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Abstract: Till now there have been many Software Reliability models developed for assessing the reliability of software product. Most 

of these are based upon past failure data gathered during the testing phase. These models have been utilized to evaluate the quality of 

the software and for future predication of reliability. They have been used in many critical management decision making problems that 

occur during the testing phase. But none of these models can claim to be the best and hence there is a need for further research. In this 

paper different modeling approaches are briefly studied and we present procedures to estimate the parameters of SRGMs and a critical 

analysis of Goodness of Fit using some existing Software Reliability Growth Models. On the basis of our observations we recommend 

the methodologies for estimating parameters of SGRM and the various metrics used for comparison of Goodness of Fit and predictive 

validity. 
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1. Introduction 
 

Software Reliability Engineering (SRE) is a conventional 

area of software engineering research and is concerned with 

the improvement and measurement of reliability. SRE works 

by quantitatively characterizing and applying two things 

about the product, the projected relative use of its functions 

and its required major quality characteristics. The major 

quality characteristics are reliability, availability, delivery 

date and life-cycle cost. IEEE has suggested the following 

standard definition of a fault (may be referred as a defect) 

[29]. A fault occurs when a user makes a mistake, called an 

error, while performing some software activity. Many 

designers do not distinguish between faults, errors or bugs, 

as their effects are the same, the dreaded failures. A failure is 

a departure from the system's required behavior and it can 

occur any time in a system deliver, during testing, or 

operation or maintenance. Few faults may never turn into 

failures, if faulty code is never executed or a particular state 

never occurs. Nevertheless software cannot be made fault 

free and these faults certainly lead to failures. This demands 

application of Software Engineering tools, techniques and 

procedures, in an effective way. 

 

The basic aim of software engineering is to produce high 

quality efficient software at low cost. With growth in size 

and complexity of software, management issues began 

dominating. An optimal design strategy without any 

compromises e.g. cost & time, for the system does not 

develop an optimal design. The reason for this is the changes 

in requirements that may occur in later development cycles. 

Such changes may cause design decisions taken earlier to be 

less optimal. Design erosion is inevitable with the current 

way of developing software. Refined methods only 

contribute by delaying the moment that a system needs to be 

withdrawn or retired. These approaches do not address the 

fundamental problems that cause design erosion and makes 

system unreliable [3]. Component based design is expected 

to have a strong impact on the quality of software 

development: Due to the simplicity, the software 

development speeds up. The shorter development time 

results in reduced costs. The extensibility and resolvability 

of software systems is improved, because components can 

flexibly be substituted by another component that satisfies 

the requirements. Software components enhance the 

reliability of the software, as they are improved, tested and 

debugged over years [2]. 

 

Software Engineering Methodologies constitute the 

framework that guides software developers in optimally 

developing the software systems. These frameworks define 

the different phases of software development. The selection 

of which methodology to apply in a specific development 

process is closely related to the size, complexity, reliability 

and maintainability of the software, and to the environment 

it is supposed to function. Now a days the fusion of all these 

methodologies is incorporated. All the developers look at the 

low cost & risk, high quality and small cycle of time, so that 

the productivity and quality of the product can be optimized. 

There should be a tradeoff between the development time 

and the quality of the product [1]. 

 

The ability and quality of software depends greatly on its 

reliability. The reliability of any software relies on testing 

phase. While execution, if a system fails, it implies that there 

are faults inherent in the system. This reduces the reliability 

of the software system. Software Reliability improves as 

faults are detected and corrected [4]. Therefore, the testing 

phase emphasizes on detecting and correcting the faults in 

the software. Pham [5] reviewed and compared various 

NHPP based SRGMs on their fit and predictive power. The 

comparison of SRGMs on defect inflow data is studied by 

Wood [6] and he found it correlated with past released 

defects. Even though a number of studies have compared 

and evaluated SRGM within different context. We are still 

not capable to make a consensus on how to choose SRGMs 

for specified purpose and which models are best for given 

process characteristics. 
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2. Software Reliability 
 

Software Reliability is one of the main features of software 

quality. As the definition of reliability is user oriented, it has 

become the fundamental quality attribute of any product, be 

it software or hardware. Software Reliability models can be 

classified in a number of ways.  For the analysis normally 

stochastic software reliability models are used. They model 

the failure process of the software and use other software 

failure data as a basis for parameter estimation. The models 

are capable (a) to estimate the current reliability and (b) to 

predict future failure behavior. 

 

Software error detection method can be considered as a 

software reliability growth process. A software reliability 

growth model has been studied by many researchers, as a 

mathematical model for the reliability growth process. The 

software reliability growth model describes the relationship 

between the cumulative number of detected errors in 

software and the time of software testing. Xie[33] 

categorized the Software Reliability Models into following 

groups according to their probabilistic assumptions. 

 

1. Software Reliability Models which describe the 

dynamic aspects of the failure occurrence process.  

Markovian Model, Failure Count Models, and Model 

Based on Bayesian Analysis.  

2. Software Reliability Models which do not make any 

dynamic assumptions of the failure process.  

The Input Domain Models, Fault Seeding Models, 

Software Metrics Models, and some Software 

Reliability Growth Models Based on NHPP Goel-

Okumoto Model, Delayed S-Shaped SRGM and 

Inflection S-Shaped SRGM. 

 

3. Models with Dynamic Aspects of Failure 

Occurrence Process 
 

A. Markovian Models 

The memory less property of the Markovian process implies 

that the time between consecutive failures follows an 

exponential distribution. When a Markov process represents 

the failure process, the resultant model is called Markovian 

model. The software can attain several states at any 

particular time with respect to number of faults remaining or 

number of faults already removed. The transition between 

states depends on the current state of the software and the 

transition probability. Numerous attempts have been made to 

develop Markovian models; especially in earlier days due to 

similar theory in hardware reliability was already well 

developed. One of the popular reliability models developed 

by Jelinski and Moranda [19] is a Markov process model. 

Littlewood [25] proposed a model, based on semi-

Markovian process to describe the failure phenomenon of 

software with module structure. Cheung [14] has also 

proposed a Markovian model to describe module-structured 

software. Kremer [24] proposed birth-death model, which 

incorporates the probabilities of fault removal and 

introduction. Goel [17] modified Jelinski-Moranda model by 

introducing the concept of imperfect debugging. Xie and 

Bergman [32] proposed a model relating the fault detection 

probability to the fault size. Kapur et al.[21] proposed a 

model incorporating imperfect debugging and fault 

introduction with upper bound on the number of faults. 

 

The Markov model is analysed in order to measure the 

probability of being in a given state at a given point of time, 

the amount of time a system is expected to spend in a given 

state, as well as the expected number of transitions between 

states: for instance representing the number of failures and 

repairs.  

 

Markov models provide great flexibility in modeling the 

timing of events. They can be applied when simple 

parametric time-based models, such as exponential or 

Weibull time-to-failure models, are not sufficient to describe 

the dynamic aspects of a system's reliability or availability 

behavior; as may be the case for systems incorporating 

standby redundancy.  

 

B.   Fault Counting Model   
The majority of these failure count models are based upon 

the NHPP. Schneidewind [31] proposed a fault detection 

model based on NHPP. Different NHPP models are 

distinguished by their unique mean value functions. Yamada 

et al. [35] proposed the delayed S-shaped model. This 

category includes the models, which describe the occurrence 

of failure method by stochastic processes like Homogeneous 

Poisson Process (HPP), Non Homogeneous Poisson Process 

(NHPP), and Compound Process (CPP) etc. Ohba [28] 

proposed the infection S-shaped model. Musa et al. [26],[27] 

have proposed the basic execution time model and Log-

Poisson model. Goel [17] modified Musa's originals model 

by introducing the test quality parameter. Yamada et al. [36] 

also proposed a discrete time model. The effect of testing 

effort on failure process was taken into consideration by 

Yamada et al. [37]. In recent times efforts have been 

directed towards development of general SRGMs [22],[30]. 

General SRGMs are flexible models and many of the above 

models can be derived from them. Kapur and Garg [20] 

modified Goel-Okumoto [15] model by introducing the 

concept of imperfect debugging. Kareer et al. [23] proposed 

a model with two types of faults where each fault type is 

module as by an S-shaped curve model. Xie and Zhao [34] 

have illustrate how the Schneidewind model can be modified 

to result in many of the above SRGMs. Zeephongsekul et al. 

[39] proposed a model describing the case when a major 

fault introduces secondary faults. Attempts as listed above 

for new models were made with the primary intention of 

getting flexible models that could describe a range of failure 

count curves or reliability growth curves like exponential 

curves and highly S-shaped curves. Models with such 

property are termed as flexible SRGMs [13],[22],[28]. 

 

Recently reliability modeling for distributed development 

environment has caught the attentions of many researchers 

[38]. Large software systems have modular design. A system 

is said to be modular when each activity of the system is 

carry out by exactly one component, and when the inputs 

and outputs of each component are well defined [29]. Often 

such components of software are developed separately by 

different development teams with availability of 

communication networks at cheaper rates. Some software 

components are developed at separate geographic location 

also. Software developed under this distributed development 
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environment has proved to be economical. Many times, 

components from other software projects are also reused. 

Therefore SRGMs for software developed under distributed 

environment needs to have different approach. But very few 

attempts have been made in this regard [38]. 

 

C. Models Based on Bayesian Analysis 

In the earlier two categories, the unknown metrics or 

parameters of the models are estimated either by the 

Maximum Likelihood Method or by the Least Squares 

Method (will be discussed later). But in this, the Bayesian 

analysis technique is used to estimate the unknown 

parameters of the models. Littlewood and Verral, 

recommended the first software reliability model based on 

Bayesian Analysis [25]. Singpurwalla [40] have proposed a 

number of Bayesian software reliability models for various 

testing environments. This technique assists the use of 

gathered information by developing similar software project. 

Based on this information the parameter of given model are 

assumed to pursue some distribution, known as priori 

distribution. Given the software test data and based on a 

priori distribution, a posterior or subsequent distribution can 

be acquired, which in turn describes the failure phenomenon. 

 

4. Models Without any Dynamic Assumptions 

of Failure Process 
 

The following four categories of Software Reliability 

models are defined briefly here.  

 

A. The Input Domain Models 

The basic approach in this category is to generate a set of 

tests from a distribution. The distribution should be chosen 

so that it is representative of the operation of the software 

and the reliability is estimated from the outcome of the test 

cases.  

 

B. Fault Seeding Models  

In this class a known number of faults are introduced into 

the software. During the software testing, these seeded faults 

as well as original faults are visible. The proportion of the 

seeded faults found compared to the unseeded faults found 

can given an estimate of the total fault content in the 

software.  

 

C. Software Metrics Models  

The models in this class relate the fault content in the 

software to some features of the software program such as 

program length, complexity, volume etc. These models are 

empirically built and the result obtained by a model is 

dependent on the software development process 

environment, which may not be the same in the other 

projects. 

 

D. Some SRGMs Based On NHPP 

In this segment few SRGMs are presented briefly. These 

SRGMs and their hypothesis have been presented during the 

development of some of the models and theories of research. 

Some of the basic assumption or postulates, apart from some 

special ones for specific models discussed, for the models 

are as follows: 

1) Software system is subject to failure during execution, 

caused by faults left behind in the systems.   

2) Failure rate of the software is equally influenced by 

faults left behind in the software.  

3) The number of faults detected at any instant of time is 

proportional to the remaining number of faults in the 

software.  

4) Repair effort starts and fault causing the failure is 

removed with certainty, on a failure. 

5) From failure detection point of view, all faults are 

mutually free.    

6) The proportionality of failure detection/ fault removal/ 

fault isolation is constant.  

7) The fault detection/removal phenomenon is modeled by 

NHPP.  

 

Notations  

m(t):        Expected number of faults identified in (0,t), mean 

value function of NHPP  

a, b :        Constants, representing initial fault content and 

rate of fault removal per remaining faults for a software. 

  

p, q:        Proportionality constants  

 

Non Homogeneous Poisson Process (NHPP)  

Let (N(t); t > 0) be a counting process denoting the 

cumulative number of failures (or faults isolated as the case 

may be) by time t, N(t) is a random variable and (N(t); t > 0) 

is a Non Homogeneous Poisson Process (NHPP) if N(0) = 0,  

(N(t); t > 0) has independent increments  

 

P (two or more failures in (t, t +t)) = 0(t) 

P (exactly one failure in (t, t +t)) = (t) + 0(t) 

Where (t) is intensity function of N(t). If we let m (t) = 


t

0

dx (x)   represent the mean of number of faults 

removed in (0, t). It can be shown that  

P[N(t) = n] = 
!n

e)]t(m[ )t(mn 

, n = 0,1,2  … (1) 

i.e. N (t) has a Poisson distribution with expected value 

E[N(t)]= m(t) for t > 0 and m(t) is called the mean value 

function of NHPP.   

 

1)   Goel-Okumoto Model : 

The differential equation results from assumption-3 are as 

follows 

dt

d
m(t) =  b[a-m(t)]      (2) 

The first order linear differential equation, as above, when 

solved with the initial condition as m(0) = 0 gives the 

following mean value function for NHPP (2) 

m(t) = a (1-e 
-bt

)                 (3) 

The mean value function is exponential in nature and does 

not offer a good-fit to the S-shaped growth curves that 

normally occur in Software Reliability. But the model is 

popular due to its straightforwardness.  

 

2) S-Shaped SRGMs 

Few S-shaped SRGMs which will be discussed are Delayed 

S-Shaped SRGM and Inflection S-Shaped SRGM 
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i. Delayed S-Shaped SRGM   

Fault detection in the model is assumed to be a two-phase 

process comprising of failure detection and its eventual 

removal by isolation. It considers the time taken to isolate 

and remove a fault and, so it is important that the data to be 

used at this time should be that of fault isolation. In addition, 

it is assumed that the number of faults isolated at any time 

instant is proportional to the remaining number of faults in 

the software. The failure rate and isolation rate per fault are 

assumed to be similar and equal to b.     

 

Thus  

dt

d
mf(t) = b[a-mf(t)]   (4) 

dt

d
m(t) =b [mf (t) – m(t)]  (5) 

mf (t) is the expected number of a failures in (0,t). Solving 

(4) and (5), we get the mean value function as    

m(t) =a {1-(1+bt)e 
–bt

}  (6)  

Alternately, the model can also be devised as one stage 

process directly as follows:  

dt

d
m(t)=










bt1

tb2

(a-m(t)) (7) 

It is observed that 
bt1

tb2


→b as b→. This model was 

specifically developed to account for delay in the failure 

observation and later its removal. This kind of derivation is 

unusual to software reliability only. Xie and Zhao have also 

proposed alternative ways of deriving the above model.  

 

ii.  Inflection S-Shaped SRGM  

The model features S-shaped ness to the mutual dependency 

between software faults. Other than assumption-3 it is also 

assumed that the software contains two types of faults, 

namely mutually independent and mutually dependent. The 

mutually independent faults are those, which are located on 

different execution paths of the software, thus they are 

equally likely to be detected and removed. On the other 

hand, the mutually dependent faults are those faults, which 

are located on the same execution path. According to the 

order of the software execution, some faults in the execution 

path will not be removed until their earlier faults are 

removed. According to the assumptions of the model, the 

fault removal intensity per unit time can be written as  

dt

d
m(t) = b(t) [a-m(t)]                      (8) 

b is the fault removal rate in the steady state. Solving (8) 

under the initial condition M(0) = 0 we get  

m(t) = a 
bt

bt

e
r

r1
1

e1









        (9) 

If  r = 1, the model reduces to the Goel-Okumoto model.  

For different values of r, different growth curves can be 

attained and in that case the model is flexible. 

 

 

 

 

5. Parameter Estimation 
 

The parameters of the SRGMs are estimated based upon 

these (input failure) data. Therefore, efforts should be made 

to make the data gathering more precise and scientific. 

Usually data is collected in one of the following two ways. 

In the first case, Time-Domain data the time between 

successive failures are recorded. The accomplishment of 

mathematical modeling approach to reliability estimation 

depends greatly upon quality of failure data gathered. 

Though this type of data gathering is more preferable, it may 

not be simple. Problems can come in measuring the testing 

effort for each fault and it may be very inconvenient to note 

the time at each failure report. The other convenient and 

commonly collected data type is known as the grouped data 

or Interval-Domain data. Here testing intervals are specified 

and number of failures observed during each such interval is 

noted. Some existing software reliability models can handle 

both type of data but Time- Domain data provides better 

accuracy of parameters estimation with current existing 

Software Reliability Models [5]. For both these data type 

method of Maximum Likelihood and Method of Least 

Squares have been recommended and widely used for 

estimation of parameters of SRGMs.  

 

A.  Parameter Estimation Methods 

Parameter Estimation is of major importance in Software 

Reliability predication. Once the mean value function m(t) 

of analytical model is known, the parameter in the solution 

is required to be determined. During the testing and initial 

operational phases of Software Development Life Cycle 

(SDLC), failure events are encountered. They are recorded 

and underlying faults that caused them are removed, which 

results in process called Reliability Growth. The basic idea 

behind the SRGM is simple; if the history of fault detection 

and removal follows a certain recognizable pattern, it is 

possible to describe the mathematical form of the pattern. 

The function that represent this pattern is called mean value 

function m(t),  which  is  cumulative  number  of  faults 

describe in a given time 𝑡. If we are able to fit this function 

to the existing historical fault detective data, we can predict 

the future failure behaviour of software. The mean value 

function  is  often  transferred  to  failure  intensity  (rate) 

function 𝜆 (𝑡)  by formula 𝜆 (𝑡)= 
dt

d m(t).  The parameters 

of SRGM are estimated by one of the following methods. 

1) Least Square Estimation (LSE) 

2) Maximum Likelihood Estimation (MLE) 

 

1)   Method of Least Squares  

In this method the square of the difference between observed 

response and value predicted by the model is minimized. If 

the expected value of the response variable is given by m(t) 

(can be a mean value function of an SRGM), then the least 

square estimators of the parameters of the model may be 

obtained from n pairs of sample values (t1, y1), (t2, y2), …… 

(tn, yn) by minimizing J given by      

J = 



n

1i

2

i )]t(my[    (10) 

yi and ti dependent variables and observed values of 

explanatory respectively. For small and average size samples 

Least Square Estimation is preferred [27]. For estimation of 
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the parameters of the analytical models, Method of Least 

Square (Non Linear Regression) has been used. Non Linear 

Regression is a technique to find a nonlinear model of the 

relationship between the dependent variable and a set of 

independent variables. Unlike conventional   linear   

regression,   which   is   restricted   to estimate linear 

models, nonlinear regression can estimate models with 

arbitrary relationships between independent and dependent 

variables. 

 

2)  Maximum Likelihood Estimation  

Maximum Likelihood Estimation(MLE) method has been 

broadly adopted for estimation of parameters of SRGMs 

based upon NHPP. We briefly discuss below the MLE 

procedure for two types of software failure data as discussed 

above. For the first type of data, suppose that estimation is to 

be performed at a specified time tk, not essentially 

corresponding to a failure and with total of mk failures being 

experienced at time t1, t2, tmk. Then the likelihood function 

for the NHPP is:   

L = 









 





tk

dxxk

i

i et 0

)(

1

)(


   (11) 

The MLE of the Parameters can be obtained by maximizing 

Likelihood function or its Log likelihood function (log L).  

If the software failure data is grouped into k points (ti, yi); 

i=1, 2, …k, where yi is the cumulative number of failure 

reports at time ti. Then the Likelihood function L is given as 

follows: 

L = 
)}1

i
t(m)

i
t(m{

e
)yy(

)]t(m)t(m[k

1i 1ii

yy

1i1
1ii 


 







 

 (12) 

Taking natural logarithm of (12) we get the log likelihood 

function   

LogL = 








 
k

1i

1ii

k

1i

k1ii1ii ])!yy(mln[()t(m)]t(m)t(mln[)yy(

 
(13) 

 

The MLE of the parameters of SRGM can be obtained by 

maximizing (13) with respect to the model parameters. 

Estimation of parameters using MLE requires solving set of 

simultaneous equations to maximize the likelihood defect 

data coming from given function to find parameters. 

 

Wood [6] applied both MLE and LSE and found LSE to be 

more stable and better correlated to field data although MLE 

results were more reasonable. It can be safely assumed that 

statistically MLE is much better parameter predictions 

method than LSE as LSE is much easier and provide 

consistent results in wider data sets than preferred methods 

[9],[10],[5]. 

 

Both the estimation methods can also be used to other 

stochastic processes. Maximum Likelihood Estimators 

possess many desirable properties such as efficiency, 

asymptotic normality, consistency, and the invariance 

property. Hence, it is the most preferred estimation 

procedure for reasonably large sample size. So we conclude 

MLE is more suitable for the large sample of data and the 

LSE for small to medium size sample. 

6. Comparison Criteria for SRGMS 
 

The performance of SRGMs are evaluated by their ability to 

fit the history software fault data (goodness of fit) and to 

forecast satisfactorily the future performance of the software 

fault removal process (predictive validity)[11],[12].  Musa et 

al. [8] have suggested the following attributes for choosing 

an SRGM.  

 

a) Capability: The model should possess the ability to 

estimate with satisfactory accuracy metrics needed by the 

software managers.    

b) Quality of assumptions: The assumptions should be 

plausible and must depict the testing environment.  

c) Applicability: A model can be adjudged as the better one 

if it can be applied across software products of different 

sizes, structures, platforms and functionalities.  

d) Simplicity: The data required for an ideal SRGM should 

be simple and inexpensive to collect. The parameter of 

estimation should not be too complex and easy to 

understand and apply even for persons without extensive 

mathematical background.  

 

Other than the above qualitative aspect the following indices 

help in comparing SRGMs.  

 

A. Goodness of Fit Metrics 

The common used metrics for model comparison of 

goodness of fit and the predictive power are discussed as 

below 

1) The Mean Square Fitting Error (MSE): The model 

under comparison is used to create the fault data, the 

difference between the expected values, m(ti) and the 

true or observed data yi is measured by MSE as,   

           MSE = 


k

i

ii

k

ytm

1

2
^

))(   

   …     …        (14)  

 where k is the number of observations.  

The lesser MSE indicates, lesser the fitting error, thus 

improved goodness of fit.  

 

2) The Akaike Information Criterion (AIC): It is defined as  

AIC = -2 (The value of the max. log likelihood function) + 2 (The 

no. of the parameters used in the model)    …  (15) 

This index takes into account both the number of parameters 

that are estimated and the statistical goodness of fit.  

Lesser values of AIC indicate the preferred model, i.e. the 

one with the minimum number of parameters that still offers 

a good fitness to the data.  

 

3)  Coefficient of Multiple Determination (R
2
) – They are 

calculated using the parameters estimated using LSE 

estimators.                  

R
2 
= 1 – (residual SS / corrected SS)       (16) 

If value of R
2 

is close to 1 then the model provides better 

goodness of fit. 

 

B.   Predictive Validity Criterion  

The number of faults removed by time tk can be anticipated 

by the SRGM and compared to the reported fault removal, 

i.e. yk. The difference between the anticipated/predicted 
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value m
^
 (tk) and the reported value measures the fault in 

anticipated/prediction. The ratio [(m
^
(tk) –yk)/yk] is called the 

Relative Prediction Error (RPE). If the RPE is positive 

(negative) the SRGM is said to overestimate (underestimate) 

the fault removal process. Segments of the failure data are 

serially chosen to calculate the RPE. Values nearer to zero 

for RPE indicate more accurate prediction, thus more 

confidence in the model and better predictive validity [8] 

[12]. The various metrics such as MSE, AIC, R
2
, SSE and 

PRR can be used for predicting the validation of SRGM. 

 

 

7. Parameters Estimations Numerical 

Implementation 
 

In this section we will illustrate the procedure for estimation 

of unknown SRGM model parameters with practical 

considerations. 

 

A.   Models Used With Data Set 

The data set used for this study is Time-Domain data for a 

real time control system provided by Ohba [16]. In data, 

fifteen (15) faults have been reported with their time 

between the failures. In this study we use the following two 

widely used SRGMs as given in Table I. 

 

Table 1: SRGM Models Used 

Model 
Name of 

SRGM 

Mean Value Function m(t)

 

Parameters to be 

Estimated 

Model-1 Exponential Goel- 

Okumoto(G-O) 

𝑚(𝑡) = 𝑎(1 – 𝑒𝑥𝑝[−𝑏𝑡]), 
𝑎 > 0,  𝑏 > 0 

Two, 
(a, b)

 

Model-2 

Inflection 

S-Shaped 

Model [16] 

𝑚(𝑡) = 𝑎 ∗.   1 − 𝑒𝑥𝑝 –𝑏𝑡 
1 + 𝛽(𝑟) ∗ 𝑒𝑥𝑝[−𝑏𝑡] , 

𝛽(𝑟)= 1 − 𝑟 , 
𝑟 

,  𝑎 > 0, 𝑏 > 0, 𝑟 > 0 

Three, 
a, b, β

 

 

B.   Parameter Estimation and Analysis 

In this study the parameters of software reliability growth 

model mentioned in the Table I are estimated by using Least 

Square Estimation (Non- Linear Regression). The statistical 

package IBM SPSS is used for estimation of parameters for 

goodness of fit and prediction of the models. The values of 

parameters estimated by using Least Square Estimation 

(LSE) of Non Linear Regression (NLR) and parameters 

values using Maximum Likelihood Estimation (MLE) 

obtained with same data and models by Pham-Zhang [18] 

are summarized in Table II for comparison. The presentation 

of the models given in Table I using LSE and MLE 

estimators to the observed data is also presented in Figure 1 

and Figure 2. It is observed from these figures the curves of 

the presented models using LSE and MLE Estimators are 

almost consistent which show Goodness of Fit. It is also 

observed that for both curve and growth rate our estimates 

using LSE are much closer to the parameters estimates 

obtained using MLE. 

 

Table 2: Estimated Parameters 

Model Mean Value Function m(t) 

Estimated values of 

Parameters 

LSE MLE 

Model-

1 
𝑚(𝑡) = 𝑎(1 – 𝑒𝑥𝑝[−𝑏𝑡]), 

𝑎 > 0,  𝑏 > 0 
  a=18.538 

b=0.0049 

a=19.544 

b=0.00488 
Model-

2 
𝑚(𝑡) = 𝑎 ∗.   

1 − 𝑒𝑥𝑝 –𝑏𝑡 
                                    1 + 𝛽(𝑟) ∗ 𝑒𝑥𝑝[−𝑏𝑡]

 , 

    𝛽(𝑟)= 
1 − 𝑟 

,
 

                              𝑟 

,  𝑎 > 0, 𝑏 > 0, 𝑟 > 0 

a=28.3062 

b=0.0000231 

𝛽= -0.9939 

 

a=28.5811 

b=0.000132 

𝛽= -0.9654 

 

 

C.   Parameter Validity and Accuracy 
To predict the goodness of fit and validity of Model using 

LSE and MLE estimators, the various metrics are evaluated 

such as Sum of Squared Errors (SSE), Mean Squared Error 

(MSE), (AIC) and Root Mean Square Predictive Error 

(RMPSE) summarized in Table III. We now compare the 

predictive accuracy of the value of a metrics obtain using 

MLE and NLR estimators as shown in Table III. It  is  

observed  that  the  values  of  SSE,  MSE,  PRR  and 

RMSPE  obtained  with  MLE  estimator  are  less  than  the 

values obtained with LSE estimator in Model-1 and Model-2 

which indicates that MLE is better estimator. 

 

Table 3: Comparison of Goodness of Fit Metrics 

Metrics → 
 Model ↓ 

MSE AIC RMSPE 

LSE MLE LSE MLE LSE MLE 

Model-1 0.14 0.04 0.089 0.038 0.521 0.212 

Model-2 0.03 0.02 0.011 0.012 0.212 0.173 
 

The coefficients of Multiple Determination (R
2
) are 

calculated using the parameters estimated using LSE 

estimators. The Table IV summed up the values of R
2
 using 

LSE and growth rate of the models with LSE and MLE 

estimators to predict the validity of the models. The values 

of R
2
 obtained for various models lie close between 0 and 1. 

The values are very close to 1 or equal to 1, which indicate 

the validity of the models. It is also observed that growth 
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rates in both the cases of various models are almost equal 

which indicates the Goodness of Fit of these models. 

 

Table 4: R
2 

and Growth Rate to Predict Validity and 

Accuracy of the Model 
Model Model-1 Model-2 

Value of R2 using LSE 0.9999 0.9999 

Growth Rate with LSE 0.0054 0.000023 

Growth Rate with MLE 0.0049 0.000133 

 

D.   Models Asymptote for Goodness of Fit 

Asymptotic view of goodness of fit for the Model-1 i.e. 

Goel-Okumoto (G-O) and Model-2 i.e. Inflection S-Shaped 

Model, is shown below in Figure-1 and Figure-2 

respectively. 

 

 
Figure 1: Model 1 - Goel-Okumoto (G-O) 

 

 
Figure 2: Model 2 - Inflection S-Shaped Model 

 

8. Conclusion 
 

In this paper we have discussed, when a software system is 

designed, the major concern is the software quality. The 

quality of software depends on various factors such as 

software reliability, efficiency, date of delivery and 

development cost etc. This paper analyzed various existing 

software reliability models with their failure intensity 

function and the mean value function. Therefore, we 

recommend that most important process, Least Square 

Estimation and Maximum Likelihood Estimation for 

estimating parameters of Software Reliability Growth 

Models and the various metrics used for comparison of 

Goodness of Fit and predictive validity. Using the failure 

data set from the Literature and existing SRGMs for 

implementation of LSE and MLE practically for comparison 

of Models, it was noted that MLE gives the better results as 

compared to LSE for Goodness of Fit and predictive validity 

of Models. It was observed that MLE is difficult to apply 

which limits its use in industry, especially due to lack of 

tools support whereas LSE is easy to use due to availability 

of compatible tools. It was concluded from the results 

presented here and the properties of LSE and MLE 

estimators suggested that Maximum Likelihood Estimator is 

better for prediction of Reliability Growth Models whereas 

Least Square Method for Non Linear Regression is a good 

estimator for fitting the data to observed failure data. In 

future the above recommendations can be implemented and 

results of the model can be compared with the existing 

model results. 
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