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Abstract: Elliptic Curve Cryptography (ECC) is a standout amongst the most interested exploration themes in VLSI. System security is 

turning out to be increasingly significant as the volume of information being traded on the Internet increments. Point addition and 

doubling are key operations which choose the Performance of ECC. Here the design with the information way which can perform either 

prime field G(p) operations or binary field G(2m) operations for arbitrary prime numbers has been proposed. Utilizing this design we can 

accomplish the high throughput of the both fields that is prime and binary fields. A high throughput modular divider (mod 4n) which 

results in maximum operating frequency and modular multiplier in the processor is optimized based on throughput and modular 

reduction. The adder is focused for optimization as the addition is needed for accumulation process in multiplication and division. The 

Xilinx Virtex 5 field programmable gate array has been utilized. 
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1. Introduction 
 

Public Key encryption algorithms are widely used to ensure 

the data security of network communications. Elliptic Curve 

Cryptography (ECC) is an asymmetric cryptographic system 

which provides higher security than the Rivest, Shamir and 

Adleman system (RSA) system. The basic operation in ECC 

is scalar point multiplication which multiples a point on the 

curve by a scalar.  

 

A scalar point multiplication is performed by calculation of 

series point additions and point doublings. Points are added 

or doubled through series of additions, subtractions, 

multiplications and divisions, point doubling of their 

respective co-ordinates on using their geometrical properties. 

Point coordinates are the elements of finite fields closed 

under a prime or an irreducible polynomial.  

 

Various ECC Processors were proposed in the literature 

targets binary fields, prime fields or dual field operations. 

 

Modular multiplication is an essential operation in ECC. 

Some ECC processors use the divide and conquer approach 

of Karatsuba multipliers for optimization of multiplication 

process where others use embedded multipliers and DSP 

blocks within FPGA fabrics. 

 

The Overall processor architecture is of regular cross bar type 

and has 256 digit wide data buses. The processor is an 

application-specific instruction-set processor (ASIP) type to 

provide program ability and configurability. 

 

Our aim is to challenge the basic assumptions about public 

key cryptography which are based on a traditional software 

based approach. We propose a custom hardware assisted 

approach for which we claim that it makes public key 

cryptography feasible for low-power applications, provided 

we use the right selection of algorithms. 

 

 

 

 

2. Problem Statement 
 

The problem occurs in ECC processor are redundant signed 

digits and modulus addition which occurs mainly in binary 

and number fields 

 
Redundant Signed Digits:  
 

The RSD representation, first introduced by Avizienis is a 

carry free arithmetic where integers are represented by the 

difference of two other integers. An integer X is represented 

by the difference of its x+ and x− components, where x+ is 

the positive component and x− is the negative component. 

The nature of the RSD representation has the advantage of 

performing addition and subtraction without the need of the 

two’s complement representation.  

 

On the other hand, an overhead is introduced due to the 

redundancy in the integer representation; since an integer in 

RSD representation requires double word length compared 

with typical two’s complement representation. In radix-2 

balanced RSD represented integers, digits of such integers 

are 1, 0, or −1. RSD-based Modular Addition/Subtraction and 

Multiplier for ECC processor with fast working recurrence. 

The RSD representation is a carry free arithmetic in which 

numbers are spoken to by the distinction of two different 

numbers. The way of the RSD representation has the upside 

of performing expansion and subtraction without the need of 

the two's supplement representation. On the other side, 

because of redundancy in the representation of integers an 

overhead is introduced. The novelty of our processor 

revolves around the following.  

 

 Studies to be carried out on different existing technique 

and also existing algorithms to achieves the objectives like 

addition without inversion in mixed co-ordinate, 

multiplication within shortest period of time, highest 

operating frequency, transferring capability to other FPGA 

and ASIC technologies.  

 To perform point expansion and point multiplying over 

binary field using the algorithm that has been developed 

based on Karatsuba and Vedic multiplication  
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  Literature survey to be carried out in the area of 

implementation of ECC processor using VLSI technology. 

Survey includes studies on different techniques and 

different algorithm.  

  Then the Verilog code will be written for algorithms of 

key operations of ECC processor and implemented in 

virtex 5 FPGA board. 

 

3. Elliptic Curves Over Dualfield 
 

Elliptic curve serves as good trapdoor function that is an 

algorithm which is simple in one direction and hard in 

another direction.  

 

The curves are named as elliptic curves as they are illustrated 

by equations which are in cubic form, which are taken for 

calculating the circumference. 

 

Elliptic bends are simple capacities which can be drawn as 

smooth circling lines in (x, y) plane. By and large, cubic 

condition for elliptic bend can be given by utilizing summed 

up Weierstrass equation as given in 

 

Y2 + m1xy + m3y = m2x2 + m4x + m6 
 

Where m1 , m2, m3 , m4, m5 , m6ϵ Fp and p is a prime integer 

 

An elliptic bend with group of points (x,y) over the real 

numbers forms a abelian group if it satisfy the condition as 

shown in equation 

 

Y2 = x3 + m2x + n 
Where m and n are real numbers, x and y use the values in 

the real numbers. The two finite fields over which the elliptic 

curves are mainly defined are: 

 

 Binary field GF (2n) 

 Prime field GF (p) 

 

For prime field the elliptic curve equation is given by, 

 

Y2mod p =  x3 + cx + d mod p 
 

Elliptic curve equation over Binary field is given by  

 

Y2 + xy = x3 + ax2 + b 
 

ECC over binary field achieves the high performance without 

considering the carry and modular reduction. These fields are 

ideal for the utilization in equipment as far as speed and area. 

 

3.1 Binary Field 
 

The most imperative elliptic curve conditions are 

(Weierstrass condition in GF (2m)) for binary field. In binary 

field, addition is XOR operation and multiplication is 

polynomial based, and the result is reduced by using the 

irreducible polynomial. Squaring is achieved by shift 

operation. So multiplication is performed based on the hybrid 

Karatsuba multiplier. Here primary focus is on ECC over 

binary field based on the short Weierstrass equation. 

 

Y2 + xy = x3 + ax2 + b 
 

3.1.1Point Addition over Binary field  

 

In this method, one point is in projective Co-ordinate and 

another point is an affine Co-ordinate. The output point that 

results will appear in projective Co-ordinate so that the 

operation like inversion will be avoided.  

 

Y2mod p = (x3 + cx + d)modp 
 

3.1.2 Point doubling over binary field: 
 

Adding the point over the elliptic curve to itself is known as 

point doubling. In these equations ‘a’ & ‘b’ are considered as 

parameters of elliptic curve. 

 

3.2 Prime Field  
 

The most imperative elliptic curve conditions are 

 

Y2 = x3 + cx + d 
 

(Weierstrass condition in GF (p)) for prime field. The fixed 

number of modular multiplications, squares, additions, shifts, 

and basic arithmetic operations are required while performing 

addition and doubling over each elliptic curve. The real 

number of these operations relies on upon the way the bend is 

spoken to; as a rule it is multiplications and squaring 

operations that rule the running time, and the running the 

reality of the situation will become obvious eventually 

precisely with the quantity of arithmetic operations required. 

Here primary focus will be on ECC over prime field based on 

the short Weierstrass equation. 

 

3.2.1. Point addition over Prime field:  

 

The elliptic curve considered in GF (p), has the general 

elliptic point (x,y) which is projected to (X1,Y1,Z1), where 

x=X/Z2, and y=Y/Z3 and the second point considered is 

affine point that is (x2,y2).  

 

3.2.2 Redundant signed digits: 

 

The RSD representation, first introduced by Avizienis, is a 

carry free arithmetic where integers are represented by the 

difference of two other integers. An integer X is represented 

by the difference of its x+ and x− components, where x+ is 

the positive component and x− is the negative component.  

 

The nature of the RSD representation has the advantage of 

performing addition and subtraction without the need of the 

two’s complement representation. On the other hand, an 

overhead is introduced due to the redundancy in the integer 

representation, since an integer in RSD representation 

requires double word length compared with typical two’s 

complement representation. In radix-2 balanced RSD 

represented integers, digits of such integers are either 1, 0, or 

−1. 
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4. The Elliptic Curve Architecture 
 

We developed an elliptic curve architecture using the scaled 

modulus technique and our specialized inversion algorithm. 

 

Our aim in implementing this hardware was to actually see 

the outcomes of our techniques. 

 

4.1 Design Methodology 
 

We built our elliptic curve scheme over the prime field GF 

((2167 +1) =3). This particular prime allows us to use a scaled 

modulus m = 2167 + 1 with a very small scaling factor s = 3. 

To implement the field operations we use Algorithm.  

 

Our simulation for this particular choice of prime showed 

that our inversion technique is only by about three times 

slower than a multiplication operation. Furthermore, the 

inversion is implemented as a division saving one 

multiplication. 

 

 
Figure: ECC processor architecture 

 

Operation. Thus the actual ratio is closer to two. Since 

inversion is relatively fast, we prefer to use affine 

coordinates. 

 

Besides faster implementation, affine coordinates provides a 

significant amount of reduction in power and circuit area 

since projective coordinates requires a large amount of extra 

storage. For an elliptic curve of form 

 

Y2 = x3 + ax + b 
 

defined over GF (2167 + 1)=3) we use the standard point 

addition operation defined in. 

 

For power efficiency we optimize our design to include 

minimal hardware. An effective strategy in reducing the 

power consumption is to spread the computation to a longer 

time interval via serialization which we employ extensively.  

 

On the other hand, a reasonable time performance is also 

desired. Since the elliptic curve is defined over a large integer 

field GF (p) (168-bits) carry propagations are critical in the 

performance of the overall architecture. To this end, we built 

the entire arithmetic architecture using the carry-save 

methodology. This design choice regulates all carry 

propagations and delivers a very short critical path delay, and 

thus a very high limit for the  

 

Operating frequency. The redundant representation doubles 

all registers in the arithmetic unit, i.e. we need two separate 

registers to hold both the carry part and the sum part of a 

number.  

 

Furthermore, the inherent difficulty in comparing numbers 

represented in carry-save notation is another challenge. In 

addition, shifts and rotate operations become more 

cumbersome. Nevertheless, as evident from our design it is 

possible to overcome these difficulties. 

 

In developing the arithmetic architecture we primarily 

focused on finding the minimal circuit to implement 

Algorithm X efficiently. Since the architecture is built around 

the idea of maximizing hardware sharing among various 

operations, the multiplication, squaring and addition 

operations are all achieved by the same arithmetic core. The 

control is hierarchically organized to implement the basic 

arithmetic operations, point addition, point doubling, and the 

scalar point multiplication operation in layers of simple state 

machines. The simplicity of Algorithm X and scaled 

arithmetic allows us to accomplish all operations using only a 

few small state machines. 

 

5. Results 
 

Below results show the simulation output for power report, 

synthesis report, and delay report. 

 

Comparison Results 

 

 Existing design Proposed design 

Slices 3140 2923 

Maximum 

frequency (Mhz) 

(operating 

frequency for only 

one cycle) 

169 100 

Delay (ns) 66.10 36.10 

Power(w) 1.795 1.257 

 

Simulation Outputs 

 

 
Figure: Subtraction 

Paper ID: ART20172862 2492 



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 6 Issue 4, April 2017 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

 
Figure: Addition 

 

 
Figure: Multiplication 

 

Power Report: 

 

 
Figure: Power Report 

 

 

 

 

 

 

 

 

 

Delay Report: 

 

 
Figure: Delay Report 

 

Synthesis Report: 
 

 
Figure: Synthesis Report 

 

6. Conclusion 
 

In this thesis we demonstrated that scaled arithmetic, which is 

based on the idea of transforming a class of primes into 

special forms that enable efficient arithmetic, can be 

profitably used in elliptic curve cryptography.  

 

Implementation results show that the use of scaled moduli in 

elliptic curve cryptography offers a superior performance in 

terms of area, power, and speed. We proposed a novel 

inversion algorithm for scaled moduli that result in an 

efficient hardware implementation. It has been observed that 

the inversion algorithm eliminates the need for projective 

coordinates that require prohibitively a large amount of extra 

storage. The successful use of redundant representation (i.e. 

carry-save notation) in all arithmetic operations including the 

inversion with the introduction of an innovative comparator 

design leads to a significant reduction in critical path delay 

resulting in a very high operating clock frequency.  

 

The fact that the same data path (i.e. arithmetic core) is used 

for all the field operations leads to a very small chip area. 

Comparison with another implementation demonstrated that 

our implementation features desirable properties for resource-

constrained computing environments. 
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