i i

f x t t t



  

 

      for all 

0(0, ]  . 

Similarly, we can choose some x  1( ; )m tG  so that 

( )
1

1

max
m

xi i m
i m

i

f t t
 



  . 

Hence, 
( ; )1

( )
1

1

min max
tm

m

xi i m
x i mG

i

f t t
  



 


. 

From the lemma 2.1,  

( ; )

( )
1

1 1

min max
t

m m

xi i m i
x i mG

i i

f t t t
  

 

    for all 1(0, ]m  .    

( ) The condition (4.11) can be written as follows. 

 1min{ , }
2 2

i j

m

j i i j

t t

t t t t
  

  
    

     

1max{ , }
2

j

m

i j

t

t t
 
 

  
  

 

for all ( , ) {1,2, , 1} {2,3, }i j m m    such that 

i j . 
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Now, let 
1max{ , }

2

o j

i j m

i j

t

t t
 


, then 

i jB B   for all ( ; )tx G   when
o

i j  .  

Hence, ( )

11

( ) i

m
m

B
i

ii

B 


  for all 

( ; )tx G   when  
1

1 1

max
m m

o

i j

i j i




  

   . 

Thus, letting  
1

1 1

max
m m

oo

i j

i j i




  

   and considering 

corollary 2.3, we obtain 
( ; )

( )
1

1

min max
t

m

xi i
x i mG

i

f t
  



  for all

( , 0.5)
o

  . ■ 

Now, we consider the searching method of critical parameter

( )
o

t
G

P   according to t T  . 

[Lemma 4.10] 

For any t T   such that 1 3 mt t , we have 

( ) 1

o
t mG

P   . 

Proof 

The condition (4.11) is equivalent to the following fact. 

 
1

1 1

max
m m

o

i j

i j i




  

   , ( , ) {1,2, , 1} {2,3, }i j m m    : i j  

(4.14) 

 And, since  1 1

1
3

3
m mt t 

 
   

 
 and 1

2 3

j

i j

t

t t



for all

,i j{1,2, , 1} {2,3, }m m    such that i j , we have 

1 1max{ , }
2

o j

i j m m

i j

t

t t
   


.  

 Therefore,  
1

1

1 1

max
m m

oo

i j m

i j i

 


  

    ■  

[Lemma 4.11] 

 Let t T   , 1 3 mt t . If 1 m   (or
1 m  ), then 

( ) 1

o
t mG

P    (or ( )
o

t
G

P   ), where 

1

1 1

max
2

m m
j

i ji j i

t

t t




  

  
  

  
  . 

Proof We use (4.14) equivalent to the condition (4.11). 

Since, if 1 m  , then

1 1max{ , }
2

o j

i j m m

i j

t

t t
   


, wehave 

 
1

1

1 1

max
m m

oo

i j m

i j i

 


  

   . 

And, if

1

1

1 1

max
2

m m
j

m
i ji j i

t

t t
 



  

  
  

  
  , then 

 

1

1 1

1

1

1 1

1

1 1

max
2

max max{ , }
2

max

m m
j

i j i i j

m m
j

m

i j i i j

m m
o

i j

i j i

t

t t

t

t t






  



  



  

  
 

  

  
 

  



 

 

 

. 

Hence, 
1

1 1

max
2

m m
o j

i j i i j

t

t t
 



  

  
  

  
  .   ■ 

The algorithm finding According the critical parameter 

( )
o

t
G

P  ( t T   ) is as follows: 

Step 1. Find 1 m  and 
1

1 1

max
2

m m
j

i j i i j

t

t t




  

  
  

  
  according to 

the given date t T  . 

Step2. If 1 3 mt t  then let ( ) 1t mG
P  .If 1 3 mt t  then 

go to step 3. 

Step3. If 1m  then ( ) 1t mG
P  , if 1 m   then 

( )t
G

P  . 

For example,let 0 (50, 46, 40,35)t T   . Then 

1 4

50 35
0.15

2 50



 


 and

3 4

1 1

max
2

j

i j i i j

t

t t


  

  
  

  
 

46
max ,

50 2 46


 

 

40 35 40
, , ,

50 2 40 50 2 35 46 2 40     

35 35 23
, 0.324

46 2 35 40 2 35 71


 

    
. 

And, we see 
1 43t t  since 

1 50t   and 
43 105t  . 

Obviously,
1 4  ,hence 

0ˆ

23
( ) 0.324

71G
P t    . 

Finally, the relaxed  - free optimization interval for a data 

0 (50, 46, 40,35)t T    is 23
( , 0.5)
71

.   

 

5. Conclusions 
 

In this paper, we proposed a new form of parametric discrete 

min-max problem and studied the parameter sufficient 

optimality conditions for it and developed solving methods. 

 

It is our view that the solved contents have the actual 

significance. 

 

The results of the paper are useful to calculate the reasonable 

distributions of the jobs so that the total necessary time is 

minimize when thestuffs for workhave the structures and 

constraints enacted strictly according to the variable supply 

limit of resources. 

 

Moreover, it is our expectation that those will contribute to the 

development of theory and method for the discrete parametric 

programming. 
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