Association of hyperuricemia with Obesity and Metabolic Co-Morbidities among Post-Menopausal Egyptian Women

Nearmeen M. Rashad¹, Tarek M. H. Ibrahim²

¹,²Internal Medicine Department, Faculty of Medicine, Zagazig University- Egypt

Abstract: Background: Obesity is a global public health problem and is associated with cardio-metabolic diseases and hyperuricemia. Thus the aim of our study was to evaluate the role of serum uric acid as a marker of cardiovascular risk in screening of obesity-related metabolic comorbidities among Egyptian women according to menopausal status. Methods: This a cross-sectional study included 72 pre-menopausal women and 128 post-menopausal women who were stratified according to BMI into three subgroup. Serum uric acid was measured. Fat mass (FM) were evaluated by Dual-energy X-ray absorptiometry (DEXA). Results: there were significantly higher values of serum uric acid in post-menopausal women compared to pre-menopausal women, in post-menopausal women, serum uric acid levels were higher in obese compared to overweight as well as lean women. In post-menopausal women, there were significantly positive correlations between serum uric acid and fasting plasma glucose, waist circumference as well as triglycerides. Also, stepwise linear regression analysis showed that serum uric acid levels were independently correlated with systolic blood pressure, triglycerides, HbA1c and FM. Conclusion: serum uric acid increased in post-menopausal women and associated with cardiovascular and metabolic diseases as well as obesity indices among Egyptian post-menopausal women.

Keywords: post-menopausal; uric acid; obesity; metabolic

1. Introduction

The pandemic of obesity represents a major public health alarm, as obesity is associated with an increased risk of medical comorbidities contributing to a significant rise in mortality. The comorbidities of obesity including hypertension, dyslipidemia, type 2 diabetes mellitus (T2DM), coronary heart disease, osteoarthritis and hyperuricemia[1].

Serum uric acid level has been considered to be an atherosclerotic factor [2-5]. Furthermore, many reports have suggested that females are at a higher risk for uric acid-induced atherosclerotic diseases than males. Moreover, many reports have suggested that serum uric acid level is positively correlated with the incidence of coronary heart disease [6], hypertension [7], as well as kidney dysfunction [8,9].

Interestingly, recent studies suggested that serum uric acid levels vary between pre-menopausal and post-menopause women, because blood estradiol level was changed rapidly during menopausal transition period, accordingly, serum uric acid levels increase after menopause [10, 11].

In Egypt, obesity has increased at an alarming rate during the last three decades affecting 22% of adult males and 48% of adult females. Obesity is the main component of metabolic syndrome. hyperuricemia is a risk factor of cardiovascular disease which hasthe highest rate of morbidity and mortality. Early diagnosis through screening test and aggressive treatment should be done. Thus the aim of our study was to evaluate the role of serum uric acid as a marker of cardiovascular risk in screening of obesity-related metabolic comorbidities among Egyptian women according to menopausal status.

2. Subject and Methods

A cross-sectional study included 200 unrelated women. Seventy two pre-menopausal women and 128 post-menopausal women who were stratified according to BMI were included. Results: there were significantly higher values of serum uric acid in post-menopausal women compared to pre-menopausal women, in post-menopausal women, serum uric acid levels were higher in obese compared to overweight as well as lean women. In post-menopausal women, there were significantly positive correlations between serum uric acid and fasting plasma glucose, waist circumference as well as triglycerides. Also, stepwise linear regression analysis showed that serum uric acid levels were independently correlated with systolic blood pressure, triglycerides, HbA1c and FM. Conclusion: serum uric acid increased in post-menopausal women and associated with cardiovascular and metabolic diseases as well as obesity indices among Egyptian post-menopausal women.
Post
*p
measured fat

The values of the body composition parameters were

acid (Friedewald formula [1]

Lipoprotein (LDL)

Biochemical and hormonal assays

We determined fasting plasma glucose by the glucose

oxidase method (Spinreact, Girona, Spain). Total cholesterol

(TC), TG and HDL cholesterol was measured. Low-density

lipoprotein (LDL)-cholesterol was calculated using the

Friedewald formula [13]. Hyperuricemia was defined as uric

acid (UA) level ≥6.0 mg/dl for women [14].

Dual-energy X-ray absorptiometry (DEXA)

The values of the body composition parameters were

estimated from the DEXA scan of the total body, we

measured fat mass (FM), additionally, we calculated the FM

index (FMI; FM/height²).

3. Blood Sampling

Blood samples were drawn from all subjects after an

overnight fast and divided into 3 portions: 1 ml of whole

blood was collected into evacuated tubes containing EDTA,

for hemoglobin A1c (HbA1c). The second ml of whole

blood was collected into evacuated tubes containing

potassium oxalate and sodium fluoride (2:1) for fasting

plasma glucose. Sera were separated immediately from

remaining part of the sample and stored at −20 °C

Statistical Analysis

Statistical analyses were performed using the Statistical

Package for the Social Sciences for Windows (version 19;

SPSS Inc., Chicago, IL, USA). Data were expressed using

descriptive statistic (mean ± standard deviation) and were

analyzed using t test. Pearson correlation coefficient was

used to assess the association between serum uric acid, and

parameters of metabolic syndrome in both Pre-menopausal

and post-menopausal groups. Receiver operating

characteristic (ROC) analysis was performed to assess

sensitivities, specificities, area under the curve (AUC), and

the cutoff values of serum uric acid for diagnosis of

cardiovascular risks among studied women, linear regression

analysis was done to detect the main predictors of serum uric

acid in post-menopausal women P was significant if p < 0.05.

4. Results

Clinical and laboratory characteristics of studied

women:

Post-menopausal group had significantly higher values of age, systolic blood pressure (SBP), waist circumference, body

mass index (BMI), fat mass index (FMI), fasting plasma

glucose (FPG), HbA1c, triglycerides (TG), total cholesterol

(TC), LDL and serum uric acid than pre-menopausal group (p

<0.05). On the other hand, there were significant lower values of HDL in post-menopausal group compared to pre-

menopausal group (p < 0.05) (Table 1). On the contrary,

values there were non-significant difference regarding diastolic blood pressure among studied groups.

Table 1: Clinical, anthropometric and laboratory characteristics of all studied subjects

<table>
<thead>
<tr>
<th></th>
<th>Post-menopausal group (mean ±SD, n=128)</th>
<th>Pre-menopausal group (mean ± SD, n=72)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>41.01±8.710</td>
<td>32.3±6.73</td>
<td><0.001*</td>
</tr>
<tr>
<td>Systolic blood pressure (mm Hg)</td>
<td>130.7±7.4</td>
<td>125.9±5.8</td>
<td><0.001*</td>
</tr>
<tr>
<td>Diastolic blood pressure (mm Hg)</td>
<td>85.4±4.01</td>
<td>86.05±3.8</td>
<td>0.430</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>140.6±7.4</td>
<td>0.088±0.07</td>
<td><0.001*</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>30.5±5.89</td>
<td>21.6±7.7</td>
<td><0.001*</td>
</tr>
<tr>
<td>Fat mass index (kg/m2)</td>
<td>10.3±3.2</td>
<td>7.1±2.45</td>
<td><0.001*</td>
</tr>
<tr>
<td>Total cholesterol (mg/dL)</td>
<td>181.6±26.3</td>
<td>168.8±19.3</td>
<td><0.001*</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>202.4±59.7</td>
<td>178.02±10.45</td>
<td><0.001*</td>
</tr>
<tr>
<td>LDL cholesterol (mg/dL)</td>
<td>135.4±19.6</td>
<td>139.7±5.8</td>
<td><0.001*</td>
</tr>
<tr>
<td>HDL cholesterol (mg/dL)</td>
<td>47.89±5.2</td>
<td>53.6±3.2</td>
<td><0.001*</td>
</tr>
<tr>
<td>Fasting plasma glucose (mg/dL)</td>
<td>88.01±7.76</td>
<td>83.8±8.2</td>
<td><0.001*</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>5.9±0.29</td>
<td>5.7±0.17</td>
<td><0.001*</td>
</tr>
<tr>
<td>Serum uric acid (mg/dl)</td>
<td>8.36±1.6</td>
<td>4.9±1.13</td>
<td><0.001*</td>
</tr>
</tbody>
</table>

HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein cholesterol; HbA1c, hemoglobin A1c; *p <0.05

Clinical, anthropometric and laboratory characteristics of post-menopausal group stratified according to BMI (kg/m²): In obese post-menopausal women, there were significantly higher values of SBP, DBP, WC, BMI, fat mass

index (FMI), FPG, HbA1c, triglycerides, TC and LDL than lean group (p < 0.05). In overweight group, there were significant higher values of SBP, WC as well as BMI compared to lean group (p < 0.05), (Table 2). Regarding serum uric acid, there were significantly higher values in obese group (8.86±2.1) compared to overweight (7.86±0.78) as well as lean women (7.54±1.1) (Figure 1).
HDLC, high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein cholesterol; HbA1c, hemoglobin A1c; *p<0.001 when compared overweight group to lean group. *P2 < 0.05 when compared obese to lean.

Correlation of serum uric acid (mg/dl) levels with parameters of metabolic syndrome in pre and post-menopausal groups as shown in table 3:in post-menopausal women, there was signifi-cantly positive correlation between serum uric acid and fasting plasma glucose, WCas well as triglycerides. On the other hand, there was significantly negative correlation between serum uric acid and HDL (p< 0.001). While there were non-significant correlations between serum uric acid and other parameters in pre-menopausal women (p > 0.05).

Multiple stepwise linear regression analyses in post-menopausal women

Stepwise linear regression analysis test was done to assess the main independent parameters associated with serum uric acid. Our results showed that, serum uric acid were independently correlated with SBP, triglycerides, HbA1c and FMI (p < 0.001) (Table 4).

Accuracy of serum uric acid for discriminating cardiovascular risk among post-menopausal women by ROC analysis:

We further investigated the potential diagnostic value of serum uric acid by receiver operating characteristic curve (ROC) curves and the area under the curve (AUC) values. (Fig.2). In post-menopausal women, the cutoff values of serum uric acid was 6.1and the AUC was 0.955 (95% CI = 0.911-0.999). Additionally, the sensitivity and specificity were (98.4% and 98.33%), thus serum uric acid could be useful diagnostic test discriminate cardiovascular risk of premenopausal women from post-menopausal women.

Figure 1: Comparison of serum uric acid levels (mg/dl) in post-menopausal women

Table 4: Multiple stepwise linear regression analyses in post-menopausal women to test the influence of the main independent variables against serum uric acid (mg/dl)

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>p</th>
<th>95% C.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>SE</td>
<td>B</td>
<td></td>
<td>Lower Bound</td>
</tr>
<tr>
<td>constant</td>
<td>1.687</td>
<td>3.998</td>
<td>0.422</td>
<td>0.0675</td>
<td>-9.687-</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>0.007</td>
<td>0.004</td>
<td>0.250</td>
<td>1.890</td>
<td>0.064</td>
</tr>
<tr>
<td>HbA1c</td>
<td>2.167</td>
<td>0.723</td>
<td>0.378</td>
<td>2.998</td>
<td><0.001*</td>
</tr>
<tr>
<td>FMI (kg/m2)</td>
<td>0.158</td>
<td>0.057</td>
<td>0.307</td>
<td>2.762</td>
<td><0.01*</td>
</tr>
<tr>
<td>Systolic blood pressure</td>
<td>0.045</td>
<td>0.021</td>
<td>0.207</td>
<td>2.134</td>
<td><0.05*</td>
</tr>
</tbody>
</table>

Figure 2: ROC assess the diagnostic performance of cardiovascular risk among post-menopausal women
5. Discussion

Obesity is a risk factor of cardiovascular diseases [15-17]. Serum uric acid levels were associated with hypertension [18, 19], diabetes [20,21], obesity [22,23], insulin resistance [24] dyslipidemia [25], cardiovascular diseases [26,27] peripheral arterial disease[28] markers of inflammation[29] and oxidative stress[30,31].

There was great evidence that, visceral obesity is independently associated with higher serum uric acid in post-menopausal women [32].

Obesity is a global public health problem. Moreover, obesity is strongly associated with metabolic diseases and hyperuricemia [1]. With the rapid socio-economic growth, the prevalence of obesity has increased rapidly. In Egypt, obesity has increased at an alarming rate during the last three decades. Thus the aim of our study was to estimate the role of serum uric acid as a marker of cardiovascular risk in screening of obesity-related metabolic comorbidities among Egyptian women according to menopausal status.

Our study revealed clear evidence that; Post-menopausal group had significantly higher values of age, SBP, waist circumference, BMI, FMI, fasting plasma glucose, HbA1c, TG, TC, LDL and serum uric acid than pre-menopausal group.

This was in agreement with the findings detected by Joo et al., they found that serum uric acid was higher in menopause women [33].

Hak et al. results indicated that menopause increases the risk of hyperuricemia among postmenopausal women [31].

Regarding the influence of BMI on clinical and biochemical parameters, our results revealed that, in obese post-menopausal women, there were significantly higher values of SBP, DBP, WC, BMI, fat mass index (FMI), fasting plasma glucose, HbA1c, triglycerides, TC and LDL than lean group, moreover in overweight group, there were significant higher values of SBP, waist circumference as well as BMI compared to lean group.

In agreement with our findings, Wei et al. reported that patients with metabolic syndrome have a significantly higher ratio of abnormal BP, FPG, TG, WC, and HDL-C than those without metabolic syndrome [34].

The main finding of our study, there were significantly higher values in obese post-menopausal women compared to overweight post-menopausal women as well as lean post-menopausal women.

Marotta et al. agreed with our results that serum uric acid increased in obesity [35].

These findings are in a close agreement with results reported by Oz bey et al. they explored that the change of fat distribution during menopausal transition is one of the reasons for increasing serum uric acid [36].

Our study demonstrated that, in post-menopausal women, there was significantly positive correlation between serum uric acid and fasting plasma glucose, WC as well as triglycerides. On the other hand, there was significantly negative correlation between serum uric acid and HDL.

Similar to our results, Cremonini et al. reported that visceral adiposity accumulation is independently associated with higher serum uric acid, and this association is confined to women in menopause [32].

Previous studies reached similar conclusions that serum uric acid is significantly associated with cardiovascular risk factors such as hypertension [37], metabolic syndrome (MetS) [38], and insulin resistance [39]. Other studies also found that high SUA concentrations are associated with an increased risk of MetS [40].

On the contrary, study by Joo et al. revealed that in Korean population, there were non-significant correlations between serum uric acid and MetS with menopause [33].

Our study explored that, in post-menopausal women, stepwise linear regression analysis showed that serum uric acid were independently correlated with SBP, triglycerides, HbA1c and FMI.

Similar to our results, Joo et al. found that, in the logistic regression analysis, metabolic syndrome independently correlated with age and serum uric acid [33].

Prasad et al. detected that; serum uric acid was strongly correlated to early coronary atherosclerosis in postmenopausal women [41].

Interestingly, ROC analyses revealed that serum uric acid level was useful biomarker discriminating cardiovascular risk of pre-menopausal women from post-menopausal women.

Similar to our results Lee et al. explored that, higher serum uric acid levels are positively associated with the presence of metabolic syndrome in Korean patients [42].

In conclusion, We demonstrate that serum uric acid increased in obese post-menopausal women and associated with cardiovascular and metabolic diseases as well as obesity indices among Egyptian post-menopausal women thus, serum uric found to be good diagnostic marker of cardiovascular and metabolic diseases especially in obese post-menopausal women. We recommend further studies on a population to support these findings.

References

Jong KilJoo, Gil Pyo Hong, Si Eun Han, et al., (2014)The Association between Serum Uric Acid Level

Author Profile

Prof. Dr/ Nearmeen M. Rashad is Associate Professor of Internal Medicine and Endocrinology. Faculty of Medicine, Zagazig University.

Dr/ Tarek M. H. Ibrahim, Lecturer of Internal Medicine. Faculty of Medicine, Zagazig University.