The Generalization of Lowndes' Operators in Cos hx

U. K. Bajpai

Department of Mathematics, B.S.N.V. I. College, Lucknow (India)

Abstract: In this paper, I have defined Generalized Lowndes' operators and Hankel operator involving Cos hx, some product relations of the operators and inversion of the operators have been discussed. A formal solution of dual integral equation associated by Cos hx have been discussed.

Keywords: Lowndes' operator, Hyperbolic function, Bessel function, Hankel operator, Erdélyi-Kober operators.

AMS Subject Classification 2010

1. Introduction

In this paper I introduce a generalized Hankel operator and generalized Erdélyi-Kober operators of hyperbolic function and deduce some relations between them. The operators are then applied to obtain solutions to some dual integral equations which have applications in diffraction theory. The operators and methods followed essentially due to Lowndes [3]. The analysis throughout is formal.

Burlak[1] has shown that if -1 < β < 0, then the solutions of the integral equations.

\[\psi(y)(x^2 - y^2)^{1/2} J_\beta \left[k \sqrt{(x^2 - y^2)} \right] dy = h(x) \]

and

\[\psi(y)(y^2 - x^2)^{1/2} J_\beta \left[k \sqrt{(y^2 - x^2)} \right] dy = m(x) \]

are given by:

\[\psi(x) = \frac{d}{dx} \int_0^x yh(y)(x^2 - y^2)^{1/2} J_{\beta+1} \left[k \sqrt{(x^2 - y^2)} \right] dy \]

and

\[\psi(x) = \frac{d}{dx} \int_x^\infty ym(y)(y^2 - x^2)^{1/2} J_{\beta+1} \left[k \sqrt{(y^2 - x^2)} \right] dy \]

respectively. If \(J_\beta \) the Bessel function of the first kind, is replaced by \(I_\beta \), the modified Bessel function of the first kind, in equations (1.1) and (1.2). Then \(I_{\beta+1} \) must be replaced by \(J_{\beta+1} \) in equations (1.3) and (1.4). The condition -1 < β < 0 was not stated by Burlak but was pointed out in a more recent paper by Srivastav[5].

We introduce the generalized hankel transform of the form

\[f(x) = 2^{\alpha} (\cosh x)^{2\alpha} (\cosh x - \cosh x) \]

\[\times \left(\int \frac{1}{cosh^2 u - \cosh^2 k} \right) f(u) J_{2\eta+\alpha} \left(\chi_1 \right) \]

(1.5)

where

\[\chi_1 = \left[(\cosh^2 x - \cosh^2 a) (\cosh^2 u - \cosh^2 b) \right]^{1/2} \]

which is related to the modified Hankel operator \(S_{\eta,\alpha} \) defined in Sneddon[4] and Lowndes' operators defined in Lowndes[3].

Applying the Hankel inversion theorem Sneddon[4] to the equation

\[S \left(0, \cosh k, \cosh k \right) f(x) = g(x) \]

and hence an inversion theorem for the generalized operator of the Hankel transform can be written in the form

\[S^{-1} \left(0, \cosh k, \cosh k \right) = S \left(\eta + \alpha, -\alpha, \sigma \right) \]

and hence an inversion theorem for the generalized operator of the Hankel transform can be written in the form

\[S^{-1} \left(0, \cosh k, \cosh k \right) = S \left(\eta + \alpha, -\alpha, \sigma \right) \]

(1.6)

when \(k = 0 \), I see that the above equation becomes

\[S \left(\eta, \alpha, \sigma \right) = S \left(0, \eta + \alpha, 0 \right) = S_{\eta,\alpha} \]

(1.7)

The generalized Lowndes' operators \(\mathcal{L}(\eta,\alpha) \) and \(\mathcal{R}(\eta,\alpha) \) by the formulæ
\[\mathcal{S}_k(\eta, \alpha) f(x) = 2^\alpha (\cosh x)^{-2\eta - 2\alpha} (\cosh k)^{-\alpha} \int_0^x (\cosh u)^{1+2\eta} \]
\[\times (\cosh 2x - \cosh 2u)^{\alpha(\eta-1)} \]
\[J_{\alpha-1} \left[\frac{k\sqrt{(\cosh^2 2x - \cosh^2 2u)}}{f(u) du} \right] \]
\[\left(\cosh^2 x - \cosh^2 2u \right)^{\alpha(\eta-1)} \]
\[\mathcal{R}_k(\eta, \alpha) f(x) = 2^\alpha (\cosh x)^{2\eta} (\cosh k)^{-\alpha} \int_x^\infty (\cosh u)^{1-2\eta - 2\alpha} \]
\[\times (\cosh 2u - \cosh 2x)^{\alpha(\eta-1)} \]
\[J_{\alpha-1} \left[k\sqrt{(\cosh^2 2u - \cosh^2 2x)} \right] f(u) du, \]
\[\text{where } \alpha > 0, \eta > 1/2, \text{ and the operators } \mathcal{S}_k(\eta, \alpha) \text{ and } \mathcal{R}_k(\eta, \alpha) \text{ by the above equations when } J_{\alpha-1} \text{ replaced by } I_{1-\alpha}. \]

Similar formulae have been briefly discussed by Srivastava[5]. I shall make use of some of the basic properties of the operators.

If I let \(t \) tend to zero I see that these operators are related to the Erdélyi-Kober operators Sneddon[4] by
\[\mathcal{S}_0(\eta, \alpha) = I_{\eta, \alpha}, \mathcal{R}_0(\eta, \alpha) = K_{\eta, \alpha} \]
\[\text{Letting } \alpha \text{ tend to zero in equation (1.10) I have the identity operators} \]
\[\mathcal{S}_0(\eta, \alpha) = I_{\eta, 0} = I_{\eta} R_0(\eta, 0) = K_{\eta, 0} = I \]

From the definition (1.8) and (1.9) if follows immediately that
\[\mathcal{S}_k(\eta, \alpha) \cosh^2 x f(x) = \cosh^2 x \mathcal{S}_k(\eta + \beta, \alpha) f(x) \]
\[\mathcal{R}_k(\eta, \alpha) \cosh^2 x f(x) = \cosh^2 x \mathcal{R}_k(\eta - \beta, \alpha) f(x) \]
\[\text{Writing down the expressions for } \mathcal{S}_k(\eta + \alpha, \beta) \text{ and } \mathcal{S}_k(\eta, \alpha) \text{ I find that} \]
\[\mathcal{S}_k(\eta + \alpha, \beta) \mathcal{S}_k(\eta, \alpha) f(x) = 2^{\alpha(\eta+\alpha)} (\cosh x)^{-2\eta - 2\alpha} (\cosh k)^{-\alpha} \int_0^{\infty} (\cosh u)^{1+2\eta} \]
\[\mathcal{S}_k(\eta, \alpha) g(u) du \]
\[\left(\cosh^2 x - \cosh^2 2u \right)^{\alpha(\eta-1)} \]
\[\mathcal{R}_k(\eta, \alpha) \mathcal{R}_k(\eta, \alpha) f(x) = 2^{\alpha(\eta+\alpha)} (\cosh x)^{2\eta} (\cosh k)^{-\alpha} \int_0^{\infty} (\cosh u)^{1-2\eta - 2\alpha} \]
\[\mathcal{R}_k(\eta - \alpha, \beta) g(u) du \]
\[\left(\cosh^2 x - \cosh^2 2u \right)^{\alpha(\eta-1)} \]

Interchanging the order of the integrations and evaluating the inner integral Sneddon[4] I get.
\[\mathcal{S}_k(\eta + \alpha, \beta) \mathcal{S}_k(\eta, \alpha) f(x) = \frac{2}{\Gamma(\alpha + \beta)} \int_0^{\infty} (\cosh x)^{-2(\eta+\alpha+\beta)} (\cosh y)^{1+2\eta} \]
\[\times (\cosh^2 x - \cosh^2 y)^{\alpha+\beta-1} f(y) dy \]
\[= \mathcal{S}_0(\eta + \alpha, \beta) f(x) = I_{\eta, \alpha + \beta} f(x) \]
\[\text{so I have the product rule} \]
\[\mathcal{S}_k(\eta + \alpha, \beta) \mathcal{S}_k(\eta, \alpha) = I_{\eta, \alpha + \beta} \]

In similar way I can derive the formulae
\[\mathcal{S}_k(\eta + \alpha, \beta) \mathcal{R}_k(\eta, \alpha) = I_{\eta, \alpha + \beta} \]

and
\[\mathcal{S}_k(\eta, \alpha) \mathcal{R}_k(\eta + \alpha, \beta) = \mathcal{R}_k(\eta, \alpha) \mathcal{R}_k(\eta + \alpha, \beta) = K_{\eta, \alpha + \beta} \]

The above results indicate the manner in which I should define the operators \(\mathcal{S}_k(\eta, \alpha) \) and \(\mathcal{R}_k(\eta, \alpha) \) for \(\alpha < 0 \). From equations (1.11) and (1.13) I have
\[\mathcal{S}_k(\eta + \alpha, -\alpha) \mathcal{S}_k(\eta, \alpha) = I \]

which suggests that if \(\alpha < 0 \) I define \(\mathcal{S}_k(\eta, \alpha) f \) to be the solution of the integral equation.
\[\mathcal{S}_k(\eta + \alpha, -\alpha) g(x) = 2^{-\alpha} (\cosh x)^{-2\eta} (\cosh k)^{1+\alpha} \]
\[\times \int_0^{\infty} (\cosh u)^{1+2\eta} (\cosh^2 x - \cosh^2 u)^{-\alpha(\eta+1)} \]
\[I_{-\alpha(\eta+1)} [\cosh k \sqrt{(\cosh^2 x - \cosh^2 u)} g(u) du] = f(x) \]

Using the results (1.1) and (1.2) if follows that \(\mathcal{S}_k(\eta, \alpha) f \) is given by the equation
\[\mathcal{S}_k(\eta, \alpha) f(x) = 2^\alpha (\cosh x)^{1-2\eta-2\alpha} (\cosh k)^{\alpha} \frac{d}{dx} \int_0^{\cosh(u)^{1+2\eta}} \]
\[(\cosh^2 x - \cosh^2 u)^{\alpha(\eta-1)} \]
\[\mathcal{S}_k(\eta, \alpha) f(x) = (\cosh x)^{1-2\eta-2\alpha} D_x \left[(\cosh x)^{1+2\eta} \mathcal{S}_k(\eta, \alpha + 1) f(x) \right] \]

when \(-1 < \alpha < 0 \) and where have written \(D_x = \frac{1}{2} \frac{d}{dx} x^{-1} \).
Similarly from equations (1.11) and (1.15) I see that if I
define \(g = \mathcal{R}^{-1}_k (\eta + \alpha, -\alpha) \) to be the solution of integral
equation \(\mathcal{R}^{-1}_k (\eta + \alpha, -\alpha) g = f \), and use the results (1.2)
and (1.4) then

\[
\mathcal{R}^{-1}_k (\eta, \alpha) f (x) = 2^\alpha \int (cosh x)^{2m+1+2\alpha+2\eta} \mathcal{J} (\eta, \alpha + m) f (x) \quad (1.20)
\]

and

\[
\mathcal{R}^{-1}_k (\eta, \alpha) f (x) = (-1)^m (cosh x)^{2\eta-1} \quad (1.21)
\]

where \(-m < \alpha < 0\) and \(m \) is a positive integer.

Now that I have defined the operators for negative and I see that
equations (1.11), (1.13), (1.14) and (1.15), can be interpreted as yielding the inverse operators.

\[
\mathcal{J}_k (\eta, \alpha) = \mathcal{J}_k (\eta + \alpha, -\alpha) \quad (1.22)
\]

\[
\mathcal{J}_k (\eta, \alpha) = \mathcal{J}_k (\eta + \alpha, -\alpha) \quad (1.23)
\]

Finally, it is an easy matter to show that

\[
\int_0^\infty (cosh x) f (x) \mathcal{J}_k (\eta, \alpha) g (x) dx = \int_0^\infty (cosh x) g (x) \mathcal{R}_k (\eta, \alpha) f (x) dx
\]

2. Relations between the Generalized Hankel
and the Generalized Erdélyi-Kober
Operators

From the definitions (1.5) and (1.8) I have that

\[
\mathcal{J}_k (\eta + \alpha, \beta) \left\{ \begin{array}{c}
0, 0, \cosh k \\
\eta, \alpha, \sigma
\end{array} \right\} f (x)
\]

And

\[
\mathcal{R}_k (\eta, \alpha + \beta) \left\{ \begin{array}{c}
0, 0, \cosh k \\
\eta, \alpha, \sigma - \eta + \beta
\end{array} \right\}
\]

3. Solution of the Dual Integral Equations

The dual integral equations
\begin{align*}
\int_{k}^{\infty} \chi^{\prime}(u)J_{\mu}(\cosh x \cosh u)\psi(u)du = F_{1}(x), & \quad 0 \leq x \leq 1, k \geq 0 \\
\int_{k}^{\infty} \psi(u)J_{\nu}(\cosh x \cosh u) = G_{2}(x), & \quad x > 1
\end{align*}
\quad (3.1)
\quad (3.2)

Where $\chi^{\prime}(u) = (\cosh u)^{-\mu - \nu} (\cosh^{2}u - \cosh^{2}k)^{\beta}$

where $F_{1}(x)$ and $G_{2}(x)$ are prescribed functions, have been solved by Burali[1] using a generalization of the method introduced by Sneddon[4] and developed by Copson[2] for solving the case $\mu = \nu$, $k = 0$.

Following Sneddon I use the notation $I_{1} = \{x : 0 \leq x < 1\}$, $I_{2} = \{x : x > 1\}$ and write any function $f(x)$, $x \geq 0$, as

$$f(x) = f_{1}(x) + f_{2}(x)$$

where

$$f_{1}(x) = \begin{cases} f(x), & x \in I_{1} \\ 0, & x \in I_{2} \end{cases}, \quad f_{2}(x) = \begin{cases} 0, & x \in I_{1} \\ f(x), & x \in I_{2} \end{cases}$$

If I make the substitutions

$$\Psi(u) = (\cosh u)^{1+\nu} \phi(u), \quad f(x) = 2^{\mu - 2\beta} (\cosh x)^{2\beta - \mu} F(x)$$

$$g(x) = 2^{-\nu} (\cosh x)^{\nu} G(x)$$

We see that equations (3.1) and (3.2) can be written in the operator from

$$S \left(\begin{array}{ccc} 0, & 0, & \cosh k \\ \beta, & \mu - 2\beta, & \beta \end{array} \right) \phi(x) = f(x)$$

(3.4)

$$S \left(\begin{array}{ccc} 0, & 0, & 0 \\ \nu, & -\nu, & 0 \end{array} \right) \phi(x) = g(x)$$

(3.5)

where $\phi(x)$, $f_{2}(x)$ and $g_{1}(x)$ are unknown and the functions

$$f_{1}(x) = 2^{\nu - 2\beta} (\cosh x)^{2\beta - \mu} F_{1}(x), \quad g_{2}(x) = 2^{-\nu} (\cosh x)^{\nu} G_{2}(x)$$

(3.6)

are given

Solution

It follows from the results (2.2) and (2.3) that

$$\mathcal{I}_{k} (\mu - \beta, \beta - \mu) S \left(\begin{array}{ccc} 0, & 0, & \cosh k \\ \beta, & \mu - 2\beta, & \beta \end{array} \right)$$

(3.7)

and hence I can write equations (3.4) and (3.5) in the form

$$S \left(\begin{array}{ccc} 0, & \cosh k, & \cosh k \\ \beta, & -\beta, & \frac{1}{2}\beta \end{array} \right) \phi(x) = h(x)$$

(3.8)

where

$$h_{1}(x) = \Theta_{k} (\mu - \beta, \beta - \mu) f_{1}(x), \quad h_{2}(x) = \mathcal{I}_{k} (\beta, -\nu) g_{2}(x)$$

(3.9)

are known functions.

Applying the inversion formula (1.7) to equation (3.8) I see that

$$\phi(u) = S^{-1} \left(\begin{array}{ccc} 0, & \cosh k, & \cosh k \\ \beta, & -\beta, & \frac{1}{2}\beta \end{array} \right) h(u) = S \left(\begin{array}{ccc} \cosh k, & 0, & 0 \\ \beta, & -\beta, & \frac{1}{2}\beta \end{array} \right) h(u)$$

(3.10)

Reverting to the original variables (3.3) and making use of the formula (1.12), I find that the solution of the dual integral equations can be written as

$$\psi(u) = \cosh^{1+\nu} u \phi(u) = (\cosh u)^{1+\nu} S \left(\begin{array}{ccc} \cosh k, & 0, & 0 \\ \beta, & -\beta, & \frac{1}{2}\beta \end{array} \right) h(u)$$

(3.11)

which is

$$\psi(u) = 2^{\beta} (\cosh u)^{1+\nu} (\cosh^{2}u - \cosh^{2}k)^{1-\beta}$$

(3.12)

where

$$h_{1}(x) = 2^{\mu - 2\beta} (\cosh x)^{2\beta - \mu} \Theta_{k} (\frac{1}{2}\mu, \beta - \mu) F_{1}(x)$$

$$h_{2}(x) = 2^{-\nu} (\cosh x)^{\nu} \mathcal{I}_{k} (\beta - \frac{1}{2}\nu, \nu - \beta) G_{2}(x)$$

(3.13)

we consider four cases

(i) when $\nu > \beta > \mu > -1$

Using the definitions (1.8) and (1.9) I see that equations (3.13) are

$$h_{1}(x) = 2^{\beta} (\cosh k)^{1+\mu - \beta} \int_{0}^{x} (\cosh t)^{1+\mu} (\cosh^{2}x - \cosh^{2}t)^{1+\beta - \mu - 1}$$

$$\times I_{\beta - \mu - 1} \left(\cosh k \sqrt{\cosh 2x - \cosh 2t} \right) F_{1}(t)dt$$

(3.14)

$$h_{2}(x) = 2^{\beta} (\cosh k)^{1+\nu - \beta} \cosh^{\frac{1}{2}\nu} \int_{0}^{x} (\cosh t)^{1+\nu} (\cosh^{2}x - \cosh^{2}t)^{1+\nu - 1}$$

$$\times I_{\nu - \beta - 1} \left(\cosh k \sqrt{\cosh 2x - \cosh 2t} \right) G_{2}(t)dt$$

(3.15)
which together with equation (3.12) furnish a solution to the dual integral equations.
(ii) when \(1 + \beta > \mu > \beta > \nu > \beta - 1\)
Applying the definitions (1.18) and (1.19) I find that equations (3.13) become
\[
h_1(x) = 2^{-\beta} \left(\cosh x \right)^{-1} \left(\cosh k \right)^{1-\beta} \frac{d}{dx} \left[\left(\cosh k \right)^{1+\nu} \left(\cosh^2 x - \cosh 2t \right)^{\nu+\beta} \right]
\times J_{\beta-\mu} \left(\cosh k \sqrt{\cosh^2 x - \cosh^2 t} \right) F_1(t) dt,
\]
(3.16)
\[
h_2(x) = 2^{-\beta} \left(\cosh x \right)^{-1} \left(\cosh k \right)^{1-\beta} \frac{d}{dx} \left[\left(\cosh k \right)^{1+\nu} \left(\cosh 2t - \cosh^2 x \right)^{\nu+\beta} \right]
\times J_{\nu-\beta} \left(\cosh k \sqrt{\cosh^2 x - \cosh^2 t} \right) G_2(t) dt,
\]
(3.17)
The solution to the dual integral equations given by equations (3.12), (3.16) and (3.17) is in complete agreement with that obtained by Burlak.
(iii) when \(\nu = \mu, \beta - 1 < \mu < \beta\)
In this case \(\psi(u)\) is given by equation (3.12) with \(\nu = \mu, h_1(x)\) by equation (3.16) and \(h_2(x)\) by equation (3.17) with \(\nu = \mu\).
(iv) when \(\nu = \mu, \beta < \mu < \beta + 1\)
Here \(\psi(u)\) is given by equation (3.12) with \(\nu = \mu, h_1(x)\) by equation (3.16) and \(h_2(x)\) by equation (3.15) with \(\nu = \mu\).

It is perhaps of interest to note that if in the solution (iii) and (iv), I write \(\beta = \mu - \alpha\) and let \(k\) tend to zero. I obtain solutions to the equations:
\[
\int_0^x (\cosh u)^{-2\alpha} \psi(u) J_{\mu}(\cosh x - \cosh u) du = F_1(x), 0 \leq x < 1
\]
\[
\int_0^x \psi(u) J_{\mu}(\cosh x - \cosh u) du = F_2(x), x < 1
\]
(3.18)
valid for \(-1 < \alpha < 0\) and \(0 < \alpha < 1\) respectively, which are in agreement with those given in Sneddon[4].

3. Acknowledgement

Special thanks to Dr. R.K. Saxena and Dr. P.L. Sethi Professor, J.N.V. University, Jodhpur for their valuable suggestions to improve the paper.

4. Thanks to Referee

A lot of thanks to Referee and Reviewers.

References