
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Analysis of Software Reliability Growth Models for

Quantitative Evaluation of Software Reliability and

Goodness of Fitness Metrics

Harminder Pal Singh Dhami
1
, Vaibhav Bansal

2

1, 2Department Computer Science & Engineering, OPJS University, Churu, Rajasthan, India

Abstract: Till now there have been many Software Reliability models developed for assessing the reliability of software product. Most

of these are based upon past failure data gathered during the testing phase. These models have been utilized to evaluate the quality of

the software and for future predication of reliability. They have been used in many critical management decision making problems that

occur during the testing phase. But none of these models can claim to be the best and hence there is a need for further research. In this

paper different modeling approaches are briefly studied and we present procedures to estimate the parameters of SRGMs and a critical

analysis of Goodness of Fit using some existing Software Reliability Growth Models. On the basis of our observations we recommend

the methodologies for estimating parameters of SGRM and the various metrics used for comparison of Goodness of Fit and predictive

validity.

Keywords: SRGM, SRE, NHPP, Mean Value Function, Parameter Estimation, Failure Intensity Rate, MSE, AIC, R2, MLE, LSE, RPE

1. Introduction

Software Reliability Engineering (SRE) is a conventional

area of software engineering research and is concerned with

the improvement and measurement of reliability. SRE works

by quantitatively characterizing and applying two things

about the product, the projected relative use of its functions

and its required major quality characteristics. The major

quality characteristics are reliability, availability, delivery

date and life-cycle cost. IEEE has suggested the following

standard definition of a fault (may be referred as a defect)

[29]. A fault occurs when a user makes a mistake, called an

error, while performing some software activity. Many

designers do not distinguish between faults, errors or bugs,

as their effects are the same, the dreaded failures. A failure is

a departure from the system's required behavior and it can

occur any time in a system deliver, during testing, or

operation or maintenance. Few faults may never turn into

failures, if faulty code is never executed or a particular state

never occurs. Nevertheless software cannot be made fault

free and these faults certainly lead to failures. This demands

application of Software Engineering tools, techniques and

procedures, in an effective way.

The basic aim of software engineering is to produce high

quality efficient software at low cost. With growth in size

and complexity of software, management issues began

dominating. An optimal design strategy without any

compromises e.g. cost & time, for the system does not

develop an optimal design. The reason for this is the changes

in requirements that may occur in later development cycles.

Such changes may cause design decisions taken earlier to be

less optimal. Design erosion is inevitable with the current

way of developing software. Refined methods only

contribute by delaying the moment that a system needs to be

withdrawn or retired. These approaches do not address the

fundamental problems that cause design erosion and makes

system unreliable [3]. Component based design is expected

to have a strong impact on the quality of software

development: Due to the simplicity, the software

development speeds up. The shorter development time

results in reduced costs. The extensibility and resolvability

of software systems is improved, because components can

flexibly be substituted by another component that satisfies

the requirements. Software components enhance the

reliability of the software, as they are improved, tested and

debugged over years [2].

Software Engineering Methodologies constitute the

framework that guides software developers in optimally

developing the software systems. These frameworks define

the different phases of software development. The selection

of which methodology to apply in a specific development

process is closely related to the size, complexity, reliability

and maintainability of the software, and to the environment

it is supposed to function. Now a days the fusion of all these

methodologies is incorporated. All the developers look at the

low cost & risk, high quality and small cycle of time, so that

the productivity and quality of the product can be optimized.

There should be a tradeoff between the development time

and the quality of the product [1].

The ability and quality of software depends greatly on its

reliability. The reliability of any software relies on testing

phase. While execution, if a system fails, it implies that there

are faults inherent in the system. This reduces the reliability

of the software system. Software Reliability improves as

faults are detected and corrected [4]. Therefore, the testing

phase emphasizes on detecting and correcting the faults in

the software. Pham [5] reviewed and compared various

NHPP based SRGMs on their fit and predictive power. The

comparison of SRGMs on defect inflow data is studied by

Wood [6] and he found it correlated with past released

defects. Even though a number of studies have compared

and evaluated SRGM within different context. We are still

not capable to make a consensus on how to choose SRGMs

for specified purpose and which models are best for given

process characteristics.

Paper ID: ART20172698 DOI: 10.21275/ART20172698 1540

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2. Software Reliability

Software Reliability is one of the main features of software

quality. As the definition of reliability is user oriented, it has

become the fundamental quality attribute of any product, be

it software or hardware. Software Reliability models can be

classified in a number of ways. For the analysis normally

stochastic software reliability models are used. They model

the failure process of the software and use other software

failure data as a basis for parameter estimation. The models

are capable (a) to estimate the current reliability and (b) to

predict future failure behavior.

Software error detection method can be considered as a

software reliability growth process. A software reliability

growth model has been studied by many researchers, as a

mathematical model for the reliability growth process. The

software reliability growth model describes the relationship

between the cumulative number of detected errors in

software and the time of software testing. Xie[33]

categorized the Software Reliability Models into following

groups according to their probabilistic assumptions.

1. Software Reliability Models which describe the

dynamic aspects of the failure occurrence process.

Markovian Model, Failure Count Models, and Model

Based on Bayesian Analysis.

2. Software Reliability Models which do not make any

dynamic assumptions of the failure process.

The Input Domain Models, Fault Seeding Models,

Software Metrics Models, and some Software

Reliability Growth Models Based on NHPP Goel-

Okumoto Model, Delayed S-Shaped SRGM and

Inflection S-Shaped SRGM.

3. Models with Dynamic Aspects of Failure

Occurrence Process

A. Markovian Models

The memory less property of the Markovian process implies

that the time between consecutive failures follows an

exponential distribution. When a Markov process represents

the failure process, the resultant model is called Markovian

model. The software can attain several states at any

particular time with respect to number of faults remaining or

number of faults already removed. The transition between

states depends on the current state of the software and the

transition probability. Numerous attempts have been made to

develop Markovian models; especially in earlier days due to

similar theory in hardware reliability was already well

developed. One of the popular reliability models developed

by Jelinski and Moranda [19] is a Markov process model.

Littlewood [25] proposed a model, based on semi-

Markovian process to describe the failure phenomenon of

software with module structure. Cheung [14] has also

proposed a Markovian model to describe module-structured

software. Kremer [24] proposed birth-death model, which

incorporates the probabilities of fault removal and

introduction. Goel [17] modified Jelinski-Moranda model by

introducing the concept of imperfect debugging. Xie and

Bergman [32] proposed a model relating the fault detection

probability to the fault size. Kapur et al.[21] proposed a

model incorporating imperfect debugging and fault

introduction with upper bound on the number of faults.

The Markov model is analysed in order to measure the

probability of being in a given state at a given point of time,

the amount of time a system is expected to spend in a given

state, as well as the expected number of transitions between

states: for instance representing the number of failures and

repairs.

Markov models provide great flexibility in modeling the

timing of events. They can be applied when simple

parametric time-based models, such as exponential or

Weibull time-to-failure models, are not sufficient to describe

the dynamic aspects of a system's reliability or availability

behavior; as may be the case for systems incorporating

standby redundancy.

B. Fault Counting Model
The majority of these failure count models are based upon

the NHPP. Schneidewind [31] proposed a fault detection

model based on NHPP. Different NHPP models are

distinguished by their unique mean value functions. Yamada

et al. [35] proposed the delayed S-shaped model. This

category includes the models, which describe the occurrence

of failure method by stochastic processes like Homogeneous

Poisson Process (HPP), Non Homogeneous Poisson Process

(NHPP), and Compound Process (CPP) etc. Ohba [28]

proposed the infection S-shaped model. Musa et al. [26],[27]

have proposed the basic execution time model and Log-

Poisson model. Goel [17] modified Musa's originals model

by introducing the test quality parameter. Yamada et al. [36]

also proposed a discrete time model. The effect of testing

effort on failure process was taken into consideration by

Yamada et al. [37]. In recent times efforts have been

directed towards development of general SRGMs [22],[30].

General SRGMs are flexible models and many of the above

models can be derived from them. Kapur and Garg [20]

modified Goel-Okumoto [15] model by introducing the

concept of imperfect debugging. Kareer et al. [23] proposed

a model with two types of faults where each fault type is

module as by an S-shaped curve model. Xie and Zhao [34]

have illustrate how the Schneidewind model can be modified

to result in many of the above SRGMs. Zeephongsekul et al.

[39] proposed a model describing the case when a major

fault introduces secondary faults. Attempts as listed above

for new models were made with the primary intention of

getting flexible models that could describe a range of failure

count curves or reliability growth curves like exponential

curves and highly S-shaped curves. Models with such

property are termed as flexible SRGMs [13],[22],[28].

Recently reliability modeling for distributed development

environment has caught the attentions of many researchers

[38]. Large software systems have modular design. A system

is said to be modular when each activity of the system is

carry out by exactly one component, and when the inputs

and outputs of each component are well defined [29]. Often

such components of software are developed separately by

different development teams with availability of

communication networks at cheaper rates. Some software

components are developed at separate geographic location

also. Software developed under this distributed development

Paper ID: ART20172698 DOI: 10.21275/ART20172698 1541

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

environment has proved to be economical. Many times,

components from other software projects are also reused.

Therefore SRGMs for software developed under distributed

environment needs to have different approach. But very few

attempts have been made in this regard [38].

C. Models Based on Bayesian Analysis

In the earlier two categories, the unknown metrics or

parameters of the models are estimated either by the

Maximum Likelihood Method or by the Least Squares

Method (will be discussed later). But in this, the Bayesian

analysis technique is used to estimate the unknown

parameters of the models. Littlewood and Verral,

recommended the first software reliability model based on

Bayesian Analysis [25]. Singpurwalla [40] have proposed a

number of Bayesian software reliability models for various

testing environments. This technique assists the use of

gathered information by developing similar software project.

Based on this information the parameter of given model are

assumed to pursue some distribution, known as priori

distribution. Given the software test data and based on a

priori distribution, a posterior or subsequent distribution can

be acquired, which in turn describes the failure phenomenon.

4. Models Without any Dynamic Assumptions

of Failure Process

The following four categories of Software Reliability

models are defined briefly here.

A. The Input Domain Models

The basic approach in this category is to generate a set of

tests from a distribution. The distribution should be chosen

so that it is representative of the operation of the software

and the reliability is estimated from the outcome of the test

cases.

B. Fault Seeding Models

In this class a known number of faults are introduced into

the software. During the software testing, these seeded faults

as well as original faults are visible. The proportion of the

seeded faults found compared to the unseeded faults found

can given an estimate of the total fault content in the

software.

C. Software Metrics Models

The models in this class relate the fault content in the

software to some features of the software program such as

program length, complexity, volume etc. These models are

empirically built and the result obtained by a model is

dependent on the software development process

environment, which may not be the same in the other

projects.

D. Some SRGMs Based On NHPP

In this segment few SRGMs are presented briefly. These

SRGMs and their hypothesis have been presented during the

development of some of the models and theories of research.

Some of the basic assumption or postulates, apart from some

special ones for specific models discussed, for the models

are as follows:

1) Software system is subject to failure during execution,

caused by faults left behind in the systems.

2) Failure rate of the software is equally influenced by

faults left behind in the software.

3) The number of faults detected at any instant of time is

proportional to the remaining number of faults in the

software.

4) Repair effort starts and fault causing the failure is

removed with certainty, on a failure.

5) From failure detection point of view, all faults are

mutually free.

6) The proportionality of failure detection/ fault removal/

fault isolation is constant.

7) The fault detection/removal phenomenon is modeled by

NHPP.

Notations

m(t): Expected number of faults identified in (0,t), mean

value function of NHPP

a, b : Constants, representing initial fault content and

rate of fault removal per remaining faults for a software.

p, q: Proportionality constants

Non Homogeneous Poisson Process (NHPP)

Let (N(t); t > 0) be a counting process denoting the

cumulative number of failures (or faults isolated as the case

may be) by time t, N(t) is a random variable and (N(t); t > 0)

is a Non Homogeneous Poisson Process (NHPP) if N(0) = 0,

(N(t); t > 0) has independent increments

P (two or more failures in (t, t +t)) = 0(t)

P (exactly one failure in (t, t +t)) = (t) + 0(t)

Where (t) is intensity function of N(t). If we let m (t) =


t

0

dx (x)  represent the mean of number of faults

removed in (0, t). It can be shown that

P[N(t) = n] =
!n

e)]t(m[)t(mn 

, n = 0,1,2 … (1)

i.e. N (t) has a Poisson distribution with expected value

E[N(t)]= m(t) for t > 0 and m(t) is called the mean value

function of NHPP.

1) Goel-Okumoto Model :

The differential equation results from assumption-3 are as

follows

dt

d
m(t) = b[a-m(t)] (2)

The first order linear differential equation, as above, when

solved with the initial condition as m(0) = 0 gives the

following mean value function for NHPP (2)

m(t) = a (1-e
-bt

) (3)

The mean value function is exponential in nature and does

not offer a good-fit to the S-shaped growth curves that

normally occur in Software Reliability. But the model is

popular due to its straightforwardness.

2) S-Shaped SRGMs

Few S-shaped SRGMs which will be discussed are Delayed

S-Shaped SRGM and Inflection S-Shaped SRGM

Paper ID: ART20172698 DOI: 10.21275/ART20172698 1542

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

i. Delayed S-Shaped SRGM

Fault detection in the model is assumed to be a two-phase

process comprising of failure detection and its eventual

removal by isolation. It considers the time taken to isolate

and remove a fault and, so it is important that the data to be

used at this time should be that of fault isolation. In addition,

it is assumed that the number of faults isolated at any time

instant is proportional to the remaining number of faults in

the software. The failure rate and isolation rate per fault are

assumed to be similar and equal to b.

Thus

dt

d
mf(t) = b[a-mf(t)] (4)

dt

d
m(t) =b [mf (t) – m(t)] (5)

mf (t) is the expected number of a failures in (0,t). Solving

(4) and (5), we get the mean value function as

m(t) =a {1-(1+bt)e
–bt

} (6)

Alternately, the model can also be devised as one stage

process directly as follows:

dt

d
m(t)=










bt1

tb2

(a-m(t)) (7)

It is observed that
bt1

tb2


→b as b→. This model was

specifically developed to account for delay in the failure

observation and later its removal. This kind of derivation is

unusual to software reliability only. Xie and Zhao have also

proposed alternative ways of deriving the above model.

ii. Inflection S-Shaped SRGM

The model features S-shaped ness to the mutual dependency

between software faults. Other than assumption-3 it is also

assumed that the software contains two types of faults,

namely mutually independent and mutually dependent. The

mutually independent faults are those, which are located on

different execution paths of the software, thus they are

equally likely to be detected and removed. On the other

hand, the mutually dependent faults are those faults, which

are located on the same execution path. According to the

order of the software execution, some faults in the execution

path will not be removed until their earlier faults are

removed. According to the assumptions of the model, the

fault removal intensity per unit time can be written as

dt

d
m(t) = b(t) [a-m(t)] (8)

b is the fault removal rate in the steady state. Solving (8)

under the initial condition M(0) = 0 we get

m(t) = a
bt

bt

e
r

r1
1

e1









 (9)

If r = 1, the model reduces to the Goel-Okumoto model.

For different values of r, different growth curves can be

attained and in that case the model is flexible.

5. Parameter Estimation

The parameters of the SRGMs are estimated based upon

these (input failure) data. Therefore, efforts should be made

to make the data gathering more precise and scientific.

Usually data is collected in one of the following two ways.

In the first case, Time-Domain data the time between

successive failures are recorded. The accomplishment of

mathematical modeling approach to reliability estimation

depends greatly upon quality of failure data gathered.

Though this type of data gathering is more preferable, it may

not be simple. Problems can come in measuring the testing

effort for each fault and it may be very inconvenient to note

the time at each failure report. The other convenient and

commonly collected data type is known as the grouped data

or Interval-Domain data. Here testing intervals are specified

and number of failures observed during each such interval is

noted. Some existing software reliability models can handle

both type of data but Time- Domain data provides better

accuracy of parameters estimation with current existing

Software Reliability Models [5]. For both these data type

method of Maximum Likelihood and Method of Least

Squares have been recommended and widely used for

estimation of parameters of SRGMs.

A. Parameter Estimation Methods

Parameter Estimation is of major importance in Software

Reliability predication. Once the mean value function m(t)

of analytical model is known, the parameter in the solution

is required to be determined. During the testing and initial

operational phases of Software Development Life Cycle

(SDLC), failure events are encountered. They are recorded

and underlying faults that caused them are removed, which

results in process called Reliability Growth. The basic idea

behind the SRGM is simple; if the history of fault detection

and removal follows a certain recognizable pattern, it is

possible to describe the mathematical form of the pattern.

The function that represent this pattern is called mean value

function m(t), which is cumulative number of faults

describe in a given time 𝑡. If we are able to fit this function

to the existing historical fault detective data, we can predict

the future failure behaviour of software. The mean value

function is often transferred to failure intensity (rate)

function 𝜆 (𝑡) by formula 𝜆 (𝑡)=
dt

d m(t). The parameters

of SRGM are estimated by one of the following methods.

1) Least Square Estimation (LSE)

2) Maximum Likelihood Estimation (MLE)

1) Method of Least Squares

In this method the square of the difference between observed

response and value predicted by the model is minimized. If

the expected value of the response variable is given by m(t)

(can be a mean value function of an SRGM), then the least

square estimators of the parameters of the model may be

obtained from n pairs of sample values (t1, y1), (t2, y2), ……

(tn, yn) by minimizing J given by

J = 



n

1i

2

i)]t(my[(10)

yi and ti dependent variables and observed values of

explanatory respectively. For small and average size samples

Least Square Estimation is preferred [27]. For estimation of

Paper ID: ART20172698 DOI: 10.21275/ART20172698 1543

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

the parameters of the analytical models, Method of Least

Square (Non Linear Regression) has been used. Non Linear

Regression is a technique to find a nonlinear model of the

relationship between the dependent variable and a set of

independent variables. Unlike conventional linear

regression, which is restricted to estimate linear

models, nonlinear regression can estimate models with

arbitrary relationships between independent and dependent

variables.

2) Maximum Likelihood Estimation

Maximum Likelihood Estimation(MLE) method has been

broadly adopted for estimation of parameters of SRGMs

based upon NHPP. We briefly discuss below the MLE

procedure for two types of software failure data as discussed

above. For the first type of data, suppose that estimation is to

be performed at a specified time tk, not essentially

corresponding to a failure and with total of mk failures being

experienced at time t1, t2, tmk. Then the likelihood function

for the NHPP is:

L =









 





tk

dxxk

i

i et 0

)(

1

)(


 (11)

The MLE of the Parameters can be obtained by maximizing

Likelihood function or its Log likelihood function (log L).

If the software failure data is grouped into k points (ti, yi);

i=1, 2, …k, where yi is the cumulative number of failure

reports at time ti. Then the Likelihood function L is given as

follows:

L =
)}1

i
t(m)

i
t(m{

e
)yy(

)]t(m)t(m[k

1i 1ii

yy

1i1
1ii 


 







 

 (12)

Taking natural logarithm of (12) we get the log likelihood

function

LogL =








 
k

1i

1ii

k

1i

k1ii1ii])!yy(mln[()t(m)]t(m)t(mln[)yy(

(13)

The MLE of the parameters of SRGM can be obtained by

maximizing (13) with respect to the model parameters.

Estimation of parameters using MLE requires solving set of

simultaneous equations to maximize the likelihood defect

data coming from given function to find parameters.

Wood [6] applied both MLE and LSE and found LSE to be

more stable and better correlated to field data although MLE

results were more reasonable. It can be safely assumed that

statistically MLE is much better parameter predictions

method than LSE as LSE is much easier and provide

consistent results in wider data sets than preferred methods

[9],[10],[5].

Both the estimation methods can also be used to other

stochastic processes. Maximum Likelihood Estimators

possess many desirable properties such as efficiency,

asymptotic normality, consistency, and the invariance

property. Hence, it is the most preferred estimation

procedure for reasonably large sample size. So we conclude

MLE is more suitable for the large sample of data and the

LSE for small to medium size sample.

6. Comparison Criteria for SRGMS

The performance of SRGMs are evaluated by their ability to

fit the history software fault data (goodness of fit) and to

forecast satisfactorily the future performance of the software

fault removal process (predictive validity)[11],[12]. Musa et

al. [8] have suggested the following attributes for choosing

an SRGM.

a) Capability: The model should possess the ability to

estimate with satisfactory accuracy metrics needed by the

software managers.

b) Quality of assumptions: The assumptions should be

plausible and must depict the testing environment.

c) Applicability: A model can be adjudged as the better one

if it can be applied across software products of different

sizes, structures, platforms and functionalities.

d) Simplicity: The data required for an ideal SRGM should

be simple and inexpensive to collect. The parameter of

estimation should not be too complex and easy to

understand and apply even for persons without extensive

mathematical background.

Other than the above qualitative aspect the following indices

help in comparing SRGMs.

A. Goodness of Fit Metrics

The common used metrics for model comparison of

goodness of fit and the predictive power are discussed as

below

1) The Mean Square Fitting Error (MSE): The model

under comparison is used to create the fault data, the

difference between the expected values, m(ti) and the

true or observed data yi is measured by MSE as,

 MSE = 


k

i

ii

k

ytm

1

2
^

))(

 … … (14)

 where k is the number of observations.

The lesser MSE indicates, lesser the fitting error, thus

improved goodness of fit.

2) The Akaike Information Criterion (AIC): It is defined as

AIC = -2 (The value of the max. log likelihood function) + 2 (The

no. of the parameters used in the model) … (15)

This index takes into account both the number of parameters

that are estimated and the statistical goodness of fit.

Lesser values of AIC indicate the preferred model, i.e. the

one with the minimum number of parameters that still offers

a good fitness to the data.

3) Coefficient of Multiple Determination (R
2
) – They are

calculated using the parameters estimated using LSE

estimators.

R
2
= 1 – (residual SS / corrected SS) (16)

If value of R
2

is close to 1 then the model provides better

goodness of fit.

B. Predictive Validity Criterion

The number of faults removed by time tk can be anticipated

by the SRGM and compared to the reported fault removal,

i.e. yk. The difference between the anticipated/predicted

Paper ID: ART20172698 DOI: 10.21275/ART20172698 1544

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

value m
^
 (tk) and the reported value measures the fault in

anticipated/prediction. The ratio [(m
^
(tk) –yk)/yk] is called the

Relative Prediction Error (RPE). If the RPE is positive

(negative) the SRGM is said to overestimate (underestimate)

the fault removal process. Segments of the failure data are

serially chosen to calculate the RPE. Values nearer to zero

for RPE indicate more accurate prediction, thus more

confidence in the model and better predictive validity [8]

[12]. The various metrics such as MSE, AIC, R
2
, SSE and

PRR can be used for predicting the validation of SRGM.

7. Parameters Estimations Numerical

Implementation

In this section we will illustrate the procedure for estimation

of unknown SRGM model parameters with practical

considerations.

A. Models Used With Data Set

The data set used for this study is Time-Domain data for a

real time control system provided by Ohba [16]. In data,

fifteen (15) faults have been reported with their time

between the failures. In this study we use the following two

widely used SRGMs as given in Table I.

Table 1: SRGM Models Used

Model
Name of

SRGM

Mean Value Function m(t)

Parameters to be

Estimated

Model-1 Exponential Goel-

Okumoto(G-O)

𝑚(𝑡) = 𝑎(1 – 𝑒𝑥𝑝[−𝑏𝑡]),
𝑎 > 0, 𝑏 > 0

Two,
(a, b)

Model-2

Inflection

S-Shaped

Model [16]

𝑚(𝑡) = 𝑎 ∗. 1 − 𝑒𝑥𝑝 –𝑏𝑡
1 + 𝛽(𝑟) ∗ 𝑒𝑥𝑝[−𝑏𝑡] ,

𝛽(𝑟)= 1 − 𝑟 ,
𝑟

, 𝑎 > 0, 𝑏 > 0, 𝑟 > 0

Three,
a, b, β

B. Parameter Estimation and Analysis

In this study the parameters of software reliability growth

model mentioned in the Table I are estimated by using Least

Square Estimation (Non- Linear Regression). The statistical

package IBM SPSS is used for estimation of parameters for

goodness of fit and prediction of the models. The values of

parameters estimated by using Least Square Estimation

(LSE) of Non Linear Regression (NLR) and parameters

values using Maximum Likelihood Estimation (MLE)

obtained with same data and models by Pham-Zhang [18]

are summarized in Table II for comparison. The presentation

of the models given in Table I using LSE and MLE

estimators to the observed data is also presented in Figure 1

and Figure 2. It is observed from these figures the curves of

the presented models using LSE and MLE Estimators are

almost consistent which show Goodness of Fit. It is also

observed that for both curve and growth rate our estimates

using LSE are much closer to the parameters estimates

obtained using MLE.

Table 2: Estimated Parameters

Model Mean Value Function m(t)

Estimated values of

Parameters

LSE MLE

Model-

1
𝑚(𝑡) = 𝑎(1 – 𝑒𝑥𝑝[−𝑏𝑡]),

𝑎 > 0, 𝑏 > 0
 a=18.538

b=0.0049

a=19.544

b=0.00488
Model-

2
𝑚(𝑡) = 𝑎 ∗.

1 − 𝑒𝑥𝑝 –𝑏𝑡
 1 + 𝛽(𝑟) ∗ 𝑒𝑥𝑝[−𝑏𝑡]

 ,

 𝛽(𝑟)=
1 − 𝑟

,

 𝑟

, 𝑎 > 0, 𝑏 > 0, 𝑟 > 0

a=28.3062

b=0.0000231

𝛽= -0.9939

a=28.5811

b=0.000132

𝛽= -0.9654

C. Parameter Validity and Accuracy
To predict the goodness of fit and validity of Model using

LSE and MLE estimators, the various metrics are evaluated

such as Sum of Squared Errors (SSE), Mean Squared Error

(MSE), (AIC) and Root Mean Square Predictive Error

(RMPSE) summarized in Table III. We now compare the

predictive accuracy of the value of a metrics obtain using

MLE and NLR estimators as shown in Table III. It is

observed that the values of SSE, MSE, PRR and

RMSPE obtained with MLE estimator are less than the

values obtained with LSE estimator in Model-1 and Model-2

which indicates that MLE is better estimator.

Table 3: Comparison of Goodness of Fit Metrics

Metrics →
 Model ↓

MSE AIC RMSPE

LSE MLE LSE MLE LSE MLE

Model-1 0.14 0.04 0.089 0.038 0.521 0.212

Model-2 0.03 0.02 0.011 0.012 0.212 0.173

The coefficients of Multiple Determination (R
2
) are

calculated using the parameters estimated using LSE

estimators. The Table IV summed up the values of R
2
 using

LSE and growth rate of the models with LSE and MLE

estimators to predict the validity of the models. The values

of R
2
 obtained for various models lie close between 0 and 1.

The values are very close to 1 or equal to 1, which indicate

the validity of the models. It is also observed that growth

Paper ID: ART20172698 DOI: 10.21275/ART20172698 1545

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

rates in both the cases of various models are almost equal

which indicates the Goodness of Fit of these models.

Table 4: R
2

and Growth Rate to Predict Validity and

Accuracy of the Model
Model Model-1 Model-2

Value of R2 using LSE 0.9999 0.9999

Growth Rate with LSE 0.0054 0.000023

Growth Rate with MLE 0.0049 0.000133

D. Models Asymptote for Goodness of Fit

Asymptotic view of goodness of fit for the Model-1 i.e.

Goel-Okumoto (G-O) and Model-2 i.e. Inflection S-Shaped

Model, is shown below in Figure-1 and Figure-2

respectively.

Figure 1: Model 1 - Goel-Okumoto (G-O)

Figure 2: Model 2 - Inflection S-Shaped Model

8. Conclusion

In this paper we have discussed, when a software system is

designed, the major concern is the software quality. The

quality of software depends on various factors such as

software reliability, efficiency, date of delivery and

development cost etc. This paper analyzed various existing

software reliability models with their failure intensity

function and the mean value function. Therefore, we

recommend that most important process, Least Square

Estimation and Maximum Likelihood Estimation for

estimating parameters of Software Reliability Growth

Models and the various metrics used for comparison of

Goodness of Fit and predictive validity. Using the failure

data set from the Literature and existing SRGMs for

implementation of LSE and MLE practically for comparison

of Models, it was noted that MLE gives the better results as

compared to LSE for Goodness of Fit and predictive validity

of Models. It was observed that MLE is difficult to apply

which limits its use in industry, especially due to lack of

tools support whereas LSE is easy to use due to availability

of compatible tools. It was concluded from the results

presented here and the properties of LSE and MLE

estimators suggested that Maximum Likelihood Estimator is

better for prediction of Reliability Growth Models whereas

Least Square Method for Non Linear Regression is a good

estimator for fitting the data to observed failure data. In

future the above recommendations can be implemented and

results of the model can be compared with the existing

model results.

References

[1] A. Kaur, H. P. S. Dhami and J. Kaur (2009):

Component Based Software Engineering, IEEE-SOFT-

3140, IEEE International Advance Computing

Conference IACC-2009.

[2] H. P. S. Dhami (Sept.2016): Comparative Study and

Analysis of Software Process Models on Various

Merits, International Journal of Advanced Research in

Computer Science and Software Engineering, Vol 6(9),

pp. 234-243.

Paper ID: ART20172698 DOI: 10.21275/ART20172698 1546

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[3] H. P. S. Dhami and Dr Anuj Kumar (July 2013):

Analysis of Software Design Erosion Issues,

International Journal of Advanced Research in

Computer Science and Software Engineering 3 (7), pp.

1-7.

[4] Quadri, S.M.K. and Ahmad, N.(2010), Software

Reliability Growth Modelling with new modified

Weibull testing- effort and optimal release policy,

International Journal of Computer Applications, Vol. 6,

No. 12.

[5] Pham, H. (2003), Software reliability and cost

models: Perspectives, comparison and practice,

European Journal of Operation Research, Vol. 149,

No. 3, 475-489.

[6] Wood, A.(1996), Predicting Software reliability,

Computer, Vol. 29, No.11, pp. 69-77.

[7] Harminder Pal Singh Dhami (Dec.2016): Improving

Software Reliability, Productivity and Quality using

software metrics, International Journal of Computer

Science & Technology (IJCST) Vol.7 Issue: 4(1), ISSN

0976 – 8491 (online), ISSN 2229 – 4333 (Print).

[8] Musa, J.D., Iannino(1987), A. and Komodo, K.,

Software Reliability: Measurement, Prediction and

Application, McGraw-Hill.

[9] Ullah, N., Moriso, M. and Vetro, A.(2012), A

Comparative Analysis of Software Reliability Growth

Models Using Defects Data of Closed & Open Source

Software, in Software Engineering Workshop (SEW),

2012, 35
th

 Annual IEEE, pp 187-192.

[10] Rana, R., Staron, M., Berger, C., Hanson, J., Nilsson,

M. and Torner, F.(2013), Evaluating the long-term

predictive power of standard reliability growth models

on automotive systems, Pasadena, CA, USA.

[11] Musa JD (1999), Software Reliability Engineering,

McGraw- Hill.

[12] Kapur PK, Garg RB and Kumar S (1999),

Contributions to Hardware and Software Reliability,

World Scientific, Singapore.

[13] Bittanti S, Bolzern P, Pedrotti E, Scattolini R (1988). A

flexible modelling approach for software reliability

growth. Software Reliability Modelling and

Identification (Ed.) G. Goos and J. Harmanis. Springer

Verlag. Berlin. pp.101-140.

[14] Cheung RC (1980). A User Oriented Software

Reliability Growth Model. IEEE Transactions on

Software Engineering. SE-6: pp.118-125.

[15] Goel AL, Okumoto K (1979). Time dependent error

detection rate model for software reliability and other

performance measures. IEEE Transactions on

Reliability. R-28(3): pp.206-211.

[16] Ohba (July 1984), Software reliability-analysis models,

IBMJ. Res. Develop.,vol. 28, pp. 428-443.

[17] Goel AL (1985), Software reliability models:

assumptions, limitations and applicability. IEEE

Transactions on Software Engineering. SE-11, pp.1411-

1423.

[18] Pham, H., Zhang X.(1997), An NHPP Software

reliability model and its comparison, International

Journal of Reliability, Quality and Safety Engineering,

Vol. 4, No.3, pp 269-282.

[19] Jelinski Z. Moranda PB(1972). Software Reliability

Research. In: Freiberger W. (Ed.) Statistical Computer

performance Evaluation. New York: Academic Press:

pp.465-497.

[20] Kapur PK, Garg RB.(1990c). Optimal release policies

for software systems with testing effort. Int. Journal

System Science. 22(9), pp.1563-1571.

[21] Kapur PK, Sharma KD, Garg RB. (1992). Transient

solutions of software reliability model with imperfect

debugging and error generation. Microelectronics and

Reliability. 32: pp.475-478.

[22] Kapur PK, Garg RB, Kumar S (1999). Contributions to

hardware and software reliability. Singapore: World

Scientific Publishing Co. Ltd.

[23] Kareen N, Grover PS, Kapur PK (1990). An S-shaped

Reliability growth model with two types of errors.

Microelectronics and Reliability. 30(6):pp.1085-1090.

[24] Kremer W (1983). Birth–death bug counting. R-32:

pp.32-47.

[25] Littlewood B, Verrall JL (1997). A Bayesian reliability

growth model for computer software. Applied Statistics.

22: pp.332-346.

[26] Musa JD (1979). Validity of Execution Time Theory of

Software Reliability. IEEE Transactions on Reliability.

R-28: pp.181-191.

[27] Musa JD, Iannino A, Okumoto K (1987). Software

reliability: Measurement, prediction, Applications. New

York: MC Graw Hill.

[28] Ohba M (1984). Software Reliability Analysis Models.

IBM Journal of Research and Development. 28: pp.428-

443.

[29] Pfleeger SL(1998). Software Engineering- Theory and

Practice. New Jersey: prentice Hall.

[30] Pham H(2000). Software Reliability. Springer-Verlag

Pte. Singapore. 2000

[31] Schneidewind NF(1975). Analysis of Error Process in

Computer Software. Sigplan Notices. 10(6): pp.337-

346.

[32] Xie M, Bergman B (1980). On Modelling Reliability

Growth For Software. Proceedings 8
th

 IFAC symposium

on Identification and Parameter estimation, Beijing;

1980; China: pp.27-31.

[33] Xie M (1991). Software Reliability Modeling. World

Scientific.

[34] Xie M, Zhao M (1992). The Schneidewind Software

Reliability Growth Model Revisited. IEEE proceedings.

pp.184-192.

[35] Yamada S, Ohba M, Osaki S(1983). S-Shaped Software

Reliability Growth Modelling for Software Error

Detection. IEEE Trans. On reliability. R-32(5): pp.475-

484.

[36] Yamada S, Osaki S, Narihisa H (1986). Discrete Models

for Software Reliability Evaluation. In: Basu AP

(Editor) Reliability and Quality Control. North Holland:

Elsevier science Publishers.

[37] Yamada S, Hishitani J, Osaki S (1993). Software-

Reliability Growth Model with a Weibull Test Effort: A

Model And Application. IEEE Transactions on

Reliability 42(1): pp.100-106.

[38] Yamada S, Tamura Y, Kimura M (2003). A Software

Reliability Growth Model for A Distributed

Development Environment. Electronics &

Communications in Japan. part 3,Vol. 83, pp 1446-53.

[39] Zeephongsekul p, Xia G, Kumar S (1992). A Software

Reliability Growth Model With Primary Errors

Paper ID: ART20172698 DOI: 10.21275/ART20172698 1547

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Generating Secondary Errors. Research report Number-

2, Department of Mathematics; Royal Melbourne

Institute of Technology, Australia.

[40] Singpurwalla ND, Wilson SP (1999). Statistical

Methods in Software Engineering-Reliability and Risk.

New York: Springer-Verlag.

Paper ID: ART20172698 DOI: 10.21275/ART20172698 1548

