A Parametric Programming Problem for Selecting the Optimal Scheme of Waiting Time of the Stuffs for Work

Jang-Ryol¹, Ri Chol-Ryong², Kim Yong³

¹Sunan economic University, Pyongyang, D.P.R. of Korea
²Library of Science, State Academy of Science, Pyongyang, D.P.R. of Korea
³Department of Mathematics, University of Science, Pyongyang, D.P.R. of Korea

Abstract: In this paper, we propose a discrete parametric programming problem in which the feasible region is a set of the waiting time schemes, and beginning and closing times of the stuffs for work are alternated strictly with an invariable ratio (parameter). The objective function is represented by min-max operator. We study change of feasible region and minimum of the objective function according to change of the parameter λ. Moreover we study relations of the parametric programming problem and a multi-objective problem.

Keywords: Discrete parametric min-max problem, Optimal control technique of filming process, Alternative production organization, Variable supply constraints of resources, cutting in multiple processing technique of software.

1. Introduction

Generally, parametric programming problems are those of mathematical programming problems which investigate how to change the optimal solutions according to the change of parameters contained in the problems.

The discrete parametric min-max problems appear in many fields of sciences, engineering, and productions.

A solving method for the linear min-max problems using the principle of simplex methods of linear programming has been studied in [1]. The discrete min-max problem with linear constraints and continuously differentiable objective functions $f_i(x)$, $i=1, m$ can be solved by using derived gradient methods [1, 2]. The papers [3, 4] proposed an algorithm for solving the location problem of the immediate service facilities described as a piecewise linear min-max problem.

In [5] authors considered the so-called machine-time scheduling problem for minimizing the losses due to violations of requirements at the beginning time of works in the manufacture production. They reduced the problem to a discrete min-max problem. Also, the resource allocation problems and position problems of service center can be formulate as the non-linear min-max problems, see [6, 7]. The solving methods for the discrete min-max problems in the case where $f_i(x)$ is quasi-convex, concave or quasi-monotonous are studied in [1, 8], and these methods are applied to the optimal design of the ultra-short waves’ circuit, and the several technical control problems [8, 9, 2]. Authors of [12, 13] suggested the generalized discrete min-max fractional programming, and obtained the so-called parameter-free sufficient optimality conditions and the duality results.

Model and solving methods of the discrete min-max problems can be applied to solve system of convex inequalities $f_i(x) \leq 0$, $i=1, m$, since it is equivalent to the minimization problem of the function

$$\varphi(x) = \max \left\{ \max_{1 \leq i \leq m} f_i(x), 0 \right\}$$

See [1].

The heuristic search methods including the hereditary algorithms, ACO (Ant Colony Optimization) are also widely used for solving the discrete min-max problems [10, 14, 15, 16].

On the other hand, the discrete min-max principle is used to treat multiple objective optimization problems, and is studied in the relations between optimal solutions of the discrete min-max problems and Pareto optimal solutions of multi-objective programming problems [11].

In this paper we propose and analyze a discrete parametric programming problem in which the feasible region is set of the waiting time's scheme and objective function is represented by min-max operator or multi objective form, and beginning and closing times of the stuffs for work is alternated strictly in an invariable ratio (parameter).

This form of problem has occurred in a number of practical problems including alternative production organization which is enacted strictly according to the variable supply limit of resources, the design of CNC multi-complex processing team, the cutting in multiple processing technique of software, etc.

Now let's try to show an actual problem in the realization of reasonable control systems of the 1-camera filming process.
with a control computer.

The reasonable control systems of the line-drawing camera equipment, with a control computer require that the stuffs for work disposed by each implements have different process time and their orders of priority are arbitrary, finishing up quickly and accurately in the most short time for the guarantee crank speed.

An important way of ensuring the film's quality and crank speed, lowering the filming costs is that to make exactly the moving steps of camera implements, shorten the 1-comma crank time and prevent a lot of consumption of electricity at first starting time under the situation that many electric motors are used at the same time.

Generally, in the cinemas, the number of running scenes (moving picture) for one second is 24pieces, namely 24-comma. So, after all, it is important for us to shorten the 1-comma crank time in order to attain a high crank speed.

Usually, in taking a motion picture, it is important to keep up well the speeds of the different moving implements so that the effects designed previously may occur quickly and accurately, making to carry out mutually and independently the several actions at the same time. This problem can be solved only by controlling the stepping electro motors and the several moving implements with a control computer on the base of the reasonable control algorithms. However, the processing speeds of stuffs for work of the several moving implements are defined by the corresponding step's numbers of the stepping electro motors and these numbers are determined variously according to the structures of contents of scenarios. Besides, in the action process of the step electric motors there are phenomena of losing their impulses at the beginning and closing parts of work, and to remove these we must make the speed rates lower than the responding frequencies of the step electric motors, or equal to the latter. However, the running distances (step's number) and expending times of step electric motors become very long, since the frequencies are very low.

This problem can be solved by the following methods.

This problem can be solved by the following methods.
1) We prevent the loss of steps by letting the step electric motor start smoothly with lower speed rate than the maximum responding frequency.
2) Next, let the step electric motor accelerate smoothly and gradually to the working frequency (the chain working frequency is usually 250–300 steps/s).
3) And then, let it pass for the most part of the whole distance with the chain working frequency.
4) After a while, let the speed rate decrease to that lower than the responding frequency before approaching to the end point.
5) Lastly, let it remove its sliding to stop exactly at the end point by letting the stepping electric motor run with speed rate less than the responding frequency for a short time.

Therefore, in the 1-comma filming process based on automatic accelerating and decelerating speed control principle as above, there occurs inevitably accelerating and decelerating timeat the work's starting and closing time of each moving implement, which is usually given in proportion to the number of its moving steps.

And this process is required to be handled so as for its accelerating and decelerating time not to happen at the same time.

Let's consider the following optimization's problem on the basis of an actual task discussed above.

In an automatic filming process, let's suppose that a 1-comma filming vector is completed by operating all the m machines \(R_i, (i=1,m) \) performing the different tasks.

This time each machine \(R_i, (i=1,m) \) deals individually with independent stuffs for work by means of step electric motors connected to control computer.

Let \(\Theta \) (second) denote the time required for one step's moving of each machine, then the time required for the 1-comma filming equal to \(t_i' = \Theta \cdot t_i, i=1,m \). Denote as \(t_{i1}, (i=1,m) \) the rearrangement of the above data \(t_i', (i=1,m) \) in order of size (namely, \(t_1 \geq t_2 \geq \cdots \geq t_m \)).

The vector \(t = (t_1, t_2, \cdots, t_m) \) is said to be time data of the stuffs for work.

Obviously, the time data of stuffs for work \(t = (t_1, t_2, \cdots, t_m) \) is given differently according to changing the 1-comma filming scenarios \(K \).

Now, let \(\lambda \) be an allowed ratio of the accelerating and decelerating times of each machine \(R_i, (i=1,m) \) required at the beginning and closing time of the works. We prevent the loss of steps by letting the step electric motor start smoothly with lower speed rate than the maximum responding frequency.

1) Next, let the step electric motor accelerate smoothly and gradually to the working frequency (the chain working frequency is usually 250–300 steps/s).
2) And then, let it pass for the most part of the whole distance with the chain working frequency.
3) After a while, let the speed rate decrease to that lower than the responding frequency before approaching to the end point.
4) Lastly, let it remove its sliding to stop exactly at the end point by letting the stepping electric motor run with speed rate less than the responding frequency for a short time.

Therefore, in the 1-comma filming process based on automatic accelerating and decelerating speed control principle as above, there occurs inevitably accelerating and decelerating timeat the work's starting and closing time of each moving implement, which is usually given in proportion to the number of its moving steps.
And this process is required to be handled so as for its accelerating and decelerating time not to happen at the same time.

Let's consider the following optimization's problem on the basis of an actual task discussed above.

In an automatic filming process, let's suppose that a 1-comma filming \(K \) is completed by operating all the \(m \) machines \(R_i, (i = 1, m) \) performing the different tasks.

This time each machine \(R_i, (i = 1, m) \) deals individually with independent stuffs for work by means of step electric motors connected to control computer.

Let \(\theta \) denote the time required for one step's moving of each machine, then the time required for the 1-comma filming equal to \(t'_i = \theta \cdot \tau_i, i = 1, m \). Denote as \(t'_i, (i = 1, m) \) the rearrangement of the above data \(t_i, (i = 1, m) \) in order of size(namely, \(t_1 \geq t_2 \geq \cdots \geq t_m \)).

The vector \(t = (t_1, t_2, \cdots, t_m) \) is said to be time data of the stuffs for work.

Obviously, the time data of stuffs for work \(t = (t_1, t_2, \cdots, t_m) \) is given differently according to changing the 1-comma filming scenarios \(K \).

Now, let \(\lambda \) be an allowed ratio of the accelerating and decelerating times of each machine \(R_i, (i = 1, m) \) required at the beginning and closing time of the works.

In the whole process from the time of each machine beginning to works to the time of 1-comma filming ending each machine must be located at the suitable position, and it is denoted by waiting time \(R_i, (i = 1, m) \) decision variables \(x = (x_1, x_2, \cdots, x_m) \), in dimension of which machine under the strict constraint condition that the accelerating and decelerating control cannot be performed at the same moment.

Each machine \(R_i \) requires the time \(f_i(x_i) = x_i + t_i \), \((i = 1, m) \) to handle its stuff for work.

We use the notation \(x + t = (f_1(x_1), f_2(x_2), \cdots, f_m(x_m)) \).

Now, the problem determining the waiting time scheme \(x = (x_1, x_2, \cdots, x_m) \) of each machine \(R_i \) so that total time to end 1-comma filming process (the time taken to the machine whose operation ends last) may be minimized, is formulated as a parametric discrete min-max problem ormulti-objective problem. More generally, we can consider problems of the following form:

We use following sets:

\[
\hat{X} = \{ x = (x_1, x_2, \cdots, x_m) \in R^m \mid x_i \neq x_j, (i \neq j), i, j = 1, m \}.
\]

\[
\hat{T} = \{ t = (t_1, t_2, \cdots, t_m) \mid (t_i \in R \setminus \{0\}, i = 1, m) \}
\]

\[
\wedge (t_i > t_{i+1}, i = 1, m-1) \}
\]

For any \(\lambda \in (0, 0.5) \) define following sets.

\[
A_i = \{ x_i, x_i + \lambda t_i \} \cup \{ x_i, (1-\lambda) t_i \}, i = 1, m
\]

\[
C_i = \{ x_i, x_i + \lambda t_i \}, i = 1, m
\]

\[
B_i = A_i \cup C_i, i = 1, m
\]

A vector \(t = (t_1, t_2, \cdots, t_m) \in \hat{T} \) is called a time data of stuff for work. The feasible set is as follows:

\[
G(t) = \{ x \in \hat{X} \mid A_i \cap A_j = \phi, (i \neq j), i, j = 1, m \}.
\]

For \(x \in G(t) \), \(t_i \) is called the performance time of i-th stuff for work.

For the feasible region and objective function defined above, we consider the following problems.

\[
\begin{align*}
\min_{x \in G(\lambda,t)} & \max_{1 \leq i \leq m} f_i(x) \\
\text{s.t.} & \quad x \in G(\lambda,t)
\end{align*}
\]

\[
\min_{x \in G(\lambda,t)} \{ f_1(x), f_2(x), \cdots, f_m(x) \}
\] (1.2)

[Definition 1.1] Let \((\lambda, t) \in (0, 0.5) \times \hat{T} \).

If \(\min_{x \in G(\lambda,t)} \{ f_1(x), f_2(x), \cdots, f_m(x) \} = t_1 \),

\[
\min_{x \in G(\lambda,t)} \{ f_1(x), f_2(x), \cdots, f_m(x) \} = t_1
\]

Then we call the \(x = \arg \min_{x \in G(\lambda,t)} \{ f_1(x), f_2(x), \cdots, f_m(x) \} \) - foremost optimal solution, \(\lambda \)-middle optimal solution and \(\lambda \)-free optimal solution respectively. We denote the set of all \(\lambda \)- foremost optimal solutions, the set of all \(\lambda \)-middle optimal solutions and the set of all \(\lambda \)-free optimal solutions by \(\hat{G}(\lambda,t), \hat{G}(\lambda,t) \) and \(\hat{G}(\lambda,t) \) respectively.

In this paper we study following problems.

First, we study the relations of variations of the feasible sets and optimal values of objective functions according to parameter \(\lambda \).

Second, we propose a solving method of parametric discrete min-max problem (1.1) in the relation of multi objective problem (1.2).

Third, we study the theoretical and methodological problems how to obtain the critical intervals of parameter corresponding to the foremost, the middle and the worst
The paper is composed of as follows. In section 2, we give some definitions and consider the relations of variations of the feasible sets and optimal values of objective functions according to parameter λ, and prove some results in connection with sufficient optimality conditions. In section 3, based on the results of section 2, we obtain a solution of parametric discrete min-max problem (1.1) in the relation of multi objective problem (1.2). In section 4, we describe the research results of the third problem above.

2. Parameter-sufficient optimality conditions

First, we describe the basic conceptions and notations.

[Definition 2.1] Let $\lambda \in (0, 0.5)$ and $t \in T$ be given. We denote $(1-2\lambda)t_{ij} - t_{ij}$ as Δ_{ij} for all i, j ($i < j, i=1, 2, \cdots, m-1, j=2, 3, \cdots m$).

If $\Delta_{ij} \geq 0$, then we say that B_i is assignable B_j by λ in the first order and then Δ_{ij} is called first order freedom degree of assignation to B_i of B_j. If $\Delta_{ij} < 0$, then we say that B_i exclude B_j by λ in the first order and then Δ_{ij} is called first order freedom degree of exclusion by B_i of B_j.

When $\Delta_{ij} > 0$, we denote the value Δ_{ij} / t_{ij} as ϵ_{ij} simply as ϵ_{ij} for all $(i, j, \ell) \in \{1, \cdots, m-2\} \times \{2, \cdots, m-1\} \times \{3, \cdots m\}$ such that $i < j < \ell$.

If $\epsilon_{ij} \geq 0$, then we say that B_i is assignable B_j and B_j by λ in the second order and then ϵ_{ij} is called second order freedom degree of assignation to B_i of B_j and B_j.

If $\epsilon_{ij} < 0$, then we say that B_i exclude B_j and B_j by λ in the second order and then ϵ_{ij} is called second order freedom degree of exclusion of B_j and B_j to B_i.

From above definition, if Δ_{ij} is the first order freedom degree of assignation $(\Delta_{ij} \geq 0)$, then $\lambda \leq \frac{t_{ij} - t_{ij}}{2t_{ij}}$, if Δ_{ij} is the first order freedom degree of exclusion $(\Delta_{ij} < 0)$, then $\lambda > \frac{t_{ij} - t_{ij}}{2t_{ij}}$, and then the value $\frac{t_{ij} - t_{ij}}{2t_{ij}}$ is called the first order ratio of assignation (exclusion) of B_j to B_i, respectively.

Similarly, if $\epsilon_{ij} \geq 0$ then $\lambda \leq \frac{t_{ij} - t_{ij}}{2t_{ij}}$, if $\epsilon_{ij} < 0$ then $\lambda > \frac{t_{ij} - t_{ij}}{2t_{ij}}$.

$\frac{t_{ij} - t_{ij}}{2t_{ij}}$ is called the first order ratio of assignation of B_j to B_i.

And $\frac{t_{ij} - t_{ij}}{2t_{ij}}$ is called second order ratio of assignation (exclusion) of B_j and B_i to B_i, respectively.

We denote $\frac{t_{ij} - t_{ij}}{2t_{ij}}$ by λ_{ij}, $\frac{t_{ij} - t_{ij}}{2t_{ij}}$ by μ_{ij}.

In particular, if $j = i+1$ and $\ell = i+2$, then we denote simply as Δ_{ij} (is called i-th first order adjoining freedom degree of assignation (exclusion)) and as ϵ_{ij} (is called i-th second order adjoining freedom degree of assignation (exclusion)) by λ_i, and ϵ_{ij}, respectively.

Moreover, $\frac{t_{ij} - t_{ij}}{2t_{ij}}$ and $\frac{t_{ij} - t_{ij}}{2t_{ij}}$ are called i-th first order adjoining assignation (exclusion) ratio, and i-th second order adjoining assignation (exclusion) ratio, respectively. We denote $\frac{t_{ij} - t_{ij}}{2t_{ij}}$ and $\frac{t_{ij} - t_{ij}}{2t_{ij}}$ as λ_i, μ_i, respectively. We use the following notations:

$$\lambda_* = \min_{\lambda_{i\ell} = 1} \lambda_i, \quad \lambda^* = \max_{\lambda_{i\ell} = 1} \lambda_i (2.1)$$

$$\mu_* = \max_{\lambda_{i\ell} = 1} \mu_{i\ell} (2.2)$$

Notice that there exists $i_0 \in \{1, 2, \cdots, m-1\}$ such that for any $j \in \{i_0+1, i_0+2, \cdots, m\}$ $\Delta_{i_0j} < \Delta_{i_0j+1}$.

We denote simply this relation as $(\Delta_{i_0j} \uparrow)$.

[Definition 2.2] Let $\omega = (\lambda_1, \lambda_2, \cdots, \lambda_{m-1})$, where λ_i is i-th first order adjoining assignation ratio, λ_i is i-th first order adjoining assignation ratio $(i=1, m-1)$. The components in $[\lambda_1, \lambda^*]$ of the vector are called assignation points of λ_1 corresponding to ω. We call the number of assignation points of λ_1 the order of λ_1 and denote as $\text{index}_{\lambda_1} \omega$.

In like manner, we call the components in $[\lambda_*, \lambda_1]$ exclusion points of λ_1 corresponding to ω and call their number the order (of exclusion) of λ_1 and denote as $\text{index}^*_{\lambda_1} \omega$.

Moreover, we denote the process reducing the number of exclusion points of λ_1 as $\text{index}^*_{\lambda_1} \omega$.

[Lemma 2.1] For any $\lambda', \lambda'' \in (0, 0.5)$ such that
\[\lambda' > \lambda'' \text{, the following holds true:} \]
\[G(\lambda' ; 1) \supset G(\lambda'' ; 1), \]
\[\min \max_{x \in G(\lambda'; 1)} f_i(x) \leq \min \max_{x \in G(\lambda''; 1)} f_i(x). \]

Proof Let's denote \(A_i \) and \(C_i \) corresponding to \(\lambda = \lambda'' \) (and \(\lambda = \lambda' = \lambda'' + \varepsilon (\forall \varepsilon > 0) \)) by \(A'_i, C'_i \), \((i = 1, m) \) and \(A'_i, C'_i \) respectively.

Then \(A'_i \supset A''_i, C''_i \supset C'_i, \ (i = 1, m) \).

Hence, \(G(\lambda'; 1) \supset G(\lambda''; 1) \),

so \(\min \max_{x \in G(\lambda'; 1)} f_i(x) \leq \min \max_{x \in G(\lambda''; 1)} f_i(x) \). \[
\]

[Corollary 2.2]

Given \(t \in \bar{T} \), if \(\min \max_{x \in G(\lambda'; 1)} f_i(x) = t_1 \) for an \(\lambda' \in (0, 0.5) \),
then \(\min \max_{x \in G(\lambda''; 1)} f_i(x) = t_1 \) for any \(\lambda'' \in (0, 0.5) \).

Proof

Define followings:
\[\hat{\lambda} = \min \left\{ \lambda_1, \frac{t_1 - t_m}{2 \left(\sum_{i=1}^{m} t_i - t_m \right)} \right\} \tag{2.3} \]
\[\lambda^ \lambda = \min \left\{ \lambda^*, \frac{t_1}{2 \left(\sum_{i=1}^{m} t_i \right)} \right\} \tag{2.4} \]
\[\hat{\lambda} = \max \left\{ \frac{1}{3}, \lambda_{1m} \right\} \tag{2.5} \]

[Lemma 2.4]

For any \(t = (t_1, t_2, \cdots, t_m) \in \bar{T} \),
\[\hat{\lambda} \leq \frac{t_1 - t_m}{2 \left(\sum_{i=1}^{m} t_i - t_m \right)} \leq \lambda^* \tag{2.6} \]
\[\frac{t_1 - t_m}{2 \left(\sum_{i=1}^{m} t_i - t_m \right)} \leq \frac{t_1 - t_m}{2 \sum_{i=1}^{m} t_i} \tag{2.7} \]
\[\lambda_{1m} > \lambda^* \tag{2.8} \]

Proof

First, prove (2.6). From the definition of \(\lambda^*, \lambda^* \) for any \(t \in \bar{T} \).
0 < \lambda_\star \leq \hat{\lambda} \leq \lambda^\Delta < \tilde{\lambda} < 0.5 \quad (2.11)

This shows that the interval (0, 0.5) can be always divided into
0 < \lambda_\star \leq \lambda_1 \leq \lambda^\Delta < \tilde{\lambda} < 0.5 \text{ for any } t \in \bar{T}.

[Theorem 2.5] (Parameter-sufficient foremost optimality condition)
Given \(t \in \bar{T} \), if \(\lambda \in (0, \lambda_\star] \), then

\[
\min_{x \in G_{(\lambda, t)}} \max_{\lambda \leq \lambda_1} f(x) = \min_{x \in G_{(\lambda, t)}} f_1(x) = t_1.
\]

Proof
From corollary 2.2 it is sufficient to prove that

\[
\min_{x \in G_{(\lambda, t)}} f(x) = \min_{x \in G_{(\lambda, t)}} f_1(x) = t_1 \quad \text{at } \lambda = \lambda^\star.
\]

According to (2.1), \((\forall t \in \bar{T}, \lambda = \lambda^\star) \Rightarrow (\lambda \leq \lambda_1, i = 1, m-1) \Rightarrow (1-2) t_i \geq t_{i+1}, i = 1, m-1 \Rightarrow (\mu(C_{\lambda^\star}) \geq \mu(B_{\lambda^\star}), i = 1, \ldots, m \}

Next, in case of \(\frac{1}{3} \leq \lambda_1 \), using the fact that \((\lambda > \frac{1}{3}) \Rightarrow (\mu(C_{\lambda^\star}) < \mu(A_{\lambda^\star}) \Rightarrow (\mu(C_{\lambda^\star}) \leq \mu(B_{\lambda^\star})\}

Hence, \(t \in \min_{x \in G_{(\lambda, t)}} f(x) = \min_{x \in G_{(\lambda, t)}} f_1(x) = t_1 \}

[Theorem 2.6] (Parameter-sufficient free optimality condition)
Let \(t \in \bar{T} \).

- If \(\frac{1}{3} > \lambda_1 \), then \(\min_{x \in G_{(\lambda, t)}} f(x) = \sum_{i=1}^{m} t_i \) for any

- If \(\frac{1}{3} \leq \lambda_1 \), then \(\min_{x \in G_{(\lambda, t)}} f(x) = \sum_{i=1}^{m} t_i \) for any

Proof
According to corollary 2.3, it is sufficient to prove

\[
\min_{x \in G_{(\lambda, t)}} f(x) = \sum_{i=1}^{m} t_i \quad \text{at } \lambda = \lambda^\star \quad \text{in the first case and}
\]

\[
\min_{x \in G_{(\lambda, t)}} f(x) = \sum_{i=1}^{m} t_i \quad \text{at } \lambda = \lambda_1 + \varepsilon \quad \text{for all}
\]

\[
\varepsilon \in (0, 0.5 - \lambda_1) \quad \text{in the second case.}
\]

In the first case, we have \(\lambda = \frac{1}{3} \).

Next, let \(\lambda = \frac{1}{3} \), then

\[
B_i \cap B_j = \phi, \quad i \neq j, \quad i, j = 1, m \quad \text{for all } x \in G_{(\lambda, t)} \text{ since}
\]

\[
(\lambda = \frac{1}{3}) \Rightarrow (1-2) t_i = \lambda t_i, i = 1, m \Rightarrow (\mu(C_{\lambda^\star}) = \mu(B_{\lambda^\star}) \frac{2}{m}).
\]

Hence, \(\mu \bigcup_{i=1}^{m} B_i = \sum_{i=1}^{m} \mu(B_i) \) for all \(x \in G_{(\lambda, t)} \) and finally

\[
\min_{x \in G_{(\lambda, t)}} f(x) = \sum_{i=1}^{m} t_i \}

According to the theorem 2.5 and the theorem 2.6, we know that the intervals \((0, \lambda_\star] \) and \([\lambda^\star, 0.5) \) \((\lambda^\star, 0.5) \) in the parametric effective intervals where the optimal values of objective function approach best and worst (free) situations for all \(t \in \bar{T} \), respectively.

[Theorem 2.7] (Parameter-sufficient middle optimality condition)
If \(\lambda \in (\lambda_1, \lambda_1) \) then \(t_1 < \min_{x \in G_{(\lambda, t)}} f(x) = \sum_{i=1}^{m} t_i \) for all \(t \in \bar{T} \).

Proof
Since \((\lambda > \lambda_1) \Rightarrow ((1-2) t_i < t_{i+1}) \Rightarrow (\mu(B_{\lambda^\star}) > \mu(C_{\lambda^\star})) \),

\[
\max_{x \in G_{(\lambda, t)}} f(x) = t_1 \quad \text{for all } \lambda \in (\lambda_1, \lambda_1).
\]

Hence, \(\min_{x \in G_{(\lambda, t)}} f(x) = t_1 \) for all \(\lambda \in (\lambda_1, \lambda_1). \)

In addition, for any \(t \in \bar{T} \) there exists a point \(\tilde{x} \in G_{(\lambda, t)} \) such that

\[
\max f(x) = \sum_{i=1}^{m} t_i - t_m. \quad \text{So,}
\]

\[
\min_{x \in G_{(\lambda, t)}} f(x) \leq \sum_{i=1}^{m} t_i - t_m < \sum_{i=1}^{m} t_i.
\]
Therefore, from the lemma 2.1, \(\min_{x \in G_{t;1}} \max_{i \in [m]} f_i(x) < \sum_{i=1}^{m} t_i \) for all \(\lambda \in (\lambda_1, \lambda_{1m}] \).

[Definition 2.3] Let \(t \) be in \(T \).

If \(\forall \bar{t}(i) \subseteq (0, 0.5) \min_{x \in G_{\bar{t};t}} f_i(x) = t_i \) for all \(\lambda \in \bar{t}(i) \), then \(\bar{t}(i) \) is called \(\lambda \)-foremost optimization interval, if \(\exists \bar{t}(i) \subseteq (0, 0.5), \min_{x \in G_{\bar{t};t}} f_i(x) = \sum_{i=1}^{m} t_i \) for all \(\lambda \in \bar{t}(i) \), then \(\bar{t}(i) \) is called \(\lambda \)-free optimization interval, if \(\exists \bar{t}(i) \subseteq (0, 0.5), t_i < \min_{x \in G_{\bar{t};t}} f_i(x) < \sum_{i=1}^{m} t_i \) for all \(\lambda \in \bar{t}(i) \), then \(\bar{t}(i) \) is \(\lambda \)-middle optimization interval.

From the theorems 2.5-2.7 the intervals \((0, \lambda_1 \], [\lambda_2, 0.5) \) \((\lambda_2, 0.5)\) in case of \(\frac{1}{3} \leq \frac{1}{m} \) and \((\lambda_1, \lambda_{1m}] \) are \(\lambda \)-foremost optimization interval, \(\lambda \)-freeoptimization interval and \(\lambda \)-middle optimization interval respectively.

From the lemma 2.1 and definition 2.3, it can be easily verified that the following facts are true.

For all \(\lambda', \lambda'' \in \bar{t}(i) \), \(\lambda' < \lambda'' \), \(\hat{G}(\lambda';t) \subseteq \hat{G}(\lambda'';t) \).

For all \(\lambda', \lambda'' \in \bar{t}(i) \), \(\lambda' < \lambda'' \), \(\bar{G}(\lambda';t) \subseteq \bar{G}(\lambda'';t) \).

For all \(\lambda', \lambda'' \in \bar{t}(i) \), \(\lambda' < \lambda'' \), \(\hat{G}(\lambda';t) = \bar{G}(\lambda'';t) \).

We denote the supremum of \(\lambda \)-foremost optimization interval sup \(\bar{t}(i) \) and the supremum of \(\lambda \)-middle optimization interval sup \(\bar{t}(i) \) as \(P_{\bar{G}(t)} \) and \(P_{\bar{G}(t)} \), respectively.

3. Solving the problem according to sufficient optimality condition

A set of \(\lambda \)-foremost optimal solutions \(\hat{G}(\lambda;:t) \) defined in section 2 can be also written as \(\hat{G}(\lambda;:t) = \{ x \in G(\lambda;:t) | (x_i = 0) \land (B_i = \bigcup_{i=1}^{m} B_j) \} \). Given \(\lambda \in (0, \lambda_1 \] \), denote the set \(\{ x \in \hat{G}(\lambda;:t) | C_i \supseteq B_{i+1} \}, \ i = 1, m-1 \} \) (3.1)
by \(D(\lambda;:t) \). Then obviously \(D(\lambda;:t) \subseteq \hat{G}(\lambda;:t) \).

Now, we consider the following optimization problem for a given \(\lambda \in (0, \lambda_1 \] : \[
\begin{cases}
\min_{x} f_i(x) \\
f_i(x) > f_{i+1}(x), \ i = 1, m-1 \]
\end{cases}
\]
(3.2)

According to the theorem 2.5 and its proving process we can see easily that any \(x \in D(\lambda;:t) \) is the solution of (3.2) when \(0 < \lambda \leq \lambda_0 \).

[Theorem 3.1] The following feasible solution \(\hat{x} \in \hat{G}(\lambda;:t) \) is the solution of (3.2) (the optimal solution of problem (1.1)) and the pareto-optimal solution of problem (1.2) for any \(\lambda \in (0, \lambda_1 \] : \[
\hat{x}_i = \begin{cases}
0, & i = 1 \\
\sum_{n=1}^{m} (\lambda t_n + \Delta_n \sigma_n), & i = 2, m
\end{cases}
\]
(3.3)

where \(\sigma_n \in [0, 1], (n = 1, m-1) \) is arbitrary constant and \(\Delta_n = (n-2 \lambda) t_n - t_{n+1}, (n = 1, m-1) \) is n-th first order adjoining freedom degree of assignation.

Furthermore, \(\min_{x \in D(\lambda;:t)} \max_{i \in [m]} f_i(x) = \min_{x \in D(\lambda;:t)} f_i(x) = t_1 \).

Proof First, prove that \(\hat{x} \) is the solution of (3.2) when \(0 < \lambda \leq \lambda_0 \). Obviously, \(f_i(x) - f_{i+1}(x) = \sum_{n=1}^{m} (\lambda t_n + \Delta_n \sigma_n) + t_1 - \]
\[
\sum_{n=1}^{m} (\lambda t_n + \Delta_n \sigma_n) + t_{i+1} = (1-\lambda) t_i - (t_{i+1} + \Delta_i \sigma_i), \ i = 1, m-1.
\]
And, we have \((1-2 \lambda) t_i \geq t_{i+1} + \Delta_i \sigma_i, \ i = 1, m-1 \), so \((1-\lambda) t_i - (t_{i+1} + \Delta_i \sigma_i) \geq \lambda t_j, \ i = 1, m-1 \).

Hence, \(f_i(x) - f_{i+1}(x) \geq \lambda t_i > 0, \ i = 1, m-1 \), so \(f_i(x) > f_{i+1}(x), \ i = 1, m-1 \).

It is clear that \(\hat{x} \in \hat{G}(\lambda;:t) \), and \(f_1(x) = t_1 \), so \(\min_{x \in D(\lambda;:t)} f_i(x) = f_1(x) = t_1 \).

Next, prove that \(\hat{x} \) is the praeot-optimal solution of the problem (1.2).

\[
f_1(x) = \hat{x}_i + t_i = \sum_{n=1}^{m} (\lambda t_n + \Delta_n \sigma_n) + t_i \leq \sum_{n=1}^{m} (\lambda t_n + \Delta_n) + t_i, \ i = 2, m
\]

Letting \(\epsilon_i(x) = \sum_{n=1}^{m} (\lambda t_n + \Delta_n) + t_i, \ i = 2, m \), \(\hat{x} \) is the optimal solution of the following \(\epsilon_i(x) \)-constraint problem.

\[
\begin{cases}
\min f_i(x) \\
f_i(x) \leq \epsilon_i(x), \ i = 2, m \\
x \in \hat{G}(\lambda;:t)
\end{cases}
\]

Therefore, \(\hat{x} \) is the pareto-optimal solution of problem (1.2) for all \(\lambda \in (0, \lambda_1 \].

[Lemma 3.2] Assume \(m > 3 \). Then there exists \(t_u \in \hat{T} \) such
that $\mu^* < \lambda_*$ and $\hat{G}(\lambda; t_0) = D(\lambda; t_0)$ for all $\lambda \in (\mu^*, \lambda_*]$.

Proof First, prove that there exists some $t_0 \in \tilde{T}$ such that $0 < \mu^* < \lambda_*$.

For this, it is sufficient to prove that there exist some $t_0 = (t_0^1, t_0^2, \ldots, t_0^m) \in \tilde{T}$ such that

$$t_i^0 - t_{i+1}^0 = \frac{d}{2t_i^0} (0 < d \text{(constant)} < \frac{t_i^0}{2t_i^0 - 3})$$

for $i = 1, m - 1$ and $t_0^1 > \mu^* - m - 1 m$.

Indeed,

$$\lambda_i = \frac{t_i^0 - t_{i+1}^0}{2t_i^0} = \frac{d}{2t_i^0}, \quad (i = 1, m - 1)$$

and

$$\mu_i = \frac{t_i^0 - t_{i+1}^0}{2t_i^0 + t_{i+1}^0}, \quad (i = 1, m - 2)$$

are the monotonic increase series with i,

so $\lambda_* = \{ \lambda_i \} = \frac{d}{2t_i^0}$ and

$$\mu^* = \max_{1 \leq i \leq m - 1} \mu_i = \frac{d}{2t_i^0 + t_{i+1}^0}.$$

Moreover,

$$(d < \frac{t_i^0}{2t_i^0 - 3}) \rightarrow (2t_i^0 - 3 < t_i^0) \rightarrow (2t_i^0 - 3 < t_i^0) \rightarrow (2t_i^0 < 2t_i^0 - 3 + t_i^0).$$

Therefore,

$\lambda_i > \mu^* - m - 1 m$.

Next, prove that $\hat{G}(\lambda; t_0) = D(\lambda; t_0)$ for all $\lambda \in (\mu^*, \lambda_*]$.

From the definition, $D(\lambda; t_0) \subseteq \hat{G}(\lambda; t_0)$ for all $\lambda \in (\mu^*, \lambda_*]$.

If there exists $\lambda \notin (\mu^*, \lambda_*)$, then $\hat{x} \notin \hat{G}(\lambda; t_0)$ such that

$$\overline{C}_m \supseteq B_i$$

at some $i_0 \in \{1, 2, \ldots, m - 1\}$ and $B_i = \bigcup_{i=1}^m B_i$. On the other hand,

$$\lambda > \mu^* \rightarrow (\lambda > \mu_{i+1}, i = 1, m - 2) \rightarrow (0 < \mu_i < \mu_{i+1}, i = 1, m - 1).$$

Therefore,

$\forall \lambda \in (\mu^*, \lambda_*]$,

$\forall i \in \{1, 2, \ldots, m - 1\}$ or

$B_i = \bigcup_{i=1}^m B_i$.

This leads to contradiction.

[Lemma 3.3]

For $t_0 \in \tilde{T}$ the lemma $\min_{1 \leq i \leq m} f_i(t_0) > t_1$ where $x \in (\bar{\lambda}, 0.5)$.

Proof.

From the lemma 3.2, if $\lambda \in [\bar{\lambda}, 0.5)$ then $\lambda \notin D(\lambda; t_0) .

However, $\lambda \in \{1, 2, \ldots, m - 1\}$, then

$$B_i \ni C_i \text{ for all } x \in G(\bar{\lambda}; t_0).$$

Furthermore, from the proof of lemma 3.2 when $\lambda > \mu^*$, $B_i \neq \bigcup_{i=1}^m B_i$ for all $x \in G(\bar{\lambda}; t_0)$ and therefore $x \notin \hat{G}(\lambda; t_0)$. It is easy to see

$$\min \{f_i(t_0)\} \geq f_i(t_1), (\lambda_i + \epsilon) t_i^0 > t_1, \forall \lambda \in G(\bar{\lambda}; t_0).$$

Hence,

$$\min \{f_i(t_0)\} > t_1.$$

[Lemma 3.4]

If there exist some $t_i \in \tilde{T}$ such that $\lambda_i = \lambda_*$, then

$$\min \{f_i(t_0)\} > t_1, \forall \lambda > 0.$$

Proof

Indeed, for all $x \in G(\bar{\lambda}, \lambda_\epsilon; t_i)$, $B_i \neq \bigcup_{i=1}^m B_i$

Then $x \notin \hat{G}(\lambda; t_0)$ because $(\lambda = \lambda_\epsilon + \epsilon)

(\lambda > \lambda_*) \rightarrow (\lambda_\epsilon < 0)$ for $\lambda > 0$. On the other hand,

$$\max \{f_i(t_0)\} \geq f_i(t_1), (\lambda_i + \epsilon) t_i^0 > t_1, \forall \lambda \in G(\bar{\lambda}; t_0).$$

Hence,

$$\min \{f_i(t_0)\} > t_1.$$

According to the lemma 3.2 and the theorem 3.1, we have the following result.

[Corollary 3.5]

There is $t_0 \in \tilde{T}$ (for which $\mu^* < \lambda_*$) such that a solution of the problem (1.1) is represented by the expression (3.3) for all $\lambda \in [\mu^*, \lambda_*]$.

We denote the sets of all $t \in \tilde{T}$ satisfying the conditions

$\mu^* < \lambda_* \text{ or } \lambda_\epsilon = \lambda_*$ as \tilde{T}_0, \tilde{T}_1, respectively. Then, using lemma 3.3 and lemma 3.4, the following result is obtained.

[Corollary 3.6]

$$\sup \{t_i\} = P_{x_i\epsilon}(t_i) = \lambda_* \text{ for all } t \in \tilde{T}_0 \cup \tilde{T}_1.$$

Now, let's find the optimal solution satisfying the parameter-wise sufficient optimality condition. Denote the set of all permutations of the set $I = \{1, 2, \ldots, m\}$ by

$$\Pi_m = \{1, 2, \ldots, m!\}.$$

Let $\pi \in \Pi_m$,

$$\pi = \{a_1, a_2, \ldots, a_m\}.$$

For any $\pi_1, \pi_2 \in \Pi_m$, the relation $\pi_1 \leq \pi_2$ is defined as

$$\eta_{i\pi}(x) \geq \eta_{i\pi}(x) \text{ and the relation } x' \leq x'' \text{ for } x', x'' \in \hat{G}(\lambda; t_0)$$

by $\rho(x') \leq \rho(x')$, where $\eta_{i\pi}(x)$ is the reversed number of π and $\rho(x) = \sum_{i=1}^m x_i, x \in \hat{G}(\lambda; t_0)$.

Given any $\lambda \in \{\lambda, 0.5\}$, we define the mapping
\(g : \Pi_m \rightarrow \tilde{G}(\tilde{\lambda}; t) \) as follows : \(x = g(\pi)(\pi \in \Pi_m) \), \(x = (x_{a_1}, x_{a_2}, \ldots, x_{a_n})^{\omega} \in \tilde{G}(\tilde{\lambda}; t) \), where \(x_{a_1} = 0 \).

\[x_{a_1} = \sum_{n=1}^{m-1} t_{a_n}, (i = 2, m) \]

and

\[(x_{a_1}, x_{a_2}, \ldots, x_{a_n})^{\omega} = (x_1, x_2, \ldots, x_m). \]

Then, \(g \) is an isomorphism of \(\Pi_m \) onto \(\tilde{G}(\tilde{\lambda}; t) \).

[Lemma 3.7]

\[|\tilde{G}(\tilde{\lambda}; t)| = m! \text{ for all } \lambda \in [\tilde{\lambda}, 0.5) (\tilde{\lambda} \in (\tilde{\lambda}, 0.5) \text{ in case of } 1/3 \leq \tilde{\lambda} \leq \tilde{\lambda}_m) \] and the solution of problem (1.1) giving the minimum value to \(\rho_{(x)} \) exists uniquely.

Proof.

The fact that \(|\tilde{G}(\tilde{\lambda}; t)| = m! \) for all \(\lambda \in [\tilde{\lambda}, 0.5) \) (\(\lambda \in (\tilde{\lambda}, 0.5) \) in case of \(1/3 \leq \tilde{\lambda} \leq \tilde{\lambda}_m \)), is obvious because \(\Pi_m \) and \(\tilde{G}(\tilde{\lambda}; t) \) are mutually isomorphic.

Besides,

\[\rho_{(x)} = \sum_{i=1}^{m} x_i = \sum_{i=1}^{m} x_{a_i} = \sum_{i=1}^{m-1} t_{a_n} = (m-1)t_{a_1} + (m-2)t_{a_2} + \cdots + 2t_{a_{m-2}} + t_{a_{m-1}} \]

\[(m-s)t_{a_1} \geq \sum_{i=1}^{m-1} t_{a_n} \text{ for all } x \in \tilde{G}(\tilde{\lambda}; t). \]

And, settling on \(\pi_0 = \left(\begin{array}{cccc} 1 & 2 & \cdots & m \\ m & m-1 & \cdots & 1 \end{array} \right) \), we obtain

\[x_0 = g(\pi_0) = (0, x_{m-1}, x_{m-2}, \ldots, x_2, x_1)^{\omega} = (x_1, x_2, \ldots, x_{m-1}, 0) \]

\[= (m, m, \ldots, m, t, 0) \in \tilde{G}(\tilde{\lambda}; t). \]

Moreover, \(\rho_{(x_0)} \) is the minimum value of \(\rho_{(x)} \) since

\[\rho_{(x_0)} = (m-1)t_{a_1} + (m-2)t_{a_2} + \cdots + 2t_{a_{m-2}} + t_{a_{m-1}} - (m-s)t_{a_1}. \]

Hence, the minimum of \(\rho_{(x)} \) is unique because \(g \) is one to one mapping.

Now, consider the following problem when \(\lambda \in [\tilde{\lambda}, 0.5) \) (\(\lambda \in (\tilde{\lambda}, 0.5) \) in case of \(1/3 \leq \tilde{\lambda} \leq \tilde{\lambda}_m \))

\[\min_{x} f_m(x) \]

\[f_{i}(x) > f_{i-1}(x), \quad i = 1, m-1 \quad (3.4) \]

\[x \in \tilde{G}(\tilde{\lambda}; t) \]

Using the **Lemma 3.7**, we obtain the following result.

[Theorem 3.8]

The following point \(\bar{x} \in \tilde{G}(\tilde{\lambda}; t) \) is a solution of (3.4) (the solution of problem (1.1)) and the Pareto-optimal solution of problem (1.2) for all \(\lambda \in [\tilde{\lambda}, 0.5) \) (\(\lambda \in (\tilde{\lambda}, 0.5) \) in case of \(1/3 \leq \tilde{\lambda} \leq \tilde{\lambda}_m \)).

\[\tilde{x}_i = \left\{ \begin{array}{ll} 0, & i = m \\ \sum_{n=1}^{m} t_n, & i = 1, m-1 \end{array} \right. \quad (3.5) \]

And then

\[\min_{x \in \tilde{G}(\tilde{\lambda}; t)} f_{i}(x) = \min_{x \in \tilde{G}(\tilde{\lambda}; t)} f_{i-1}(x) = \sum_{i=1}^{m} t_i. \]

Proof.

For \(\bar{x} \in \tilde{G}(\tilde{\lambda}; t) \) defined by (3.5), we have

\[f_{i}(x) - f_{i-1}(x) = \sum_{n=1}^{m} t_n + t_i - (\sum_{n=1}^{m} t_n + t_{i-1}) = t_{i-1} + \sum_{n=1}^{m} t_n + t_i - \sum_{n=1}^{m} t_n - t_{i-1} = t_i, \]

Hence, \(f_{i}(x) - f_{i-1}(x) > 0 \), \(i = 1, m-1 \).

And \(f_m(x) = x_m + t_m \geq t_m \).

Moreover, \(f_m(x) = t_m \). Furthermore, the \(\bar{x} \) is an optimal solution of a following lexicographic problem:

\[\min_{x} f_{a_i}(x), \quad \left\{ \begin{array}{ll} f_{a_1}(x) = \sum_{n=1}^{m} t_n, & \alpha_i \in I_{1} \cup \{ \alpha_k \}; \quad i = 1, m \end{array} \right. \]

\[x \in \tilde{G}(\tilde{\lambda}; t) \]

Hence, the point \(\bar{x} \) corresponding to \(\pi_0 = \left(\begin{array}{cccc} 1 & 2 & \cdots & m \\ m & m-1 & \cdots & 1 \end{array} \right) \in \Pi_m \) is a Pareto-optimal solution of problem (1.2).

Given \(t \in \tilde{T} \), the algorithm finding the optimal solution of problem (1.1) is as follows:

First, compute the values \(\tilde{\lambda}_* \) and \(\tilde{\lambda} \).

Second, divide the interval (0, 0.5) into three parts, namely \((0, \tilde{\lambda}_*], (\tilde{\lambda}_*, \tilde{\lambda}) \) and \([\tilde{\lambda}, 0.5) \) (\(\tilde{\lambda}_*, \tilde{\lambda} \) in case of \(1/3 \leq \tilde{\lambda} \leq \tilde{\lambda}_m \)).

Third, find the solutions of the problem (1.1) corresponding to the values of \(\tilde{\lambda} \). If \(\lambda \in (0, \tilde{\lambda}_*) \) then (3.3) gives a solution, if \(\lambda \in [\tilde{\lambda}_*, 0.5) \) (\(\lambda \in \tilde{\lambda}, 0.5 \)) in case of \(1/3 \leq \tilde{\lambda} \leq \tilde{\lambda}_m \) then (3.5) gives a solution.

4. The relaxation of parameter-sufficient optimality conditions

[Lemma 4.1] Let \(t^{*} \), \(t^{*} \in \tilde{T} \).

If \(t' = \alpha t^{*} \) (\(\alpha \in (-\infty, +\infty) \))

then \(\tilde{\lambda}'_{ij} = \lambda_{ij}^{*} \) and \(\mu'_{ij} = \mu_{ij}^{*} \).
Now, define following set dependent on t.
\[\Lambda = \{ \omega = (\lambda_1, \lambda_2, \cdots, \lambda_{m-1}) : \lambda_i \leq \lambda_{i+1}, \quad i = 1, \ldots, m-1 \} \]
\[(4.1) \]
Moreover, we define a mapping $\varphi : T \to \Lambda$ as follows:
\[\omega = (\lambda_1, \lambda_2, \cdots, \lambda_{m-1}) = \varphi(t), \]
\[\lambda_i = \lambda_i(t) = \frac{t_i-t_{i+1}}{2 t_i}, \quad i = 1, m-1. \]

Let’s consider a family of sets $\{T_{\omega}\}_{\omega \in \Lambda}$, where $T_{\omega} = \varphi^{-1}(\omega)$ ($\omega \in \Lambda$).

Lemma 4.2 $T = \sum_{\omega \in \Lambda} T_{\omega}$ and T_{ω} is self-similar set, i.e.
\[t' = \alpha t^* \text{ for all } t', t^* \in T_{\omega} \left(\exists \alpha \in (0, +\infty) \right). \]

Let $J = \{1, 2, \ldots, m-1\}$, $\gamma = \{k_1, k_2, \ldots, k_{m-1}\} \subseteq \Pi_{m-1}$, $\omega \in \Lambda$.

We define a mapping $\phi : \omega \in \Lambda \to \gamma \in \Pi_{m-1}$:
\[\lambda_{i}^{(k)} = \min \{ \lambda_i \}, \]
\[(4.2) \]

Lemma 4.3 $\Lambda = \sum_{\gamma \in \Pi_{m-1}} \Lambda_{\gamma}$ and Λ is a linearly ordered set.

Now, let’s denote the composition mapping of $\varphi : T \to \Lambda$
\[\phi : \Lambda \to \Pi_{m-1} \text{ by } h = \phi \circ \varphi : T \to \Pi_{m-1} \text{ and let } T_{h} = h^{-1}(\gamma) = (\phi \circ \varphi)^{-1}(\gamma), \quad (\omega \in \Lambda, \gamma \in \Pi_{m-1}). \]

From the lemma 4.2 and lemma4.3 we have the following result.

Theorem 4.4 $T = \sum_{\omega \in \Lambda} T_{\omega}$, $T_{\omega} = \sum_{\omega \in \Lambda}$ and it is linearly ordered set with the following order in the following meaning. Let $t' \in \omega$, $t^* \in \omega$, $\omega' \neq \omega^*$ then $t' \leq t^*$ means $\varphi(t') \leq \varphi(t^*)$ ($\omega' \leq \omega^*$) either, if $t', t^* \in T_{\omega}$ then $t' \leq t^*$ means $t_i \leq t_{i^*}$, $i = 1, m.$

Let $J_1 = J \setminus \{1\}$ and denote the set of all permutation $\gamma_0 = \phi(\omega_0) = \{1, 2, \ldots, m-1\} = \left\{ \begin{array}{ll} 1 & k_2, \ldots, k_{m-1}, i = 2 \\ 1 & \end{array} \right\}$ as Π_{m-1}.

Then, $\Pi_{m-1} = \Pi_{m-1}$.

Lemma 4.5 $\sup T_{\omega}(t) = \lambda_{\ast}$ for all $t \in \omega_{\omega_{\omega_{\omega_{\omega_{\omega}}}}}$, where $\gamma \in \Pi_{m-1}$. Let $J_0 = \{1, 2, \ldots, m-1\}$, and denote $\gamma_0 = \{1, 2, \ldots, m-1\}$.

Then define the order $\omega' \leq \omega^*$ for all $\omega', \omega^* \in \Lambda_{\gamma}$ means
\[\pi_{\gamma}(\omega') \leq \pi_{\gamma}(\omega^*), \text{where } \pi_{\gamma}(\omega) = \sum_{j=1}^{m} \lambda_j^{(k_j)}, \quad (4.4) \]
Moreover, the order $A_{\gamma_1} \leq A_{\gamma_2}$ for $A_{\gamma_1}, A_{\gamma_2} \in \Lambda_{\gamma}$ means $\gamma_1 \leq \gamma_2$.

Corollary 4.6 $\sup T_{\omega}(t) = \lambda_{\ast}$ for all $t \in \omega_{\omega_{\omega_{\omega_{\omega_{\omega}}}}}$, and $\lambda_{\ast} = \lambda_{\ast} = P_{G}(t)$.

Now, we consider the following problem.
\[P_{\gamma} = \max \left(\lambda_{\ast} \right) \]
\[(4.5) \]
\[\min \max f_{\gamma}(x) = f_1, \quad \lambda \in \left(\lambda_{\ast}, \lambda_{\ast} \right) \]
\[(4.6) \]
If λ_{\ast} is the solution of P_{γ}, then obviously, $\lambda_{\ast} = P_{G}(t)$.

Now, let $\Lambda_q = \{ \omega, k = q \}$, $q = 1, m-1$, then
\[\Lambda = \sum_{q=1}^{m-1} \Lambda_q \text{ for the set } \{ \Lambda_q \}_{q=1}. \]

And according to the mapping $\omega = \phi(t)$, ($\forall t \in \omega$) there exist three components of the vector $\omega \in \Lambda_q$ that equal λ_{\ast}, $\lambda_{q}^{(q)}$, and λ_{q}^{*}, respectively, and if $\lambda_{q}^{(q)} = \lambda_{q}$ ($q = 1$), then
\[\lambda_{q}^{(q)} = P_{G}(t) = \lambda_{q} \text{ from the lemma 4.5}. \]
Now, consider the method searching the solution...
\[\lambda^{(p_t)}_{opt} = P_{G(t)} \] of problem \(P_0 \) when \(\lambda^{(q)} \neq \lambda_\ast \) \((q \neq 1)\),
\[\lambda^{(1)}_i \neq \lambda^{(1)}_j \text{ (i \neq j)}, \text{ i, j = 1, m - 1}. \]

We know that, if \(t_i > t_j \) for all \(i, j \in \{2, 3, \ldots, m - 1\} \times \{3, 4, \ldots, m\} \) such that \(i < j \) then \(\Delta_{1i} < \Delta_{1j} \) and vice versa. Furthermore, from the definition \(2.2 \), obviously, \(index^+ \omega = m - q \), \(index^- \omega = q - 1 \).

Therefore, the points for searching \(P_{G(t)} \) have to be chosen so that the number of exclusion points of \(\lambda^{(q)}_i \) for components of \(\omega \) belonging to \([\lambda_\ast, \lambda^{(1)}_i) \) may be no more than \((q - 1)\), and along the direction in which the first order freedom degrees of assignment \(\Delta_{1i} \) (\(i = 2, m\)) increase \((\Delta_{1i} \uparrow) \) (or \(t_i, i = 1, m \) decrease).

[Lemma 4.7]
For all \(\omega \in \sum A_s: \omega = \varphi_{(t_i)} \), \((t_i \in T)\), the solution \(\lambda^{(p_t)}_{opt} = P_{G(t)} \) of problem \(P_0 \) is the minimum value among the \((q-1)\) exclusion points for \(\lambda^{(q)}_i \) in the direction \((index^+ \omega \downarrow \Delta_{1i}) \uparrow \) and the corresponding second assignment ratios, where \((index^- \omega \downarrow \Delta_{1i}) \uparrow \) is the direction along which \(index^- \omega \) decrease and \(\Delta_{1i} \) increase.

Proof
First, prove that the solution \(\lambda^{(p_t)}_{opt} = P_{G(t)} \) of problem \(P_0 \) exists among the exclusion points for \(\lambda^{(q)}_i \) belonging to the interval \([\lambda_\ast, \lambda^{(1)}_i) \) and the corresponding second assignment ratios.

Let's contradict the above conclusion, then, obviously, when \(\exists \ T_0 \in M, \lambda^{(p_t)}_{opt} = P_{G(t)} = \lambda^{(q-1)}_{a_{\varphi_{(t)}}}, \lambda^{(q)}_{a_{\varphi_{(t)}}} \), according to the above assumption, \(\exists i_p \in \{1, 2, \ldots, q - 1\} \),
\[e_{i_p,t} = a_{\varphi_{(t)}} \geq 0, \text{ } p = 1, q_0 - 1 \] and \(\Delta_j \geq 0 \) for all \(j \in \{q_0, q_0 + 1, \ldots, q\} \), where \(M \notin \{1, 2, \ldots, q\} \). Hence, from the definition \(2.1 \), \(\lambda^{(p_t)}_{opt} \leq \lambda_j \) for all \(j \in \{q_0, q_0 + 1, \ldots, q\} \). Now, let \(\delta = \min \{\mu_{i_p,t} \in [a_{\varphi_{(t)}}, \lambda^{(q)}_{a_{\varphi_{(t)}}}]} \), then, obviously, the condition \(4.6 \) is satisfied also for \(\lambda = P_{G(t)} + \delta \). This means that \(P_{G(t)} \) is not the solution of problem \(P_0 \). Now, because the value of \(\lambda \) decreases along the direction \((index^- \omega \downarrow \Delta_{1i}) \uparrow \), the conclusion of the theorem is true.

Now, by using order relations
\[0 < \lambda^{(1)}_a < \lambda^{(2)}_a < \cdots < \lambda^{(q-1)}_a < \lambda^{(q)}_a < \cdots \]
\[< \lambda^{(n-2)}_a < \lambda^{(n-1)}_a \]
We can divide the interval \([0, \lambda^+) \) as follows:
\[(0, \lambda^+) = \bigcup_{s=1}^{q} A_s \cup \bigcup_{s=1}^{w-q} B_t \]
where \(A_s = (\lambda^{(s-1)}_{a_{t-1}}, \lambda^{(s)}_{a_{t-1}}), s = 1, q \)
\[B_t = (\lambda^{(q+r-1)}_{a_{t-1}}, \lambda^{(q+r)}_{a_{t-1}}), r = 1, m - q - 1 \]
and \(\lambda^{(0)}_{a_0} = 0, \lambda^{(1)}_{a_1} = \lambda_\ast, \lambda^{(q)}_{a_q} = \lambda^{(1)}_i \).

Denote \(K \subseteq \{\partial^+ A_s\} \), where \(\partial^+ A_s \cap \lambda_\ast \),
\[\alpha_s \in J \cup_{s=1}^{q-1} \{a_s\}, s = 1, q \]
\[M_s \boxtimes M \cup_{s=1}^{q} \{s + v - 1\}, s = 1, q ; J_s \cup_{s=1}^{q-1} \{a_s\}, s \in M_q \]

Now, we break the problem \(P_0 \) into the multistage problems as follows.

The first stage problem is as follows:
\[\max (\lambda - \lambda_i) \]
\[P_1: \min \max f_{i(x)} = t_1, \lambda \in [\hat{\lambda}, \lambda^{(1)}_i] \]
where \(s_i \) is that: \(s_i \in M_q, s_i \in J, s_i = \min |a_s| \), and \(\hat{\lambda} \cap \lambda^{(q)}_{a_1} \).

Let \(\lambda^{(p_t)}_{opt} \) be a solution of the problem \(P_1 \) and consider the following second stage problem.
\[\max (\lambda - \lambda_2) \]
\[P_2: \min \max f_{i(x)} = t_1, \lambda \in [\hat{\lambda}, \lambda^{(p_t)}_j] \]

Now, assume \(\exists \delta_j \in \bigcup_{s=1}^{q} \{s + v - 1\} \),
\[\lambda^{(p_t)}_{opt} \in \{A_{\hat{\lambda}}, \hat{\delta}_j \neq s_i \}
\{\partial^+ A_s\}, \hat{\delta}_j = s_i \]
Then \(\exists s_i \in M_q, s_i \in J \), \(s_i \in \min |a_s| \), where \(M_q \boxtimes M \cup_{s=1}^{q} \{s + v - 1\} \), \(\hat{\delta}_i \cap \lambda^{(q)}_{a_1} \).

Similarly, let \(\lambda^{(p_t)}_{opt} \) be a solution of problem \(P_2 \) and consider the following third stage problem.
\[\max (\lambda - \lambda_3) \]
\[P_3: \min \max f_{i(x)} = t_1, \lambda \in [\hat{\lambda}, \lambda^{(p_t)}_j] \]
Assume \(\exists \hat{s}_2 \in \bigcup_{i=1}^{q-S-1} \{ s_2 + v - 1 \} \), \(\lambda^{(p)}_{opt} \in \left\{ A_{i, i} | \hat{s}_2 \neq s_2 \right\} \), then
\[\exists s_3 \in \hat{M}_2, \exists \alpha_{s_3} \in \mathcal{J}_{a_{s_3}}, \alpha_{s_3} = \min \{ \alpha_{s_3} \}, \] where
\[\hat{M}_2 \sqcap \left\{ \bigcup_{i=1}^{q-S-1} \{ s_2 + v - 1 \} \right\} \text{ and } \hat{\lambda}_3 \sqsubseteq \lambda^{(s)}_{a_{s_3}}. \]

Generally, let \(\lambda^{(p_{k+1})} \) be a solution of problem \(P_{k+1} \) and consider the following \(k \)-th stage problem.
\[P_k: \min_{x} \max_{s_{k+1}} f_k(s_{k+1}) = t_k, \lambda \in [\hat{\lambda}_k, \lambda^{(p_{k+1})}] \]
Assume \(\exists \hat{s}_k \in \bigcup_{i=1}^{q-S-1} \{ s_k + v - 1 \} \), \(\lambda^{(p)}_{opt} \in \left\{ A_{i, i} | \hat{s}_k \neq s_k \right\} \), then \(\exists s_k \in \hat{M}_k, \exists \alpha_{s_k} \in \mathcal{J}_{a_{s_k}}, \alpha_{s_k} = \min \{ \alpha_{s_k} \}, \) where
\[\hat{M}_k \sqcap \left\{ \bigcup_{i=1}^{q-S-1} \{ s_k + v - 1 \} \right\} \text{ and } \hat{\lambda}_2 \sqsubseteq \lambda^{(s)}_{a_{s_k}}. \]

Finally, let \(\lambda^{(p_{N+1})} \) be a solution of problem \(P_{N-1} \), and consider the following \(N \)-th stage problem.
\[P_N: \min_{x} \max_{s_1} f_1(s_1) = t_1, \lambda \in [\hat{\lambda}_N, \lambda^{(p_{N+1})}] \]
Assume \(\exists \hat{s}_N \in \bigcup_{i=1}^{q-S-1} \{ s_N + v - 1 \} \), \(\lambda^{(p)}_{opt} \in \left\{ A_{i, i} | \hat{s}_N \neq s_N \right\} \), then \(\exists s_N \in \hat{M}_{N-1}, \exists \alpha_{s_N} \in \mathcal{J}_{a_{s_N}}, \) where
\[\hat{M}_{N-1} \sqcap \left\{ \bigcup_{i=1}^{q-S-1} \{ s_N + v - 1 \} \right\} \text{ and } \hat{\lambda}_1 \sqsubseteq \lambda^{(s)}_{a_{s_N}}. \]

The value \(\lambda^{(p_k)} \) defined by
\[\lambda^{(p_k)} = \max_{i} \left\{ \beta_{k, i} \mu_j \mid a_{s_{k+1}} = 1 \right\}, k = 1, N \]
is a solution of the partial problem \(P_k \) \((k = 1, N) \), where \(\beta_{k, i} \) is given as follows;

1. If \(\mu_j \mid a_{s_{k+1}} = 1 \), then \(\beta_{k, i} \sqcup \delta_{k, i} \).
2. If \(\exists \nu \in \{ 1, 2, \ldots, k - 1 \}, \exists j_0 \in \{ 1, 2, \ldots, s_{k-1} \}, \) then \(\mu_j \mid a_{s_{k+1}} = 1 \), and \(\alpha_{s_{k+1}} = 1 \) \((\alpha_{s_{k+1}} = 1) \) \(\alpha_{s_{k+1}} = 1 \in (\beta_{k, s_{k+1}} \sqcap \alpha_{s_{k+1}}) \), \(\alpha_{s_{k+1}} = 1 \neq \alpha_{s_{k+1}} \) \((\beta_{k, s_{k+1}} \sqcap \alpha_{s_{k+1}}) \), where

\[\alpha_{s_{k+1}} = \lambda^{(s)}_{a_{s_{k+1}}}, \] (4.8)
\[\mu_j \mid a_{s_{k+1}} = 1, \lambda^{(s)}_{a_{s_{k+1}}} < \mu_j \mid a_{s_{k+1}} = 1 < \lambda^{(s)}_{a_{s_{k+1}}} \] (4.9)
\[\lambda^{(s)}_{a_{s_{k+1}}}, \mu_j \mid a_{s_{k+1}} = 1, \lambda^{(s)}_{a_{s_{k+1}}} > \mu_j \mid a_{s_{k+1}} = 1 > \lambda^{(s)}_{a_{s_{k+1}}} \] (4.10)

Proof It is easily proved by using (4.8) — (4.10) and the lemma 4.7 and the optimality principle for the problem \(P_0 \) (optimality principle for dynamical programming). ■

Remark 4.8-1
If \(k \in \{ 1, 2, \ldots, N \}, \lambda^{(p_k)} \in \Lambda_k \), then \(\lambda^{(p_k)} = \lambda_{s_k} \).

Remark 4.8-2
From the lemma 4.1 and the lemma 4.7, \(\lambda^{(p_k)} = P_{a_k}(t) = P_{a_k}(t) \) for all \(t', t'' \in \hat{T} \) such that \(t' = \alpha_{t''} (\forall \alpha \in (0, +\infty)) \).

Now, we describe a numerical example finding the solution \(P_{G}(t)_0 \) of the problem \(P_0 \) and the corresponding solution \(x_0 \in G(t_0)_{(t_0)} \) of the problem (1) with the given data
\[t_0 \in \hat{T} \]
Let \(t_0 = (23, 17, 13, 12, 10, 8, 7) \in \hat{T} (m=7) \). Then the vector \(\omega_0 = \left(\frac{3}{2}, \frac{2}{17}, \frac{1}{26}, \frac{1}{12}, \frac{1}{10}, \frac{1}{16} \right) \in \Lambda \) and the permutation \(\gamma_0 = (1, 2, 3, 4, 5, 6, 7) \in \Pi_6 \) are determined according to some mappings \(\phi_0 = (t_0) \) and \(\gamma_0 = (\phi_0) \) respectively.

Hence, \(\omega_0 = (\lambda_1^{(p)}, \lambda_2^{(p)}, \lambda_3^{(p)}, \lambda_4^{(p)}, \lambda_5^{(p)}, \lambda_6^{(p)}, \lambda_7^{(p)}) \in \Lambda_6 \) and \(\lambda_2^{(p)} = \lambda_1^{(p)} = \lambda_3^{(p)} = \lambda_4^{(p)} = \lambda_5^{(p)} = \lambda_6^{(p)} = \lambda_7^{(p)} = \frac{3}{23} \).

Now the problem \(P_0 \) is formulated as follows.

Volume 6 Issue 5, May 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: 26051705

DOI: 10.21275/26051705

2496
max \((\lambda - \lambda_3^{(1)})\)

\[P_0: \min_{s_{ij}=1, s_{ij}=2} \max f_{i(s)} = t_1, \ \lambda \in [\lambda_3^{(1)}, \lambda_1^{(6)}] \]

The first stage problem is

\[P_1: \min_{s_{ij}=1, s_{ij}=2} \max f_{i(s)} = t_1, \ \lambda \in [\lambda_3^{(5)}, \lambda_1^{(6)}] \]

Since \(s_1 = 5, \alpha_s = 2\) and \(\mu_{12,s_1} = \mu_{123} = \frac{6}{59}\), we have

\(\mu_{12,s_1} < \lambda^{(5)}_2 = \frac{2}{17}\).

Therefore, according to (4.8) \(\beta_1 = \frac{\lambda^{(5)}_2}{\mu_{12,s_1}}\) and using (4.7),

\[\lambda^{(P_1)}_2 = \lambda^{(5)}_2 = \frac{2}{17}\.\]

The second stage problem is

\[P_2: \min_{s_{ij}=1, s_{ij}=2} \max f_{i(s)} = t_1, \ \lambda \in [\lambda_3^{(5)}, \lambda_1^{(6)}] \]

Then \(\lambda^{(5)}_3 < \mu_{23,s_1} < \lambda^{(P_1)}_2\), since \(s_2 = 1, \alpha_s = 3\) and

\(\mu_{23,s_1} = \mu_{234} = \frac{2}{23}, \lambda^{(3)}_3 = \frac{1}{26}\, \text{and} \, \lambda^{(P_1)}_2 = \frac{2}{17}.\)

Hence, according to (4.8) \(\beta_{21} = \beta_{22} = 1\) and from (4.7) we obtain

\[\lambda^{(P_1)}_3 = \max \{\mu_{12,s_1}, \mu_{23,s_1}\} = \mu_{12,s_1} = \mu_{124} = \frac{3}{29}.\]

Also, considering the problem

\[P_3: \min_{s_{ij}=1, s_{ij}=2} \max f_{i(s)} = t_1, \ \lambda \in [\lambda_3^{(3)}, \lambda_1^{(6)}] \]

we have \(\lambda^{(3)}_3 < \mu_{23,s_1} < \lambda^{(P_1)}_2 < \lambda^{(P_1)}_3\), since \(s_3 = 3, \alpha_s = 4\) and \(\mu_{23,s_1} = \mu_{235} = \frac{1}{11}, \lambda^{(3)}_3 = \frac{1}{12}\, \text{and} \, \lambda^{(P_1)}_2 = \frac{2}{17}.\)

Therefore, according to (4.8) and (4.9),

\[\beta_{31} = 0, \beta_{32} = 1 \text{ and } \beta_{33} = \frac{\lambda^{(P_1)}_2}{\mu_{34,s_1}}.\]

And then, using (4.8), we obtain

\[\lambda^{(P_1)}_4 = \max \{\mu_{23,s_1}, \mu_{23,s_1}\} = \lambda^{(P_1)}_2 = \frac{2}{17}.\]

The fourth problem is

\[P_4: \min_{s_{ij}=1, s_{ij}=2} \max f_{i(s)} = t_1, \ \lambda \in [\lambda_3^{(4)}, \lambda_1^{(6)}] \]

Since \(s_4 = 4, \alpha_s = 5\) and \(\mu_{23,s_1} = \mu_{236} = \frac{2}{21}\),

\[\mu_{35,s_1} = \mu_{356} = \frac{3}{34}, \lambda^{(4)}_3 = \frac{1}{10}\, \text{and} \, \lambda^{(P_1)}_4 = \frac{3}{29}.\]

we have \(\lambda^{(4)}_3 < \mu_{23,s_1} < \lambda^{(4)}_5 < \lambda^{(P_1)}_4\).

Hence, according to (4.8)–(4.10),

\[\beta_4 = 0, \beta_{42} = \frac{\lambda^{(4)}_3}{\mu_{23,s_1}}, \beta_{43} = \frac{\lambda^{(4)}_3}{\mu_{34,s_1}} \text{ and using (4.7)}\]

we have \(\lambda^{(P_1)}_5 = \max \{\lambda^{(4)}_5\} = \lambda^{(4)}_5 = \frac{1}{10}.\)

The last stage problem is

\[P_5: \min_{s_{ij}=1, s_{ij}=2} \max f_{i(s)} = t_1, \ \lambda \in [\lambda_6^{(2)}, \lambda_1^{(6)}] \]

Since \(s_5 = 2, \alpha_s = 6\) and \(\mu_{23,s_1} = \mu_{237} = \frac{4}{41}\),

\[\mu_{35,s_1} = \mu_{356} = \frac{1}{11}, \mu_{56,s_1} = \mu_{567} = \frac{2}{27}, \mu_{36,s_1} = \mu_{367} = \frac{5}{33}\].

we have \(\lambda^{(2)}_6 < \mu_{56,s_1} = \mu_{567} < \lambda^{(P_1)}_5 < \lambda^{(P_1)}_6\).

Hence, from (4.8)–(4.10),

\[\beta_{51} = 0, \beta_{52} = 1, \beta_{53} = \frac{\lambda^{(P_1)}_5}{\mu_{34,s_1}} \text{ and } \beta_{55} = 1.\]

The searching process of solution is finished because \(M_t \setminus \{s_5\} = \emptyset\).

and we conclude that \(\lambda^{(P_1)}_5 = \lambda^{(P_1)}_6 = \frac{1}{10} = 0.1.\)

The distribution of first order adjoining assignation and exclusion points in the corresponding subintervals partitioned along the searching line, and the search directions are tabulated as follows.

<table>
<thead>
<tr>
<th>(\alpha_i)</th>
<th>(t_1)</th>
<th>(t_2)</th>
<th>(t_3)</th>
<th>(t_4)</th>
<th>(t_5)</th>
<th>(t_6)</th>
<th>(t_7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.1/26)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(1/26.1/4)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(1/6.1/12)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(1/2.1/10)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(1/0.2/17)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(2/17.3/23)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The signs “+” and “-” of Table 1 mean individually the state of assignation and exclusion of \(\lambda^{(k,i)}_i\) in the corresponding subintervals partitioned along the search directions respectively and “\(\emptyset\)” and “\(\bigcirc\)” denote the search nodes and “\(\rightarrow\)” indicate the search procedure and directions.

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Paper ID: 26051705
DOI: 10.21275/26051705
2497
On the other hand, according to remark 4.8-2 we are sure that
\[\exists t_0, t' \in T_{w_0}, t_0 = \alpha t_0, (\alpha = 0.5) \]
\[\lambda(P_{op}) = P_G(t_0) = P_G(t') = \frac{1}{10}. \]
Now, we show the performance schedule of the work for stuff for work-time data \(t_{im} = (11.5, 8.5, 6.5, 6.5, 4.3, 3.5) \in T_{im} \) under \(\lambda = P_{G(\lambda)} = \frac{1}{10} = 0.1 \) in following Gantt chart.

\[
\begin{align*}
 & \text{figure 1.} \\
 & \text{From the figure 1 we have } x'_0 = \arg \min \max f_i(x) \in X_{i \in G(\lambda), i \in G(\lambda)} = \{0, 1, 1.5, 3.8, 2.8, 2.3, 4.45\}, x_0 = \arg \min \max f_i(x) = 2x' = \{0, 2.3, 7.6, 5.6, 4, 6.8, 8.9\}.
\end{align*}
\]

Now we consider a necessary and sufficient condition under which the solution of problem (1.1)-(1.2) is \(\lambda \)-free optimal solution.

Theorem 4.9 (\(\lambda \)-free optimality necessary and sufficient condition)

Let \(t \in T \). The point \(x \in G(\lambda) \) is \(\lambda \)-free optimal solution of the problem (1.1)-(1.2) if and only if

\[
\begin{cases}
\mu(C_{ji}) \geq \frac{\mu(A_{ji})}{2} \\
\mu(C_{ji}) \geq \frac{\mu(A_{ji})}{2}, (i \neq j), \\
\max_{i \in G(\lambda)} \mu(C_{ji}) < \min_{i \in G(\lambda)} \mu(B_i) \quad (4.11)
\end{cases}
\]

Proof

\(\rightarrow \) It is sufficient to prove that

\[
\begin{cases}
\exists i_0, j_0 \in \{1, 2, \ldots, m\}, (i_0 < j_0), \\
\mu(C_{i0}) \geq \frac{\mu(A_{i0})}{2} \\
\mu(C_{j0}) \geq \frac{\mu(A_{j0})}{2} \end{cases}
\]

\[
\begin{cases}
\max_{i \in G(\lambda)} \mu(C_{ji}) \geq \min_{i \in G(\lambda)} \mu(B_i) \Rightarrow \min \max f_i(x) < \sum_{i=1}^{m} t_i \quad (4.12)
\end{cases}
\]

By using

\[
\begin{align*}
\mu(C_{i0}) &= (1-2\lambda) t_{i0} \\
\mu(C_{j0}) &= (1-2\lambda) t_{j0} \\
\mu(A_{i0}) &= 2
\end{align*}
\]

\[
\begin{align*}
\lambda(C_{i0}) &= \lambda(A_{i0}) \\
\lambda(C_{j0}) &= \lambda(A_{j0}) \\
\max_{i \in G(\lambda)} \mu(C_{ji}) &= \max_{i \in G(\lambda)} \mu(B_i) \Rightarrow \min \max f_i(x) < \sum_{i=1}^{m} t_i \\
\end{align*}
\]

\[
\begin{align*}
\text{max } \mu(C_{ji}) &= (1-2\lambda) t_{ij} \\
\text{min } \mu(B_i) &= t_m, \quad \Rightarrow \max_{i \in G(\lambda)} \mu(C_{ji}) \leq \min_{i \in G(\lambda)} \mu(B_i)
\end{align*}
\]

\[
\begin{align*}
\lambda(C_{i0}) &= \lambda(A_{i0}) \\
\lambda(C_{j0}) &= \lambda(A_{j0}) \\
\max_{i \in G(\lambda)} \mu(C_{ji}) &= \max_{i \in G(\lambda)} \mu(B_i) \Rightarrow \min \max f_i(x) < \sum_{i=1}^{m} t_i \\
\end{align*}
\]

\[
\begin{align*}
\text{max } \mu(C_{ji}) &= (1-2\lambda) t_{ij} \\
\text{min } \mu(B_i) &= t_m, \quad \Rightarrow \max_{i \in G(\lambda)} \mu(C_{ji}) \leq \min_{i \in G(\lambda)} \mu(B_i)
\end{align*}
\]

\[
\begin{align*}
\lambda(C_{i0}) &= \lambda(A_{i0}) \\
\lambda(C_{j0}) &= \lambda(A_{j0}) \\
\max_{i \in G(\lambda)} \mu(C_{ji}) &= \max_{i \in G(\lambda)} \mu(B_i) \Rightarrow \min \max f_i(x) < \sum_{i=1}^{m} t_i \\
\end{align*}
\]

\[
\begin{align*}
\text{max } \mu(C_{ji}) &= (1-2\lambda) t_{ij} \\
\text{min } \mu(B_i) &= t_m, \quad \Rightarrow \max_{i \in G(\lambda)} \mu(C_{ji}) \leq \min_{i \in G(\lambda)} \mu(B_i)
\end{align*}
\]

\[
\begin{align*}
\lambda(C_{i0}) &= \lambda(A_{i0}) \\
\lambda(C_{j0}) &= \lambda(A_{j0}) \\
\max_{i \in G(\lambda)} \mu(C_{ji}) &= \max_{i \in G(\lambda)} \mu(B_i) \Rightarrow \min \max f_i(x) < \sum_{i=1}^{m} t_i \\
\end{align*}
\]

\[
\begin{align*}
\text{max } \mu(C_{ji}) &= (1-2\lambda) t_{ij} \\
\text{min } \mu(B_i) &= t_m, \quad \Rightarrow \max_{i \in G(\lambda)} \mu(C_{ji}) \leq \min_{i \in G(\lambda)} \mu(B_i)
\end{align*}
\]
Now, let $\lambda^o_{i,j} = \max\left\{ \frac{t_j}{t_i + 2t_j}, \lambda_{1,m} \right\}$, then

$B_i \cap B_j = \emptyset$ for all $x \in G$ when $\lambda > \lambda^o_{i,j}$.

Hence, $\mu_x = \sum_{i=1}^{m} \mu_{x}(B_i)$ for all $x \in G_{(\lambda; t)}$ when $\lambda > \max \bigcup_{i=1}^{m} \{ \lambda^o_{i,j} \}$.

Thus, letting $\lambda^o = \max \bigcup_{i=1}^{m} \{ \lambda^o_{i,j} \}$ and considering

Corollary 2.3, we obtain $\min \max f_i(x) = \sum_{i=1}^{m} t_i$ for all $\lambda \in (\lambda^o, 0.5)$.

Now, we consider the searching method of critical parameter $\lambda^o = P^G(t)$ according to $t \in \bar{T}$.

[Lemma 4.10]

For any $t \in \bar{T}$ such that $t_i \geq 3 t_m$, we have $\lambda^o = P^G(t) = \lambda_{1,m}$.

Proof

The condition (4.11) is equivalent to the following fact.

$\lambda > \max \bigcup_{i=1}^{m} \{ \lambda^o_{i,j} \}$, $\forall (i,j) \in \{1,2,\cdots,m-1\} \times \{2,3,\cdots,m\}$: $i < j$

(4.14)

And, since $(t_i \geq 3 t_m) \Rightarrow \left(\lambda_{1,m} \geq \frac{1}{3} \right)$ and $\frac{t_j}{t_i + 2t_i} < \frac{1}{3}$ for all $i,j \in \{1,2,\cdots,m-1\} \times \{2,3,\cdots,m\}$ such that $i < j$, we have $\lambda^o_{i,j} = \max\left\{ \frac{t_j}{t_i + 2t_j}, \lambda_{1,m} \right\} = \lambda_{1,m}$.

Therefore, $\lambda^o = \max \bigcup_{i=1}^{m} \{ \lambda^o_{i,j} \} = \lambda_{1,m}$.

[Lemma 4.11]

Let $t \in \bar{T}$, $t_i < 3 t_m$. If $\bar{x} \leq \lambda_{1,m}$ (or $\bar{x} > \lambda_{1,m}$), then $\lambda^o = P^G(t) = \lambda_{1,m}$ (or $\lambda^o = P^G(t) = \lambda_{1,m}$), where

$\bar{x} = \max \bigcup_{i=1}^{m} \{ \frac{t_j}{t_i + 2t_j} \}$.

Proof We use (4.14) equivalent to the condition (4.11).

Since, if $\bar{x} \leq \lambda_{1,m}$, then

$\lambda^o_{i,j} = \max\left\{ \frac{t_j}{t_i + 2t_j}, \lambda_{1,m} \right\} = \lambda_{1,m}$, wehave

$\lambda^o = \max \bigcup_{i=1}^{m} \{ \lambda^o_{i,j} \} = \lambda_{1,m}$.

And, if $\bar{x} > \lambda_{1,m}$, then

$\lambda^o = \max \bigcup_{i=1}^{m} \{ \lambda^o_{i,j} \} = \lambda_{1,m}$.

5. **Conclusions**

In this paper, we proposed a new form of parametric discrete min-max problem and studied the parameter sufficient optimality conditions for it and developed solving methods.

It is our view that the solved contents have the actual significance.

The results of the paper are useful to calculate the reasonable distributions of the jobs so that the total necessary time is minimize when thestuffs for workhave the structures and constraints enacted strictly according to the variable supply limit of resources.

Moreover, it is our expectation that those will contribute to the development of theory and method for the discrete parametric programming.
References

[8] Березовский Б. А. и др., Многокритериальная оптимизация Математические аспекты, М. Наука 1989
[10] Попов Н.М. Приближенное решение многокритериальных задач с функциональными ограничениями Ж.Вычисл.Мат.и физ, 1986, т.26, №10, 1468-1481с