Seismic Analysis and Cost Estimation of GFRP and RCC Auditorium Building using ETABS

Anna Rebecca Prasad¹, Anue Marry Mathew²

¹PG Student, Ernakulam 1 custer of APJ Abdul Kalam Technological University, Christ Knowledge City, Mannoor, Muvattupuzha-683541, Kerala, India

²Asst.Professor, Ernakulam 1 custer of APJ Abdul Kalam Technological University, Christ Knowledge City, Mannoor, Muvattupuzha-683541, Kerala, India

Abstract: Fibre-reinforced plastic or polymer (FRP) is a composite material made of a polymer matrix reinforced with fibres. Fibre reinforced polymer (FRP) is corrosion resistant, lightweight, high in strength, has good thermal conductive and anti-fire performance and not only has a long lifespan, but it's production can greatly reduce CO2 emissions both through its method of manufacture, plus it's effective thermal insulation qualities. As a consequence, FRP building elements could prove to be one of the newer types of material being used in the construction industry in the near future. Glass Fiber Reinforced Polymer (GFRP) has become a staple in the construction field. It is a recently developed technique used for roofs, facades, panels etc. In this paper the GFRP panel is used for facades and ceilings. In this paper involves comparative study of GFRP and Reinforced concrete building, cost estimation of RCC and GFRP. Equivalent static and response spectrum analysis was carried out using ETABS 2015 Software to evaluate base shear, maximum storey drift, maximum storey displacement, storey stiffness.

Keyword: ETABS 2015, Equivalent static analysis, facades, GFRP panels, Response spectrum analysis

1. Introduction

Fibre-reinforced plastic or polymer (FRP) is a composite material made of a polymer matrix reinforced with fibres. The fibres are usually carbon, glass, aramid, or basalt. The polymer is usually an vinylester, epoxy or polyester thermosetting plastic and phenol formaldehyde resins are still in use. FRP's are commonly used in automotive, marine, aerospace and construction industries.

Fibre reinforced polymer (FRP) is corrosion resistant, lightweight, high in strength, has good thermal conductive and anti-fire performance and not only has a long lifespan, but it's production can greatly reduce CO2 emissions both through its method of manufacture, plus it's effective thermal insulation qualities. As a consequence, FRP building elements could prove to be one of the newer types of material being used in the construction industry in the near future. GFRP and GFRG are the mostly commonly used composite materials in the construction industry.

At the present study, linear static and response spectrum analysis of a RCC structure is compared with the structure with GFRP Panel.

Figure 1: Pultruded GFRP panel

2. Objective

To study the comparison of GFRP and Reinforced Concrete building by static and dynamic method.

3. Methodology

Equivalent static and response spectrum analysis is adopted.

4. Analysis

4.1 Modelling of Buildings

A Multistoried structure is to be modelled which is irregular and unsymmetrical. Modelling of the structure includes drawing of grid plan in ETABS software. It also includes defining material properties and defining section properties such as beam, column and slab.

4.2 Building Plan and Dimensional Details

An auditorium building is considered with cellar. The dimensional detail of building is given in table 1.

Tuble 1. Dimensional details of the building model			
Zone	III		
Soil type	III		
Number of floors	G +1		
Typical storey height	4.2m		
Ground floor height	3.6m		
Grade of concrete	M25		
Grade of steel	Fe415		
Thickness of brick wall	230mm		
GFRP wall thickness	300mm		
Density of concrete	25 kN/m^3		
Density of brick wall	20 kN/m^3		
Poisson ratio for concrete	0.2		
Poisson ratio for GERP	0.24		

Table 1: Dimensional details of the building model

Volume 6 Issue 4, April 2017 www.ijsr.net Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Density of GFRP	17.2597 kN/m^3
Poisson ratio for brick wall	0.15
Response reduction factor	3
Importance factor	1.5
Longer beam	230mm × 450mm
Shorter beam	230mm × 300mm
Circular column	300mm Diameter
Square column	300mm × 300mm

Figure 2: Plan view of the model

Figure 3: Three dimensional view of the RCC model

Figure 4: Rendered view of the RCC model

Load combination is given as per IS 1893 (Part 1)2002

1)1.5(DL+LL) 2)1.2(DL+LL±EL) 3)1.5(DL±EL) 4)0.9DL±1.5EL

4.3 Analysis

Equivalent static analysis is carried out to investigate base shear, maximum storey drift, maximum storey displacement, storey stiffness.

5. Results and Discussions

The results obtained after linear static and response spectrum analysis of an auditorium building is represented in tables and plotted in graphs.

Table 2:	Maximum	storey	displa	cement	(mm)
		~			· /

Model	Linear static	Response spectrum
RCC	46.10	46.11
GFRP	38.68	37.42

Figure 5: Comparison of maximum storey displacement in RCC and GFRP

Table 3: Storey stiffness (kn/m)			
Model	Linear static	Response spectrum	
RCC	144309	144461	
GFRP	149781	149970	

Table 4: Maximum storey drift

Model	Linear static	Response spectrum
RCC	0.005029	0.005029
GFRP	0.0045	0.0048

Figure 7: Comparison of maximum storey drift in RCC and GFRP

Table 5: Base shear in linear static analysis (kn)			
Force	RCC	GFRP	
FX	2215.6462	1752.66	
FY	2274.4427	1802.55	

Figure 8: Comparison of maximum base shear in RCC and GFRP by linear static analysis

As we know that the base shear is the maximum lateral force that will occur due to seismic ground motion at the base of the structure. From the tables and graphs it is clear that the base shear for RCC is greater than GFRP model by 26.41% in x axis and 26.17% in y axis respectively in linear static and 29.57% in x axis and 26.73% in y axis respectively in response spectrum analysis. From other parameters like maximum storey displacement, maximum storey drift RCC is greater than GFRP. In storey stiffness RCC is least when compared to GFRP.

Estimation costs of the models i.e. RCC, and GFRP are \gtrless 91, 21, 896.99, \gtrless 74, 94202.71, shows that there is significant difference in the total costs of the these models though the actual structure is same. Cost comparison reveals that RCC structure is more costly than GFRP structures and the cheapest structure is the GFRP structure. The total cost of RCC structure greater than GFRP structure by 21.71%.

Table 6: Base shear in response spectrum analysis (k	n)
--	---	---

	1 1	
Force	RCC	GFRP
FX	2953.9668	2279.68
FY	2978.6912	2350.28

Figure 9: Comparison of maximum base shear in RCC and GFRP by response spectrum analysis

6. Conclusion

The present work deals with the study of GFRP and RCC building and their behavior towards the lateral loads. From the analysis results for GFRP and RCC building indicates that:

- GFRP is a good material when compared to RCC with respect to easy to use, economic, fire resistance, corrosion etc
- According to maximum storey drift, displacement, base shear, storey stiffness GFRP is better than RCC
- Hence while considering both the structural and economic point of view, GFRP structure is more satisfactory and performance wise better than RCC structure.

References

- Athulya R Prasad, Namitha Chandran (2016), "Dynamic Analysis of Gfrg and Conventional Multistoried Building Using Etabs", International Journal of Engineering Science and Computing, Volume 6, Issue No.7, July 2016
- [2] Athulya R Prasad, Namitha Chandran (2016), "Static Analysis Of Gfrg and Conventional Multistoried Building Using Etabs", International Journal of Science Technology & Engineering, Volume 2, Issue 12, July 2016
- [3] Mahesh N. Patil, Yogesh N. Sonawane (2015),
 "Seismic Analysis of Multistoried Building" International Journal of Engineering and Innovative Technology (IJEIT) Volume 4, Issue 9, March 2015.
- [4] Saghafi, Safakhah, Kheyroddin, and Mohammadi (2013), "In-Plane Shear Behavior Of FRP Strengthened Masonry Walls", 2013 5th International Conference on Chemical, Biological and

Volume 6 Issue 4, April 2017 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Environmental Engineering (ICBEE 2013), 2013 2nd International Conference on Civil Engineering (ICCEN 2013).

- [5] P. Alagusundaramoorthy, R. Veera Sudarsana Reddy (2008), "Testing and Evaluation of GFRP Composite Deck Panels", Ocean Engineering 35 (2008), pp.287– 293.
- [6] M. Vovesny and T. Rotter (2012), "Gfrp Bridge Deck Panel", Procedia Engineering 40 (2012), pp.492 – 497.
- [7] Guglielmo Carra (2011), "Design and Optimization Of A GFRP Panel For Building Construction", Proc. of Int. Conf. on Advances in Civil Engineering 2011.
- [8] Tim Stratford, Giovanni Pascale, Odine Manfroni, and Barbara Bonfiglioli (2004), "Shear Strengthening Masonry Panels With Sheet Glass-Fiber Reinforced Polymer", Journal Of Composites For Construction © Asce / September/October 2004

Author Profile

Anna Rebecca Prasad, P.G. Student in Structural Engineering and Construction Management, Department of Civil Engineering, Christ Knowledge City, APJ

Abdul Kalam Technological University Kerala. Obtained BTech from Caarmel Engineering College, Perunad, under MG University Kottayam in the year of 2015

Anue Marry Mathew, Assistant Professor, Department of Civil Engineering, Christ Knowledge City, Muvattupuzha