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Abstract: In this article, modeling in queuing systems with heavy traffic customer flows is reviewed. Key areas include their limiting 

distributions, asymptotic behaviors, modeling issues and applications. Heavy traffic flows are features of queuing in modern 

communications, transportation and computer systems today. Initially, we reviewed the onset of asymptotic modeling for heavy traffic 

single server queuing systems and then proceeded to multi server models supporting diffusion approximations developed recently. Our 

survey shows that queues with heavy traffic customer flows have limiting distributions and extreme value maximum. In addition, the 

diffusion approximation can conveniently model performance characters such as the queue length or the waiting time distributions in 

these systems. 
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1. Introduction  
 

There are times when queueing systems behave like fluid. A 

good scenario is when customers of a busy bus station 

experience rush hour. Therein, the scenery looks highly 

saturated and stable or completely unstable. Either way, the 

system dynamics resembles a continuous fluid flow rather 

than discrete. Medhi’s analogy in of fluid flow of people 

coming out of a subway or an electric train during rush hour 

is similar to the example above. The wide sense approximate 

continuity in such traffic flows is created by the heaviness of 

queueing traffic into the system. Broadly speaking, a heavy 

traffic queueing system can be defined as a queueing system 

whose server occupation rate is barely less than unity and 

this phenomenon as Boxma et al. indicates is a feature in 

modern communications and computer systems today. 

Researches have shown that early investigation in this area 

was carried out by Kingman on a general queue called the 

G/G/1 and the result is referred to as central limit theorem 

for1 queueing theory, see Medhi.  

 

Our objective in this paper is to survey works on heavy 

traffic queueing systems generally in the light of both 

mathematical and statistical realities with emphasis on those 

queues supporting the diffusion approximation. This 

includes their distributions, analyses, modeling and 

application. It is anticipated that a survey of this kind will 

provide an excellent background in heavy traffic studies 

especially in packets and internet traffic prevalent in 

computers, communications and telecommunications 

systems. To achieve an optimum survey process as in this 

case, it is essential that one bears in mind the Poisson traffic 

controversy now prevalent in telecommunications and 

computer traffic modeling not because the controversy is 

relevant or not, but because there are diverse opinions 

worthy of sharing especially as regards the new traffic 

models such as the self-similar model. Not only that, recent 

studies have shown that the Poisson based models are 

equally relevant and could be used to describe the internet 

traffic central in this controversy. For instance, Lee and Kim 

of late have shown that at small time scales, inter-arrival 

times of computer protocols such as the Simple Mail 

Transfer Protocol (SMTP) sessions traffic for the internet are 

exponentially distributed and independent of each other 

which makes it possible to model this kind of traffic session 

arrivals as a Poisson process. Before then, Karagiannis et al. 

have indicated that the observed long-range dependence in 

the internet traffic does not make the Poisson based models 

obsolete. That at a sub-second time scales, backbone traffic 

appears to be well described by Poisson packet arrivals and 

went further to provide evidence that the ongoing pattern of 

the internet evolution may potentially affect the future 

characteristics of its traffic. Similarly, Kos and Bester wrote 

that for a traffic model to be suitable, it should be able to 

represent traffic with few parameters devoid of 

complications and intricacies. This is the point the Poisson 

based models exceed all other models. 

 

2. G/G/1 Model 
 

Heavy traffic approximation started with the work of 

Kingman on a one-server model with a general arrival and 

service time distributions called the G/G/1. Kingman proved 

that for the G/G/1 queue under heavy traffic, the waiting 

time distribution could be approximated by an exponential 

distribution. The result is called the central limit theorem for 

heavy traffic queuing systems given below:  

 

Theorem 2.1  

Suppose the traffic intensity ρ ≤ 1. Let W(t) denotes the 

steady state waiting time distribution in a G/G/1 queue. Then 

W(t) could be approximated by the exponential distribution 

𝑊  𝑡 = 1 − exp  
−2  1 − 𝜌 

𝜆  𝜎𝑢
2 +  𝜎𝑣

2 
  𝑡            −   1 

 

where λ is the arrival rate, σ
2
u and σ

2
v are the variances of 

the inter-arrival and service time distributions of customers 

in the system.  

 

Medhi noted that in 1964, Kingman made a conjecture for 

the seemingly more significant G/G/c queue under heavy 

traffic arising from developments and insights on the G/M/c 

model. He conjectured that the waiting time distribution in a 

G/G/c queue equally could be approximated similar to the 

G/G/1 model. Ten years later in 1974, Kollerstrom proved 

the conjecture affirming that the heavy traffic waiting time 

distribution is of the form 

Paper ID: ART20172885 1966 



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 6 Issue 4, April 2017 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

𝑊  𝑡 = 1 − exp 
−2  

1

𝜆
  1−𝜌 

 𝜎𝑢
2+ 

𝜎𝑣2

𝑐2  
  𝑡            - 2 

 

Here, ρ is the occupation rate and c is the number of servers.  

 

The two equations above represent remarkable achievements 

in heavy traffic analysis of modern systems with light tail or 

short range dependencies. Moreover, they signify 

outstanding developments and breakthroughs in heavy 

traffic approximation via classical analysis of Laplace 

transforms of relevant distributions as far as operations 

research is concerned. Apart from operational significance, 

the works leading to the referenced equations boasted 

similar works notably on the subject of convergence and 

behaviors of similar systems under different conditions and 

assumptions. Convergence here refers to convergence in 

distribution of sequence of stochastic queuing processes 

such as the arrival or service process, the waiting time or 

queue length process, etc, see Whitt. On convergence over 

the years in this area, a lot has been written on queues under 

heavy traffic. The bulk of these works applies the diffusion 

approximation technique which will be discussed later in 

this survey on heavy traffic queuing systems. For saturated 

stable systems for instance, Whitt noted that Borovkov 

investigated the asymptotic behavior of a single phase case 

with Poisson arrival and service time distributions working 

independently of the service process in heavy traffic. Weak 

convergence limits and asymptotics for heavy traffic queues 

are well presented also in Borovkov. Similarly, Abate and 

Whitt studied a multi-channel queuing system and 

approximated the asymptotic decay rates of the queue length 

and the customer service distribution in form of tail 

probabilities under heavy traffic. The result shows that both 

the queue length and the service time distributions depend 

on the first 3 moments of their distributions. The M/G/1 

queue with priority classes is an essential model giving its 

numerous applications. Priorities normally aroused sequel to 

the realistic nature of services in systems. Abate and Whitt 

derived limit theorems for the case when the priorities are 

preemptive and non-preemptive with resumption tendency. 

They proved that in the low-priority case, the limiting 

waiting-time distribution is a geometric random sum of 

independent and identically distributed random variables 

similar to the M/G/1 first come first served (fcfs) waiting-

time distribution. On the asymptotic behavior of tail 

probabilities for this model, Abate and Whitt added that 

there is routinely a region such that the tail probabilities 

have non-exponential asymptotics even if the service time 

distribution is exponential. In addition, the asymptotics 

formed tend to be determined by the non-exponential 

asymptotics for the high-priority busy-period distribution.  

 

Essentially, heavy traffic approximations in queues under 

the classical procedures are difficult especially for multi-

channel queues that functions as integrated systems. These 

queues formed the bulk found in present day computers, 

communications and telecommunication systems. As Whitt 

posited, it is not easy to work with triple or quadruple 

transforms and this makes it hard to obtain knitted results. 

Consequently, we observed two implications out of this 

limitation. First, attention was like shifted to obtaining other 

forms of approximations among others; the diffusion 

approximation which describes a queuing process as a 

Brownian motion and appears suitable for describing heavy 

traffic systems, see Medhi. Secondly, asymptotics of similar 

models for instance the M/G/c and the M/M/c that seemed 

more realistic were attempted and derived. On the latter for 

instance, Boxma et al. derived the asymptotics for the 

heterogeneous server M/G/2 with an exponential and a 

general server of regular variation and a cumulative service 

time distribution denoted by B(t). By regular variation, we 

mean a distribution whose compliment can be approximated 

by a slowly varying process at infinity index. The M/G/2 

model of Boxma et al. is simply the trivial prototype of a 

discrete channel system with two distinct service processes 

arising from two servers such that the regularly varying 

component keeps changing, making its complimentary 

distribution fatter as time grows large. Boxma et al. have 

shown that such a model under light traffic is asymptotically 

similar to the Kingman’s solution distribution (waiting time 

distribution is semi-exponential distribution). However, 

under heavy traffic the regularly varying nature of the 

service time distribution of the general server will have a 

long tail effect on the complementary waiting time 

distribution of customers in the system. The Boxma et al. 

asymptotic result for the model in question under heavy 

traffic is summarized in the theorem below: 

 

Theorem 2.2  

Suppose λ µ > and B(t) is the service distribution of 

customers served by the regularly varying general server at 

index –v with mean β. If L(t) is a slowly varying function on 

some neighborhood such that 1-B(t) ~ t
-v

 L (t), t, v (m, 

m+1),  m ℕ 

 

Then the complementary waiting time distribution denoted 

by 1 − W(t) is given by; 

1

−𝑊  𝑡 ~   
1 −  𝑄0 − 𝑄1

 𝑣 − 1 𝛽  1 − 𝜆𝛽 + 𝜇𝛽 
 
 𝜆 − 𝜇 

𝜆
 

𝑣−1

𝑡1−𝑣  𝐿 𝑡 , 𝑡

→  ∞ 

 

where Qi is the probability that there are exactly i-customers 

in the system at a steady time η . From the above result, a 

sufficient condition for defining heavy tail phenomena in the 

M/G/c model generally under heavy traffic is evident. It is 

summarized in the lemma below. 

 

Lemma 2.1  

A sufficient condition for heavy tail phenomena in a heavy 

traffic M/G/2 model is that, either/both the arrival or service 

process of customers in the system is/are significantly 

regularly varying at a known index as time grows large.  

 

Remark 2.1  

It is trivial since regularly varying distributions are subclass 

of heavy tail or more precisely, sub-exponential 

distributions. The light proof (by simple argument) of the 

lemma follows. 

 

Proof  

Given that server-1 is exponential and server 2 is general 

with a regularly varying distribution B(t). Then 1-B(t) ~ t
-v

 

L(t), t, where L(t) is a slowly varying function such that 
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lim
𝑡→∞

𝐿 (𝑡𝑥)

𝐿 (𝑡)
= 1, 𝑥 →  ∞ 

 

If L(t) is undominatedly non-decreasing, we have 

lim
𝑡→∞

sup 𝐿 𝑡 =  ∞ So that the open set of service times on 

server 2 is trivially sub exponential. Similarly if L(t) is 

dominatedly non-decreasing and v  (-, 0], then 1 − B(t) is 

open inℝ. Though, finite for a given supreme point, may be 

long-tailed if the supreme value is closely to infinity. This 

suffices. The other case follows with similar argument.  

 

Significance here is statistical and implies relativeness with 

the other component. On the consequence of the former 

limitation, Medhi indicated that researchers were motivated 

to seek other approximation techniques. This quest gave 

birth to the diffusion approximation prevalent in queuing 

system modeling today. Essentially, the motivation leading 

to the above results and many others came from the works of 

Kingman and others on the asymptotic behaviors of queuing 

systems under heavy traffic. 

 

3. Gumbel Distribution 
 

As indicated earlier, recent research focus in heavy traffic 

queuing systems is in the study of tail behaviors of queues in 

form of limiting and extreme value distributions for various 

models. For instance, Glynn and Whitt  proved the extreme 

value limit theorem for heavy traffic queues with general 

arrival and service time distributions called the G1/G/1. 

Using strong approximations under regularity conditions, the 

extreme waiting time among n-sized customers was derived. 

The number of customers in the system is assumed 

increasing as time grows large. It was shown that, when the 

traffic intensity ρ approaches 1 from the left and n 

approaches infinity at a suitable rate, the normalized 

maximum wait among n-customers converges to the Gumbel 

extreme-value distribution. Also, Glynn and Whitt added 

that the normalization depends only on the means and the 

variances of the inter arrival and service time distributions. 

On the contrary, if ρ is a fixed point, then the maximum 

waiting time fails to converge to the Gumbel distribution. 

The General Gumbel probability distribution for a 

continuous random variable W(t) is given by  

P (W  w) = exp (-exp (w)), -< w < 

In addition, the Gumbel extreme value distribution holds for 

the queue length distribution. The lemma below summarizes 

the ρ- region of convenience for the Gumbel distribution in 

the G1/G/1 model. 

 

Lemma 3.1  

In a heavy traffic G1/G/1 queue under regularity conditions, 

if ρ approaches one from the left origin and n steadily 

increases to ∞ then, the Gumbel distribution sufficiently 

model the extreme value limit of the waiting time or the 

queue length distribution of customers in the system. 

Similarly, Szczotka and Woyczynski studied the G/G/1 

queues with service and/or the inter arrival times of heavy 

tailed probability distributions. Szczotka and Woyczynski 

obtained that the waiting time distribution is exponential if 

the tail of the distribution of inter arrival times is heavier 

than that of the service times and is non-exponential in the 

opposite case. In other words, if the service times have a 

heavy-tailed distribution heavier than that of the inter arrival 

times in the domain of attraction of a Levy process then, the 

limiting distribution is a Mittag-Leffler distribution. In 

addition, Szczotka and Woyczynski emphasized that under 

these modeling conditions, the queue length distribution can 

be analyzed. Limic  studied the heavy traffic behavior of a 

G/G/1 Last-in-First-Out (LIFO) preemptive resume queue 

and derived a diffusion approximation for the model. Limic 

showed that the queue length process exhibits perhaps an 

unexpected heavy traffic behavior. In addition, the diffusion 

limit depends on the type of arrivals and services in a fairly 

intricate way which is related to the Wiener-Hopf 

factorization for random walks. Earlier in 1999, in their 

heavy traffic analysis of the G1/G/1 queue with heavy tailed 

service or arrival distribution of the regularly varying type, 

Boxma and Cohen have shown that if the traffic intensity of 

the G/G/1 system approaches unity and the tail of the service 

distribution is heavier than that of the arrival distribution, the 

stationary actual waiting time distribution together with a 

contraption factor is a function of the traffic load and 

converges to the Kovalenko distribution. In contrast, if the 

reversed is the case and all other factors kept constant, the 

stationary actual waiting time distribution will still depend 

on the traffic load but converge to the negative exponential 

distribution. Hence, limiting distributions of queuing 

systems to a large extend depend on the model constructed. 

Moreover, a slight variation of significant parameters may 

shift distribution of systems. 

 

4. Dynamic Network Queue 
 

Heavy traffic analysis of network queues especially, multi 

class networks are gaining grounds recently. This is not 

unconnected with its numerous importance. Kimura pointed 

out that multi-dimensional extension of server stations 

analysis is a natural diffusion model for a network of queues 

in computer systems. Similarly, Bertsekas and Gallagher 

wrote that multi class network queues are used in analyzing 

problems of congestions and delays in computer systems, 

communication and complex productive systems. Their 

importance cannot be over emphasized. Unfortunately, 

several studies for instance have shown that not all multi 

class networks especially those with feed backs under heavy 

traffic can be approximated using the reflected Brownian 

motion see Williams. However, the open multi class type 

under heavy traffic supports the diffusion approximation. 

Already, Reiser and Kobayashi in the 70’s have proved that 

network measurements via the diffusion approximation are 

quite adequate. Williams studied a multi class open queuing 

network using the semi martingale Brownian motion process 

and provides sufficient conditions for which heavy traffic 

limit theorem holds for such queues, see Williams for 

details. Similarly, Dai and Dai studied an open queuing 

network with finite buffers consisting of d-finite server 

stations. Given that a server stops working when the 

downstream buffer is full and all customers served at a 

station are homogeneous in terms of service requirements 

and routing. They proved that the normalized d-dimensional 

queue length process converges in distribution to a semi 

martingale reflecting Brownian motion in a d-dimensional 

box under a heavy traffic condition. Pekoz and Joglekar 

considered a ./G/k finite buffer queue with a stationary 

ergodic arrival process and a general service with delayed 
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feedbacks and obtained that under certain mild conditions, 

the feedback flow of the class of customers re-entering the 

queue converges to the Poisson distribution when the delay 

waiting time distributions is scaled up. Similar studies on the 

network queues followed these developments especially via 

the martingale representations for limiting distributions of 

many server systems. Already, researches have shown that 

the reflected Ornstein-Uhlenbeck, the geometric Brownian 

motion, the reflected Levy and the reflected affine diffusion 

processes could be used to model successfully queuing 

systems with noisy processes such as reneging, balking and 

shunting process which are in effect measurable noises4 , 

see Ward and Glynn and Guodong et al. worked on the Palm 

model and a finite capacity M/M/N/Mn + M model with 

reneging via the martingale diffusion approach and provided 

limit proofs for the heavy traffic approximations of the 

queue length distribution. The martingale approach applied 

on the queue length process of customers involves random 

time changes and random thinings of the stochastic queue 

length process. They established a key central limit theorem 

and a key functional weak law of large numbers for the Palm 

model and the finite capacity M/M/C model respectively. 

The result shows that the limiting queue length distribution 

in both models is a reflected Ornstein-Uhlenbeck diffusion 

process, an adapted stochastic process in which the 

stochastic variable changes more with time in addition to a 

finite variation component of the process. It is worthy to 

note that the shape of the reflected OU-graph to a greater 

extend depends on the initial customer size at time zero. 

 

5. Modeling G/G/I 
 

Modeling in heavy data traffic queuing systems is 

challenged by two important factors; the nature of data 

traffic itself and model selection. The former creates a 

controversy that saddles on the later. Researches on internet 

and telecommunications traffic processes revealed that data 

traffic is characterized by properties such as regular 

variation, long-range dependencies, self-similarity and heavy 

tail distributions see Leland et al., Park et al. and Stralka et 

al. Long-range dependency and self-similarity in essence are 

associated with heavy tail distributions. The combination of 

the two defines how burst a traffic system is. A heavy data 

traffic process may be bursty or not depending on the time 

scales it is considered. Though, Medhi wrote that a self-

similar process arising from long-range dependent process 

like the internet traffic decays much slower than the 

exponential distribution in addition to a hyperbolic decay of 

autocorrelations, this does not render the Poisson traffic 

models that is non-bursty inadequate or better still out of the 

internet domain as some researches tried to portray. 

 

The Poisson Arguments:  

Since the pioneering works of Leland et al., Willinger and 

Paxson and many others on the new network traffic 

description that appeared alternatives to the Poisson models, 

it appears the Poisson distribution has lost its place as a 

suitable distribution for describing the internet traffic today. 

Amidst its advantage, history and effectiveness, a lot has 

been published about its inadequacy without attending to 

scaling issues in both time and space. For instance in 1994, 

Leland et al., using long, high resolution traces of Ethernet 

packets indicates that arrival rates of the Internet Protocol 

(IP) packets on a Local Area Network (LAN) exhibit not 

Poisson but self-similar behavior. However, similar studies 

have shown that within a given time scale, the two traffic 

networks coexist together. For instance, Boxma and Cohen 

in observing the plots of Ethernet traffic measurements on 

LAN of Willinger et al., WAN of Paxson and Floyd and 

VBR (Variable-Bit Rate) of Beran et al., Boxma and Cohen 

watched that bursty sub periods are alternated by less bursty 

sub periods in each of these traffic processes indicating the 

coexistence of the Poisson traffic and self-similar traffic 

processes. Similarly, Karagianis et al., have shown that there 

exist a Poisson process and a long range dependence in 

heavy Internet backbone traffic. Furthermore, Karagianis et 

al., indicated that the User Datagram Protocol/ Transmission 

Control Protocol (TCP/UDP) packets obey a Poisson 

process at sub-second time scales while they are long range 

dependent at large time scales. This suggests that relatively 

simple statistical theories of the Poisson process can still be 

applicable to the design and optimization of the internet. 

Similarly, Lee and Kim proved that at small time scales, 

inter-arrival times of protocols such as the simple mail 

transfer protocol (smtp) is a Poisson process. Finally, 

Karagiannis et al. have shown that the mighty internet traffic 

in the center of this controversy at sub-second time scales 

appears well described by Poisson packet arrivals and 

evident that, the ongoing pattern of Internet evolution may 

eventually renewed its Poisson tendencies even for the super 

second time scale. Time scaling factor appears to be a 

decisive factor in defining suitability in this modeling case. 

Consequently, the below lemma follows: 

 

Lemma 5.1  

 

The necessary and sufficient condition for the internet traffic 

or a similar process to fit in the Poisson process is that, the 

time scaling is sub-second.  

 

Consequently, modeling in the heavy traffic sense may well 

be done with the Poisson model at sub-second time interval 

and at large time scales, modern day data traffic models such 

as the self-similar model that can capture important features 

such as traffic burstiness with long tail distributions are 

effective. 

 

6. Applications  
 

The role heavy traffic analysis plays in the development and 

advancement of service systems especially computing and 

telecommunications systems cannot be over emphasized. 

Initially, even the work of Kingman on the asymptotic 

waiting time distribution in a G/G/1 queue is a modeling of 

delay time distribution in a general service system just about 

to reach its service capacity. In heavy traffic analysis, any 

limit theorem derived is to provide understanding and 

approximation of distributions and tail behavior of measures 

for bettering performance of service systems. The general 

motive is advancement of corresponding service systems 

and application depends on the reality of model. For 

instance, heavy traffic analysis of networks queues of 

various priorities is for problem analysis of modern systems. 

As Bertsekas and Gallagher indicated; such models are used 

in analyzing problems of congestions and delays in 

computer systems, communications and complex productive 
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systems. Priority queuing analyses and those with service 

interruptions may be classical models of computer systems. 

In the context of queuing synthesis, as Kimura indicated; 

diffusion models are for reliability and control problems in 

computer and telecommunication systems. Without such 

analysis, problems such as those mentioned could have 

down our systems. The processor sharing discipline queues 

are used in modeling time-sharing protocols in computer 

systems. High speed wireless networks carrying multimedia 

applications under long range dependence and heavy tailed 

properties are troubled by excess usage. Buche et al. 

indicated that heavy traffic analysis of long range 

dependence in wireless internet traffic provides relief to 

troubles such as large file sizes downloads from the internet 

and multimedia applications for instance streaming a video. 

The processor sharing models such as those studied in 

Kleinrock and Ritchie and Thompson in the 70's and more 

recently, the limited processor model of Zhang and Zwart 

has been widely used in the analysis of computer systems, 

network servers and data transmission over the internet. 

Kruk et al. indicated that in the last decade, substantial 

attention has been paid to queuing systems in which 

customers have deadlines for service in heavy traffic (EDF 

queues). These types of queuing models feature in 

telecommunication systems carrying digitized voice or video 

traffic, tracking systems and real-time control systems. In 

the case of voice or video traffic, the packet information 

must be received, processed and displayed within stringent 

timing bounds so that the integrity of the transmission is 

maintained. Similarly, there are processing requirements for 

tracking systems that guarantee that a track can be 

successfully followed. Real-time control systems for 

instance, those associated with modern avionics systems, 

manufacturing plants or automobiles also gather data that 

must be processed within stringent timing requirements in 

order for the system to maintain stability or react to changes 

in the operating environment. Another class of heavy traffic 

queuing models of varied applications is the polling models. 

Levy and Sidi indicated that these models were first 

introduced in 1970 precisely when the cyclic queues where 

used in modeling time allocations in computer systems. In 

these models, queues are visited by a single server in a 

cyclic discipline. Such models are applied in the 

performance analysis of communication systems such as 

token rings and packet switches, where a single server 

resource is shared among many traffic stream demands on 

the resource, see Coffman et al. In addition, Levy and Sidi 

provided more areas of applications of polling queues in 

heavy traffic to include random access protocols of 

computer systems, robotics and manufacturing systems. In 

other fields such as transportation, where heavy traffic 

analysis has several applications, the work of David et al., 

on the diffusion modeling of an airport queue is an excellent 

use of modeling via diffusion approximation in the 

transportation sector. Other relevant areas of application of 

the heavy traffic modeling in approximations queuing 

systems include the repairman problem etc. Already, the 

works of Iglehart in the 60’s has derived a diffusion limit 

approximations for several server case. 

 

 

 

 

7. Conclusion  
 

In this article, mathematical modeling in heavy traffic 

queuing systems is generally surveyed. Initially, the onset of 

modeling in heavy traffic queues and asymptotic behaviors 

for different models were reviewed and distributions 

uncovered. We also looked at the diffusion approximation as 

a remedy to queuing analysis and approximations. Modeling 

both in network and heavy traffic data systems and matters 

arising from the internet and telecommunication traffic 

modeling via Poisson models and assumptions were studied 

and a justification on the suitability of the Poisson arrival 

process in addition to the new network traffic in capturing 

the internet traffic was supported. Finally, we provide real 

areas of application of heavy traffic models developed for 

the benefits of service systems. 
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