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Abstract: EEG is widely used to record the electrical activity of the brain for detecting various kinds of diseases and disorders of the 

human brain. EEG signals are contaminated with several unwanted artifacts during EEG recording and these artifacts make the 

analysis of EEG signal difficult by hiding some valuable information. Time-frequency representation of electroencephalogram (EEG) 

signal provides a source of information that is usually hidden in the Fourier spectrum. The popular methods of short-time Fourier 

transform, Hilbert Haung transform and the wavelet transform analysis have limitations in representing close frequencies and dealing 

with fast varying instantaneous frequencies and this is often the nature of  EEG signal. The synchrosqueezing transform (SST) is a 

promising tool to track these resonant frequencies and provide a detailed time-frequency representation. The SST is an extension of the 

wavelet transform incorporating elements of empirical mode decomposition and frequency reassignment techniques. This new tool 

produces a well-defined time frequency representation allowing the identification of instantaneous frequencies in EEG signals to 

highlight individual components. We introduce the SST with applications for EEG signals and produced promising results on synthetic 

and real examples.. In this paper, different time-frequency distributions are compared with each other with respect to their time and 

frequency resolution. Several examples are given to illustrate the usefulness of time-frequency analysis in electroencephalography. 
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1. Introduction 
 

Time-frequency analysis of electroencephalogram (EEG) 

during different mental tasks received significant attention. 

As EEG is non-stationary, time-frequency analysis is 

essential to analyze brain states during different mental 

tasks. In the EEG, measured as potential differences on the 

human head, variations of the amplitude and frequency of 

certain neurological disorders. Therefore time frequency 

analysis of the EEG can add valuable information to the 

traditional visual interpretation, by providing an image of 

the spectral EEG contents varying with time. Further, the 

time-frequency information of EEG signal can be used as a 

feature for classification in brain-computer interface (BCI) 

applications. 

 

Time-frequency representations provide a powerful tool for 

the analysis of time series signals. Based on the time-

frequency representation (TFR) of EEG signal. Traditional 

time frequency representations, such as the Short-Time 

Fourier Transform (STFT) and the Wavelet Transform (WT) 

and special representations like Empirical Mode 

Decomposition (EMD), have limitations when signal 

components are not well separated in the time-frequency 

plane. Synchrosqueezing, first introduced in the context of 

speech signals [1] has shown to be an alternative to the 

EMD method [2] improving spectral resolution. 

 

The recognition, feature extraction and monitoring analysis 

and other technologies of variety of physiological signals 

including EEG signal has become a hot topic of research in 

recent years [3]. All kinds of analysis methods such as 

Fourier transformation [4-6], Short Time Fourier 

transformation [7-9], wavelet and wavelet package 

transformation [10-14], Hilbert-Huang Transformation 

(HHT) [15-19] and other technologies have been applied to 

analysis of signal. Fourier transformation is the basic of 

analysis of time domain and frequency domain for signal, 

and is very valid to the analysis of periodic stable signal. But 

in nature and engineering areas there is a large number of 

non-periodic non stationary signals, and EEG is typical non 

periodic signal, so the classic analysis method based on 

Fourier transformation cannot accurately reflect the local 

time-varying frequency spectral characteristic of signal, 

unable to obtain many of the key information.  

 

So a series of new signal time frequency analysis methods 

are put forward and developed. The basic idea of time 

frequency analysis is to design the joint function of time and 

frequency, and at the same time, the density and intensity of 

energy of signal at different time and frequency is described. 

Before the analysis and comparison on time-frequency 

performance of several of methods has been seen, but the 

research on the comparison and analysis on Short Time 

Fourier transformation, wavelet transformation, HHT and 

SST, these four kinds of methods is rare through the 

designed signal. 

 

A comprehensive survey of time-frequency decomposition 

methods is beyond the scope of this article, but some basic 

points about time-frequency transformations can be made 

that highlight differences among some of the methods and 

also underscore some more general considerations. Perhaps 

the most important overarching is that all time-frequency 

decomposition methods strike some compromise between 

temporal resolution and frequency resolution in resolving 

the EEG signals. In general, the larger the time window used 

to estimate the complex data for a given time point, the 

greater the frequency resolution but the poorer the temporal 

resolution. This trade-off between precision in the time 

domain vs. the frequency domain is formalized in the 

Heisenberg uncertainty principle [20], discussed again in a 

later section. 

 

A recent class of time-frequency techniques, referred to as 

reassignment methods [21–23], aim to improve the “read 

ability” (localization) of time-frequency representations 
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[24].The synchrosqueezing transform (SST) [25, 1] belongs 

to this class, it is a post-processing technique based on the 

continuous wavelet transform that generates highly localized 

time-frequency representations of nonlinear and non-

stationary signals. Synchrosqueezing provides a solution that 

mitigates the limitations of linear projection based time-

frequency algorithms, such as the short-time Fourier 

transform (STFT) and continuous wavelet transforms 

(CWT). The synchrosqueezing transform reassigns the 

energies of these transforms, such that the resulting energies 

of coefficients are concentrated around the instantaneous 

frequency curves of the modulated oscillations. As such, 

synchrosqueezing is an alternative to the recently introduced 

empirical mode decomposition (EMD) algorithm [26]; it 

builds upon the EMD, by generating localized time-

frequency representations while at the same time providing a 

well understood theoretical basis. 

 

This study first briefly introduces the principles and 

characteristics of several methods, short time Fourier 

transform, HHT, wavelet transform and SST. So, the time 

frequency graphs are made out through simulation signal, 

and time frequency performance of four methods is made a 

contrast and analysis, to explore the application prospect of 

them in processing and analysis of raw EEG signal. This 

paper demonstrated the potentiality of the SST in time 

frequency representation of EEG signals. Firstly, these 

mentioned methods are tested using synthetic signal and 

finally, SST and other methods are applied to a real data 

sample with high amplitude artifact. 

 

2. Time Frequency Representation Methods 
 

A. Short-Term Fourier Transform 

A variant of the fast Fourier transform (FFT), known as the 

STFT, or windowed Fourier transform performs a Fourier 

transform within a time window that is moved along the 

time series in order to characterize changes in power and 

phase of EEG signals over time. Typically, a fixed duration 

time window is applied to all frequencies. The choice of 

time window constrains the frequency binsize (i.e., 

frequency resolution), which is uniform across all 

frequencies, and also determines the lowest resolvable 

frequency. The uniformity of the characterization of 

temporal changes in high-frequency signals requires shorter 

time windows than those needed to optimally characterize 

low-frequency signals. A more flexible approach in which 

window size varies across frequencies to optimize temporal 

resolution of different frequencies is therefore desirable. The 

STFT for a non-stationary signal s(t) is defined as 
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where * is the complex conjugate, w(t) is the window 

function. The STFT of the signal is the Fourier transform of 

the signal multiplied by a window function.The advantage of 

STFT is that its physical meaning is clear and there is no 

cross term appearing [7-9]. Itis a time frequency analysis 

method which application is the most. According to the He 

is enbergun certainty principle, the product of time width 

and bandwidth of signal should be a constant relevant 

to sampling rate. In other words, when time resolution is 

needed to improve, the resolution of frequency is often 

needed to sacrifice, and vice versa. When the analyzed 

signal contains many kinds of types of scale components 

with large differences, STFT is powerless. Although STFT 

there is the defects such as resolution ratio is not high and so 

on, its algorithm is simple, and easy to implement, so in a 

long time it is a powerful tool of non-stationary signal 

analysis is, and still is widely used. 

 

B. Hilbert-Huang Transform 

The Hilbert–Huang transform (HHT) is a way to decompose 

a signal into so-called intrinsic mode functions (IMF), and 

obtain instantaneous frequency data. In contrast to other 

common transforms like the Fourier transform, the HHT is 

more like an algorithm (an empirical approach) that can be 

applied to a data set, rather than a theoretical tool. It is the 

result of the empirical mode decomposition (EMD) and the 

Hilbert spectral analysis (HSA). The HHT uses the EMD 

method to decompose a signal into so-called intrinsic mode 

functions, and uses the HSA method to obtain instantaneous 

frequency data. The HHT provides a new method of 

analyzing non stationary and nonlinear time series data. 

Based on the principle of the empirical mode decomposition 

technique [27], the signal  ts is represented as 

       2
1

trtCts M

M

m

m 
  

where, C1(t), C2(t), . . ., CM(t) are all of the intrinsic mode 

functions included in the signals and rM(t) is a negligible 

residue. Here, M=total number of intrinsic mode function 

components. The completeness of the decomposition is 

given by the Eq. (2). 

 

Instantaneous frequency (IF) represents signal’s frequency at 

an instance, and is defined as the rate of change of the phase 

angle at the instant of the “analytic” version of the signal. 

Every IMF is a real valued signal. The discrete Hilbert 

transform (HT) denoted by hd [.] is used to compute the 

analytic signal for an IMF. HT provides a phase-shift of 

±π/2 to all frequency components, whilst leaving the 

magnitudes unchanged. Then the analytic version of the 

m
th

IMF )(ˆ tcm is defined as:  
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where ma (t) and )(tm are instantaneous amplitude and 

phase respectively of the m
th 

IMF. The IF of m
th 

IMF is then 

computed by the derivative of the phase )(tm as: 

dt

td
tm

)(
~
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where )(

~
tm represents the unwrapped 

version of )(tm .The median smoothing filter is used to 

tackle the discontinuities of IF computed by discrete time 

derivative of the phase vector. 

  Hilbert spectrum represents the distribution of the signal 

energy as a function of time and frequency. It is also 

designated as Hilbert amplitude spectrum H(w, t) or simply 

Hilbert spectrum (HS). This process first normalizes the IF 

vectors of all IMFs between 0 to 0.5. Each IF vector is 

multiplied by the scaling factor  =0.5/(IFmax-IFmin),  
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where IFmax=Max(f1, f2, …, fm, …., fM) and 

IFmin=Min(f1, f2, …, fm, …., fM). The bin spacing of the 

HS is 0.5/B, where B is the number of desired frequency 

bins selected arbitrarily. Each element H(w, t) is defined as 

the weighted sum of the instantaneous amplitudes of all the 

IMFs at w
th

 frequency bin,  

)4()()(),(
1

twtatH
M

m

m m


   

where the weight factor

mw (t ) takes 1 if xfm(t) falls within 

w
th

 band, otherwise is 0. After computing the elements over 

the frequency bins, H represents the instantaneous signal 

spectrum in TF space as a 2D table. The time resolution of H 

is equal to the sampling rate and the frequency resolution 

can be chosen up to Nyquest limit[15-19, 27]. 

 

HHT is an empirical approach, and has been tested and 

validated exhaustively but only empirically. In almost all the 

cases studied, HHT gives results much sharper than any of 

the traditional analysis methods in time-frequency-energy 

representation. Additionally, it reveals true physical 

meanings in many of the data examined.  

 

C. Wavelet Packet Transform 

The wavelet packet transform (WPT) is a generalization of 

the wavelet decomposition process that offers a better 

performance compared to the ordinary wavelet methods. In 

the wavelet analysis, a signal is split into an approximation 

and a detail. The approximation is then itself split into a 

second-level approximation and detail and the process is 

repeated. On the other hand, WPT is applied in both the 

detail and the approximation coefficients are divided to get 

all nodes for the decomposed levels and generates the full 

decomposition tree. A low (l) and high (h) pass filter is 

frequently applied to generate a complete subband tree to 

some desired depth. The low-pass and high-pass filters are 

generated using orthogonal basis functions. The wavelet 

packet coefficients
i

kjC , succeeding to the signal  ts can be 

obtain as, 
 

    )5(,, 



 dttWtsC i

kj

i

kj  

where, i is the modulation parameter, j is the dilation 

parameter and k is the translation parameter. i = 1, 2, . . ., j
L
, 

and L is the level of decomposition in wavelet packet tree. 

 

By applying WPT on each channel, it produce 2
L
 sub band 

wavelet packets, where L is the number of levels .The 

structure of WPT decomposition, the lower and the higher 

frequency bands are decomposed giving a balanced binary 

tree structure. In this present work, five levels is generated 

32 subspaces (2
L
 =2

5
) and wavelet frequency interval of 

each subspace is calculated by 
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where, the frequency factor, b=1, 2, 

3, 4, 5, ...............2
L
, 

Sf is the sampling frequency of the 

EEG signal. In this study
Sf =256Hz.  ts is the original 

signal with the frequency [28].Because wavelet 

packets divide the frequency axis into finer intervals than the 

DWT, wavelet packets are superior at time-frequency 

analysis.

  

Wavelet packet decomposition algorithm decomposes 

gradually not only low frequency band of the signal, but also 

the high frequency band of the signal. Furthermore, wavelet 

packet decomposition can choose frequency band adaptively 

in accordance with the feature of the analyzed signal, and 

make a good match with the spectrum of the signal, which 

improve time frequency resolution. 

 

D. Synchrosqueezing Transform 

The synchrosqueezing transform (SST) is a post processing 

technique applied to the continuous wavelet transform in 

order to generate localized time-frequency representation of 

non-stationary signals. The continuous wavelet transform is 

a projection based algorithm that identifies oscillatory 

components of interest through a series of time-frequency 

filters known as wavelets. The SST was originally 

introduced in the context of audio signal analysis and is 

shown to be an alternative to EMD.SST aims to decompose 

a signal   into constituent components with time-varying 

harmonic behavior. These signals are assumed to be the 

addition of individual time-varying harmonic components 

yielding 
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1
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where )(tAk is the instantaneous amplitude, )(t represents 

additive noise, K stands for the maximum number of 

components in one signal, and )(tk  is the instantaneous 

phase of the k
th

 component. The instantaneous 

frequency )(tf k of the k
th 

component is estimated from the 

instantaneous phase as 
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In seismic signals, the number K of harmonics or 

components in the signal is infinite. They can appear at 

different time slots, with different amplitudes )(tAk , 

instantaneous frequencies )(tf k , and they may be separated 

by their spectral bandwidths Δ )(tf k . 

 

The spectral bandwidth defines the spreading around the 

central frequency, which in our case is the instantaneous 

frequency; for a completed disentangling of concepts. This 

magnitude is a constraint for traditional time frequency 

representation methods. The STFT and the CWT tend to 

smear the energy of the superimposed instantaneous 

frequencies around their center frequencies [1]. The 

smearing equals the standard deviation around the central 

frequency, which is the spectral bandwidth. SST is able to 

decompose signals into constituent components with time-

varying oscillatory characteristics. Thus, by using SST we 

can recover the amplitude )(tAk  and the instantaneous 

frequency )(tf k for each component. 
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From CWT to SST: The CWT of a signal  ts is 
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where
 is the complex conjugate of the mother wavelet 

and b is the time shift applied to the mother wavelet, which 

is also scaled by a. The CWT is the cross correlation of the 

signal )(ts with several wavelets that are scaled and 

translated versions of the original mother wavelet. The 

symbols ),( baws are the coefficients representing a 

concentrated time-frequency picture, which is used to extract 

the instantaneous frequencies. It is observe that there is a 

limit to reduce the smearing effect in the time-frequency 

representation using the CWT. This smearing mainly occurs 

in the scale dimension a, for constant time offset  b show 

that if smearing along the time axis can be neglected, then 

the instantaneous frequency ),( baws can be computed as 

the derivative of the WT at any point ),( ba  with respect to 

b, for all :0),( baws  
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The final step in the new time-frequency representation is to 

map the information from the time-scale plane to the time-

frequency plane. Every point (b, a) is converted to(b, 

),( baws ), and this operation is called synchrosqueezing. 

Because a and b are discrete values, we can have a scaling 

step kkk aaa  1  for any ka  where ),( baWs is 

computed. Likewise, when mapping from the time-scale 

plane to the time-frequency plan )),(,(),( bawbab inst  

the SST ),( bwTs is determined only at the centers l  of 

the frequency range ]2/,2/[   ll
with 

:1 ll   

)10(),(
1

)( .
2

3

2
),(:

, kk

baa

sls aabaWbT

lkk














 

The above equation shows that the time-frequency 

representation of the signal s(t) is synchrosqueezed 

[29]along the frequency (or scale) axis only. The 

synchrosqueezing transform reallocates the coefficients of 

the continuous wavelet transform to get a concentrated 

image over the time frequency plane, from which the 

instantaneous frequencies are then extracted; this is an 

ultimate goal in EEG signal analysis. The identified 

frequencies are used to describe their source EEG and 

eventually gain a better understanding of the artifact 

detection. 

 

3. Results And Discussion 
A. Synthetic data 

 

In this section, the different TFR method is tested with a 

challenging synthetic signal. A noiseless synthetic signal is 

created as the concatenation of the following components 

(the IF is in brackets): 

];20[);40sin(40)(1  IFtts   

];40[);80sin(60)(2  IFtts   

];60[);120sin(80)(3  IFtts   
 

 
 

  
(a) The synthetic signals S(t) with three sinusoidal 

components. 
(b) TF representation using Short Term Fourier 

Transform. 
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(c) TF representation using Hilbert Spectrum. (d) TF representation using Hilbert Haung Transform. 

 
 

(e) TF representation using Wavelet Packet Transform.. (f) TF representation using Synchrosqueezing 

Transform. 

Figure 1: Synthetic signal S(t) and its TF representation 

 

The synthetic signal s(t) (Figure1a) has three constant 

harmonics of 20 Hz (s1(t)) and 40 Hz (s2(t)) from time 0 to 

4 s, the 60 Hz component (s3(t )) appears at time 4 s and 

vanishes at 6 s. Comparison of Synchrosqueezing with the 

STFT, HHT and WPT  are illustrated in Figure1.The STFT 

is able to identify the three components but with a low 

resolution ( Figure 1b), especially when they overlap at 4 s. 

Figure 1c) shows the instantaneous frequencies for each 

component using HHT. It looks better time resolution than 

STFT but lower frequency resolution for wide frequency 

bandwidth. Figure 1e) shows the instantaneous frequencies 

for each component using decimated WPT. The WPT is able 

to identify the three components but with a low resolution, it 

is good for nearest frequency resolution.  On the other hand, 

the SST (Figure 1f) is able to perfectly delineate each 

individual component and to resolve the instantaneous 

frequencies close to the theoretical value, which are 

presented good time and frequency resolution. For 

comparison purposes, we include the HHT result, because 

the SST is an extension of the CWT and EMD. The 

instantaneous frequencies obtained as the derivative of each 

one of the independent components. In the SST shows a 

sharper representation of the instantaneous frequencies. 

 

Figure1.shows the STFT, HHT, WPT and SST time-

frequency representations. Four methods all can distinguish 

the change of main frequency. From Figure1, spectrum 

graph of short time Furious transformation it can be seen 

that, although this figure can distinguish the moment of three 

main frequency components and mutation occurrence, the 

resolution is not high. According to the Heisenberg 

uncertainty principle, the product of time width and 

bandwidth of signal should be a constant relevant to 

sampling rate. In other words, when time resolution is 

needed to improve, the resolution of frequency is often 

needed to sacrifice, and vice versa. For EEG signal, when 

the frequency resolution is required, the time window length 

is likely to appear too large, and at this time FFT may be 

difficult to meet the requirement. The treatment effect is not 

satisfactory for non-stationary nonlinear signal such as EEG. 

Figure1(d) is the HHT spectrum. It can be seen from the 

figure that processing effect of HHT on nonlinear unstable 

signal has a unique advantage, because this method does not 

exist the steps of partition and translation of windows when 

using, adopting that separately making analysis for the short 

time series. Therefore, it makes a good balance between the 

requirements of time resolution and frequency resolution, 

that is to say, as long as it meets the Shannon theorem (i.e., 

sampling law), this method can improve time domain 

resolution as much as possible under the situation that 

without sacrificing frequency domain resolution. Despite the 

high-amplitude noise, the resonance frequencies as well as 

their variations are all clearly visible on the SST 

representation (Figure1f). The SST is able to map smooth 
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and sharp changes in the frequency lines. Compared with the 

STFT, the SST brings out the resonance frequencies more 

sharply, improving significantly the frequency resolution. 

The SST is then able to distinguish between the different 

lines constituting the resonance frequency at 2, 4 and 8 Hz 

while the STFT cannot. Last but not least, the SST 

determines the IFs at all times. Therefore, the time 

resolution of this method is not limited by the size of any 

window. 

 
B. Application to real EEG data 

 

Dataset description: 
In this section, the real EEG data used to evaluate the TFR 

method is collected from well-known publicly available real 

EEG data set (downloaded from 

http://www.commsp.ee.ic.ac.uk/~mandic/EEG-256Hz.zip). 

The data was recorded from 8 electrodes for 30 seconds and 

sampled at 256Hz. The labels for the recorded electrodes are 

provided in each mat file. The ground electrode was placed 

at position Cz, according to the 10-20 system. The electrode 

positions used were Fp1, Fp2, C3, C4, O1, O2, vEOG, 

hEOG and correspond respectively to the columns of the 

data matrix. For instance data(:, 1) gives the recordings 

corresponding to Fp1.This data set also contains EOG 

artifacts from blink of the eyes. In addition, the data set was 

sampled at 256 Hz and notch filtered at 50 Hz. It shows the 

real EEG signals, the EOG artifacts were present on all six 

EEG channels, while the artifacts are much stronger on the 

frontal lobe electrodes (Fp1, Fp2) and highly non-stationary 

(its amplitude differs between successive eye movements). 

Unlike the “artificially” contaminated EEG recordings, there 

is no ground truth “pure” EEG (pre-contaminated EEG). 

 

 

 

 
a)Time domain representation of raw EEG signal. (b) Short Term Fourier Transform TFR for raw EEG 

signal. 

  
(c) Hilbert Spectrum for raw EEG signal. (d) TFR using raw EEG for HHT. 
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e) TFR using raw EEG for WPT. f) Synchrosqueezing TF representation using raw EEG 

signal. 
Figure 2: Time-frequency analysis of raw EEG signal. Upper plot shows the STFT and the lower plot the SST. The 

SST is able to delineate the spectral components some of them were missing in the STFT representation. 

 

Experimental results 

 

In this section we apply the different time frequency 

representation method as like as SST, HHT, WT and SST to 

a real dataset. Figure 2. illustrared  different time frequency 

representation method using raw EEG. From the TFR 

representation it is visualized the presence of artifact in EEG 

signal. Typically 0.5 to 100 µV are the range of EEG signal 

and it lies between 0 to 50 Hz. Generally the ocular artifacts 

are occur in the range between 0 to 8 or 10 hz, and muscle 

artifacts present over 20 Hz. The spectral analysis of wide-

sense stationary signals using the Fourier transform is well-

established. For nonstationary signals, there exist local 

Fourier methods such as the short-time Fourier transforms 

(STFT). Because wavelets are localized in time and 

frequency, it is possible to use wavelet-based counterparts to 

the STFT for the time-frequency analysis of nonstationary 

signals. For example, it is possible to construct the 

scalogram based on the continuous wavelet transform 

(CWT). However, a potential drawback of using the CWT is 

that it is computationally expensive. The discrete wavelet 

transform (DWT) permits a time-frequency decomposition 

of the input signal, but the degree of frequency resolution in 

the DWT is typically considered too coarse for practical 

time-frequency analysis. As a compromise between the 

DWT- and CWT-based techniques, wavelet packets provide 

a computationally-efficient alternative with sufficient 

frequency resolution. a time-frequency analysis of EEG 

signal using wavelet packets is presented in this section. 

 

In the STFT a Hamming window of length 256 and 50% 

overlap is used. The STFT is able to recognize the three 

components but with a poor resolution.In this present work, 

in WPT the frequency bands corresponding to five 

decomposition levels for Daubechies 4 (db4) mother wavelet 

which is chosen for this filter. Hilbert spectral analysis 

(HSA) is a method for examining each IMF's instantaneous 

frequency as functions of time. The final result is a 

frequency-time distribution of signal amplitude (or energy), 

designated as the Hilbert spectrum, which permits the 

identification of localized features. The individual IMFs are 

completely disjoint at any temporal position. The overall 

effect of IF of all IMFs is used in time-frequency (TF) 

representation of the time domain signal. For the SST a 

bump wavelet is used with a ratio central frequency to 

bandwidth of 50. The discretization of the scales of CWT is 

64. The SST produces a sharper time-frequency 

representation showing frequency components that were 

hidden in the STFT representation. From Figure2, it is clear 

that the three methods (STFT, HHT and SST) clearly shown 

the EEG signal lies below the 20 Hz except WPT. The TFR 

of WPT shows the EEG signal lies all over the frequency 0 

to 128 Hz but below 20 Hz it exhibits high energy. The high 

energy indicate the artifacts of EEG signal and obviously the 

artifact is ocular artifact which is found in similarity in 

Figure2(a).From Figure 2 (a), it is seen that the raw EEG is 

mixed with EOG( eye blink) artifact. So, from above TFR, it 

is clear that the frequency localization of WPT is good for 

real EEG than SST but the time and frequency resolution is 

better of SST than other three methods namely STFT, HHT 

and WPT. 

 

4. Conclusions 
 

The examples given in this text lead to the conclusion that 

among the tested TFRs, SST are really valuable tools in 

analyzing the frequency content of EEG. The proposed 

method is computationally fast and is suitable for real-time 

BCI applications. To evaluate the TFR, a comparison with 

short-time Fourier transform (STFT), Hilbert–Huang 

transform (HHT) and wavelet packet transform (WPT)for 

both synthesized and real EEG data is performed in this 

paper. The popular methods of  STFT has limitations in 

representing close frequencies and dealing with fast varying 

instantaneous frequencies and this is often the nature of EEG 

signals. HHT spectrum displays the distribution of signal 

energy in time frequency domain, and can help more clearly 

understand the distribution situation of low and high 

frequency part in signal. Moreover, HHT method structures 

basis function from the signal itself, directly reflects the 

characteristic of signal itself, and eliminate the generated 

virtual volume due to the mismatch of base function and 

signal in transformation process. so the obtained HHT 

spectrum can not only locate the position of frequency 

mutation point, but also can accurately distinguish two main 

frequency components The time frequency resolution of 

wavelet transformation are both very good, for the smaller 

frequency component, the time point of frequency hopping 
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is described not enough accurately. The synchrosqueezing 

transform (SST) is a promising tool to track these resonant 

frequencies and provide a detailed time-frequency 

representation. The synchrosqueezing transform to EEG 

signals and also show its superior precision, in both time and 

frequency, at identifying the components of complicated 

oscillatory signals. Synchrosqueezing can be used to analyze 

spectrally and decompose a wide variety of signals with high 

precision in time and frequency. 
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