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Abstract: For improvement a highly scalable image compression system in order at sizes (resolutions) and qualities (bit rate) are 

obtained to obtain simply decoding that is achieved by a compressed image. Since, there are many users when the Internet is used and 

into required that is various user's request. Thus, need how can able to induce that without complexity and much data can be has quality 

and preserve their size. Therefore, a novel algorithm dominated Highly Scalable-Single List-SPIHT (HS-SLS) is proposed to introduce 

those purpose. The adaptable bit-stream which is created from HS-SLS algorithm when that is both rate scalable and resolution are 

gotten as a robustly scalable bit-stream. This can readily its encoder, at any bit-rate involving, can be modified to different resolution 

requirements, without the required to decode the bit-stream, a very straightforward scaling process that is implemented on-the-fly. An 

unique feature of the novel algorithm is that due to its easy memory management it has low requirement and low memory complexity. As 

well as, the size can be established which avoid the dynamic memory allocation problem due to the size of the applicable memory is 

stationary. For hardware enforcement, the HS-SLS algorithm very convenient due to its merits. As compared to the original SPIHT 

algorithm that, for these worthy features is very petty shorthand in the algorithm's performance, the price is paid. 
 

Keywords: Highly Scalable Image Compression, Low Memory Image Compression, Set Partitioning image Compression Rate scalability, 

Resolution scalability, Wavelet image compression SPIHT, Zero-tree coding 
 

1. Introduction 
 

Nowadays have a witnessed a wide utilize of video topics 

and image on the Internet and also for many applications 

that Image security becomes increasingly important, video 

surveillance, confidential transmission, medical and 

military applications [1, 2].Users have been provided the 

option to reduce significant amount and the size of image 

through image compression[3]. However, for a particular 

scenario, there are many attributes may be even more 

important. For example, the primary concern may be 

observed for decoding time in medical diagnosis. Besides 

that, low power consumption and small memory are 

essential for mobile devices. Over packet networks for 

broadcasting, scalability in resolution or/and bit rate may 

take seniority [1]. Moreover, Scalable image compression 

may attain packages with more number of notions related 

to quality preservation with image compression. At the 

meantime, the web server can rapidly and easily regulate 

the bitrate to be transmitted in order to occupy the wide 

range of network bandwidth alteration when a good 

scalability is used as a key feature. Moreover, a good 

codec, hand-held and portable devices request capability 

suitable for those applications should also be need minimal 

power consumption and easy to implement [4]. 

 

Researchers have developed many approaches to achieve 

scalable image compression [2]. Wavelet Transform has 

received a considerable interest to develop new image 

compression algorithms. The Wavelet means when a 

signal is represented that the high pass coefficients 

represent localized change in short data segment, and the 

low pass coefficients represent slow changing long data 

segment. It approaches a wonderful framework in which 

both long term trend and short-term anomaly can be 

analyzed on equal footing. So that, the eventual wavelet 

coefficient can be easily scaled in resolution whereby the 

original one is larger than an image should be 

reconstructed with 2
M

 times, where M is the level of 

wavelet coefficients [6]. The whole original image is 

induced due to the DWT apply Image compression 

methodologies utilizing. In the different regions of interest 

should be the wavelet coefficient relationship when the 

different compression ratios are applied, in which either 

each wavelet domain band of the image itself is clustered 

or the transformed image, respectively [5]. When the 

coefficients into subbands are arranged belonging to 

different resolutions or scales that makes possible 

decoding or coding different scales. Due to the local nature 

of the transform that makes possibility selected regions of 

interest in the image for random access, so at different 

scales to decode a particular region of an image when one 

can select regions of subbands [2]. 

 

 
Figure 1: dyadic wavelet transform for Subbands of a 3-

level 
 

Since the invers discrete wavelet transform (IDWT) has in 

its construction bank filter that make us to do subband 

arrangement so by three stages of a swap high and low 

pass vertical and horizontal filtering of outcome low 

vertical and low horizontal subbands followed by 2:1 

downsampling. Figure 1 illustrated the analysis and 
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synthesis for two stages. The source image itself just can 

be considered by the first stage and the first stage input 

low horizontal, low vertical, 2nd stage is called the LL2 

subband that is merely a coarse, where it reduced by factor 

22 of the original image in both dimensions. The NN1 

subband yields from filtering and upsampling of, BN2, 

BB2, NN2, and LH2 subbands which it is two times the 

scale of NN2 so it is, by a factor of 21, still scaled down 

from the original. For getting the full gauge reconstruction 

of the original input that for one more stage repeats on the 

LL1 subband. Thus, we can get a reduced gauge version of 

the original image at each synthesis stage [2]. However, 

converting the image samples into a more compressible 

form when the two-dimensional Discrete Wavelet 

Transform (2D-DWT) is used with JPEG2000 standard 

where providing it the resolution scalability which it 

considers one of the outstanding features for it [5]. 

Whatever a base stream providing scalable (refinement) 

streams as well as a low (base) image quality is generated 

by Scalable image coding that successively improves the 

image quality [7]. 

 

2. Related Work 

 

The core of the JBEG2000 standard is called the 

embedded block coding with optimized truncation 

(EBCOT) algorithm, among all wavelet-based scalable 

image compression it is the most efficient. Due to using 

arithmetic coding the algorithm has high computational 

complexity unfortunately. Each coefficient in each bit-

plane coding pass when three times is scanned Therefore 

to get the intended highly scalable bit-stream a time 

consuming rate distortion optimization process is required 

to the compressed bit stream. Attaining in general Digital 

Signal Processor (DSP) or Purpose Processor (GPP) chips 

are made EBCOT very difficult and slow with those 

factors [12, 17]. 

 

Besides this such as Partitioning Embedded block 

(SPECK)[9] and Set Partitioning in Hierarchical Trees 

(SPIHT)[8] for setting portioning image compression 

algorithms when at all in performance compared to 

JPEG2000 [10] the coders run by about (5-7) times faster 

and possess all the desirable features and sacrifice very 

little. The maximum magnitude in it is above is 

determined a certain threshold when some kind of 

significance testing for sets of pixels employs by these 

schemes. The set is significant (SIG) when it is partitioned 

and it is represented by one symbol when it is insignificant 

(ISIG). In any case the SIG sets until all pixels are 

encoded, the same process should be recursively repeated. 

So these schemes achieve advantages such as they 

generate a rate scalable compressed bit-stream, good 

performance and they have relatively low computational 

complexity. Keeping track of which pixels/sets need to be 

tested these algorithms is used linked lists for the high 

memory requirements that is the price to be paid for these 

advantages. The image size may be less than the lists sizes 

at high rates. In addition, due to the continual process of 

removing and adding nodes to and from these lists a 

variable data dependent the need for complex memory 

management and memory requirement is caused with the 

use of lists [11]. Lately, the generated bit-stream do not 

provide a bit-stream and does not explicitly support 

resolution scalability that can be simply rearranged 

according to the rate and resolution desired by a decoder 

[12, 13]. 

 

Obtaining highly scalable bit stream such as the set 

partitioning schemes added to the resolution scalability has 

been presented, in the literature, via several works. The 

Highly Scalable-SPIHT (HS-SPIHT) algorithm is offered 

by A. Mertins and H. Danyali [13]. Here, producing highly 

scalable bit-stream due to the original rate scalable SPHIT 

is upgraded. The resolution scalability is appended via The 

HS-SPIHT through the resolution-dependent coding passes 

and introduction of multiple resolution-dependent lists. No 

explicit rate allocation mechanism considers the simplicity 

of bit-stream scaling process that is the main advantage of 

the HS-SPIHT coder. Yet, the terms of high memory 

requirements are still the drawbacks for both the HS-

SPIHT and original SPIHT. Furthermore, in order to store 

the resolution level of each set in the corresponding 

resolution dependent list so the HS-SPIHT needs a 

mechanism to distinguish it. Obviously, the algorithm 

complexity compared to the original SPIHT is increased 

for these requirements [13]. 

 

K. KhanandA. monauwer offered the Listless HS-SPIHT 

(LHS-SPIHT) [14]. Here, the resolution attached list is 

replaced when by state markers with an average of 4 

bits/coefficient should be using with HS-SPIHT to hold 

trajectory of set significance information and pixels. There 

is similarity when the set partitioning rules is used LHS-

SPIHT and HS-SPIHT too so that identical bit-stream 

should be produced. Since the coder considers having high 

computational unfortunately due to, in each coding pass, 

the entire image pixels twice time must be processed via 

the coder, though in memory usage the coder is very 

efficient. the newly significant pixel is coded when 

Insignificant Pixel Pass at the first time and finding 

significant in the previous coding passes when the pixels is 

refined in the refinement pass at second time. Two main 

aims are worthily noted when the SPIHT uses the list: the 

first aim as the lists are processed in a specific order 

whereby preserving information ordering should obtain 

performance. The second goal, in each coding pass, in the 

lists as only the elements stored are processed in order 

complexity reduction[15, 16]. Thus eliminating the lists 

will obviously may decrease its performance and increase 

the complexity of the algorithm. Here the LHS-SPIHT 

reduces memory usage at the cost of decreasing 

performance and increasing complexity so that it swaps 

memory for efficiency and complexity i.e. 

 

In stance of employ the coder to satisfy its requirement 

such as low memory that has been proposed in [17] where 

is depicted Single List SPIHT (SLS) as a novel coder. This 

coder has memory about six times less than the original 

SPIHT. Actually a rate scalable bit-stream is produced via 

the SLS coder as SPIHT. The experimental results and 

theoretical analysis indicated the proposed SLS algorithm 

has nearly the same complexity as the original SPIHT and 

has better performance. Indeed thus give enhance the 

performance of SPIHT without paying any additional 

overhead cost and without affecting its simplicity and also 
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by about six times the memory requirements is reducing. 

In order in this paper the SLS algorithm to achieve a 

highly scalable bit-stream that should be upgraded. Highly 

Scalable-Single List SPIHT (HL-SLS) is depicted with the 

proposed algorithm. Solving the scalability problem with 

the new HL-SLS coder is induced through the introduction 

of the resolution dependent bit-plane coding passes and the 

resolution dependent parts list. Moreover, as the original 

SLS encoder, the proposed HL-SLS has nearly the same 

memory requirements and the same complexity and 

management. The remainder of the paper is organized as 

follows: section III gives brief review for the SPIHT and 

the SLS algorithms. Section IV introduces the new HS-

SLS algorithm. Section V covers the simulation results of 

the algorithm. Finally, Section VI gives the concluding 

remarks of the paper and presents new directions for future 

work. 

 

3. The SPIHT and the Single List SPIHT 

(SLS) algorithms 
 

3.1 SPIHT 
 

A procedure that uses recursions splitting of sets of 

samples or of partitioning guided by a threshold test is the 

Set partition coding, so it is the principles of a data 

compression method [8]. This technique is based on some 

very simple principles; it considers one of the most 

interesting aspects, however is also very surpassing, 

effective other coding methods that may seem much more 

advanced theoretically. It is also the primary entropy 

coding method in the well-known Set Partitioning in 

Hierarchical Trees (SPIHT) [9]. For direct coding of 

natural images should not be chosen like the set partition 

coding due to it not be efficient. Therefore, with small 

maximum values the source must contain primarily sets of 

samples to be efficient. Thus, here a source transformation 

is requested such as discrete wavelet (DWT) [8]. The 

DWT as a number of nonoverlapping spatial orientation 

trees (SOT) can be viewed. Due to at the same spatial 

direction these trees branch successively to higher 

frequency subbands, they so called. Figure 2 shows SOT 

in the wavelet transform domain [2]. 

 

 
Figure 2: A SOT of DWT L denotes grand-descendant set 

and O denotes offspring the full descendant set D =O ∪ L. 

 

As well a way that each node has either four offsprings or 

no offspring is the tree defined where always form a group 

of 2X2 neighboring pixels. From Figure 2 also can be 

shown the tree divide it's the set of all coefficients 

descending (grand) that means the set of from nods the all 

descendants and immediate offspring (child) coefficients 

from the child coefficients that means the set of from a 

single node the three or four nodes branching [2]. 

. 

A comparison of two values is involved of the SPIHT 

algorithm a time which results in no/yes condition. From 

Figure 3, Namely for stored insignificant information 

require three ordered lists: the List of Insignificant Sets 

(LIS), which the set of coefficients are having their 

magnitude smaller than the threshold considered, is one of 

the three lists categorizes sorting pass coefficients, the 

second list is List of Insignificant Pixels (LIP) that the 

threshold considered is larger than their magnitude pixel, 

last one is List of Significant Pixels (LSP) whose 

magnitude is greater than that of considered threshold. The 

ability of this coding method can be to generate codes with 

fractional bits due to obtaining by optimal performance. 

Therefore, widely it is used in different image compression 

technique [10]. 

 

 
Figure 3: Flow chart for Initialization of lists can be used 

to code the significance of trees rooted in groups of pixels 

of size 2X2 

 

For one each bit-plan level, the SPIHT algorithm consists 

of several bit-plan and initialization coding passes. Based 

on the maximum value of the DWT firstly it computes 

mmax  which presents the maximum value of the DWT 

image that it given by: 

 

mmax =   log2 max∀ c,r ∈I Fc,r   (1) 

 

where at location (c, r) Fc,r  is a wavelet coefficient, I is the 

DWT image and in order to start decoding at mmax ,  z  is 

the nearest integer ≤ z. mmax  as a side information is sent 

to the decoder within the bit-stream. Afterwards with the 

coordinates of all the pixels in the LLK subband, the 

algorithm is initialized the LIP, the LSP as an empty list, 

and the LIS have offspring as type A sets with all the 

coordinate of pixels in LLK subband. The refinement and 

sorting are two passes that is encoded for each bit-plane. 

Here, for the first bit-plan is made for the sorting pass 
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only. The refinement pass codes the pixels and the new 

SIG pixels are identified the sorting pass that at previous 

passes are found SIG. when 

 

2m =  Fc,r < 2m+1 (2) 

 

A pixels Fc,r  is considered SIG for given bit-plane with 

respect to m. similarly, the set contains one or more SIG 

pixels when with respect to m a set of pixels is considered 

SIG. 

 

For significance with respect to m each entry in LIP is 

tested during the sorting pass. a (0) is transmitted to the 

compressed bit-stream when the pixel is ISIG. Moreover, a 

sign bit and a(1) acting the sign of that pixel (e.g., 1 for 

negative and 0for positive pixel) are transmitted to the bit-

stream when the pixel is SIG. Later, the testing for each set 

in LIS that symbolize the root of an SOT as follows: the 

SOT of type A is tested when this type is the set for 

significance. a(0) is transmitted when the SOT is ISG(i.e., 

by a single bit the whole SOT is coded). in other hand, 

a(1) is transmitted when the SOT is SIG, so that each one 

of the set's four children is tested. If a(1), its sign bit are 

transmitted to the bit-stream, and the child is SIG, so to the 

end of LSP its coordinates are added. Furthermore, the 

coordinates of a(0)are added to LIP when the child is SIG 

and a(0) is transmitted, in the next bit-plan passes, to be 

tested. Lastly, the set is moved as a type B set to end of 

LIS when the set has grandchildren. Otherwise, the set of 

four children are added to the end of LIS as type A sets to 

be tested in the current pass, the set is removed from LIS, 

and a (1) is transmitted when the set is of type B and has at 

least one SIG child. Moreover, the set remains in LIS to be 

tested in next bit-plane passes, and a (0) is transmitted (all 

the set's children are ISIG). 

 

All pixels in the LSP except those which have been added 

to the refinement pass during the current pass that by 

outputting its nth MSB are refined to the bit-stream. For 

bit-plane m after finishing refinement passes and sorting, 

m is decremented by 1 to begin coding the next bit-plane. 

 

3.1.1 Drawbacks of the SPIHT algorithm [11, 13] 

 

1. It has complex memory management due to adding 

nodes and the removing to the LIS and LIP lists. 

2. Due to using the lists it needs a huge amount of 

memory. More precisely the LSP and LIS lists which 

store the (c, r) coordinates of individual pixels dominate 

the total storage. The number of image pixels is equal to 

the maximum number of entries in each list. Otherwise, 

due to its stores the (c, r) coordinates of the roots of the 

SOTs, the LIS has less memory requirement. As well, 

the roots in the highest level (BB1, BN1, and 

NB1subbands) are not stored due to they don't have 

descendants. The maximum number of entries of LIS is 

one-fourth of image pixels due to the size of these 

subbands is 3/4 the image size.. Thus, the working 

memory of SPIHT is at least 2.25 times the image size.  

3. It does not explicitly support resolution scalability due 

to it produces a rate scalable bit-stream and thus cannot 

be easily reordered according to resolution and the rate 

desired by the decoder. 

4. Due to the number of list entries can't be determined in 

advance as the lists sizes cannot be pre-allocated it 

depends on the amount of image details and on the 

compression bit-rate. This problem can solve by using 

pre-allocating the lists to the maximum size or either 

dynamic memory allocation. Evidently, and the latter 

one increases its memory requirements due to the former 

solution slows the algorithm. 

 

3.2 SLS  
 

The SLS algorithm [17] overcomes the huge memory 

requirements and the complex memory management 

drawbacks of the original SPIHT algorithm (the first three 

drawbacks). In addition, the SLS coder has slightly better 

performance than SPIHT. The basic idea of the SLS is 

based on the fact that the LIP and LSP are constructed 

from the offspring (the four children) of a root that belongs 

to a SIG SOT. So, instead of storing the offspring in these 

lists, they can be recomputed in each pass. Evidently, this 

will increase the complexity of the algorithm. However, 

this complexity increment is compensated by the reduced 

memory management overhead (as shown shortly). The 

SLS algorithm replaces the LIP and LSP lists (which 

dominate the total memory usage) by two bits state 

marker. In other words, each pixel is provided by two 

status bits referred to as σ to determine the type of the 

pixel as follows: 

 

 An ISIG pixel that is not yet tested is New ISIG Pixel 

(NIP) when σ = 0. 

 A pixel that is tested ISIG in the previous passes is 

Visited ISIG Pixel (VIP) when σ = 1. 

 A pixel that just becomes SIG in the current bit-plane 

pass is: New SIG Pixel (NSP) when σ = 2. 

 A pixel that is tested SIG in the previous passes is 

Visited SIG Pixel (VIP) when σ = 3. 

 

In addition, using of a single list is made the SLS encoder 

described the List of Root Sets (LRS). Like the LIS, the 

LRS also saves the (c, r) coordinates of the roots of the 

SOTs. So one-fourth the image size is for the LRS exactly 

that is the same memory size as the LIS. Yet, 

implementing the LRS as a simple 1-D array is made 

possible with the adopted coding method that is accessed 

sequentially in First In First Out (FIFO) manner, it will be 

never removed due to once a set is added to the LRS. In 

contrast, the SPIHT coder used with the LIS must be 

implemented as a linked list that is accessed randomly due 

to the continual process of removing nodes and adding to 

from it. Evidently, implementing removing the LSP and 

LIP with the LRS as a 1-D array together will greatly 

simplify the memory management problem. Further, the 

type field used with, differently, the LRS is used. In the 

LRS a set that has no SIG SOT or A set of type A is 

untested set and a set of type B has one or whereas in the 

LIS set of type B represents the root of all descendants and 

a set of type A represents the root of all descendants and 

excluding the four direct offspring. 

 

The SLS algorithm consists of several bit-planes coding 

passes and an initialization stage. At initialization, it first 

outputs the maximum bit-plane mmax and computes to the 
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bit-stream, and set m to mmax. Then, in LLK subband, it 

saves the (c, r) coordinates of the pixels that have offspring 

in the LRS as type A sets. By coding NNK subband, the 

first bit-plane pass starts which consists only of New ISIG 

pixels (NIPs). Each NIP, with respect to m, is tested for 

significance. If it is still ISIG, a(0) is updated to VIP and it 

is outputted to the bit-stream. If it becomes SIG, a(1) is 

updated to NSP, it and its sign bit are outputted to the bit-

stream. Flowing, the sets of the LRS (which are sets of 

type A) are sequentially processed. Its SOT is computed 

for each set and then, with respect to m, tested for 

significance. a (0) is outputted (i.e., the whole SOT is 

represented by a single bit) when the SOT is still ISIG. 

Otherwise, a (1) is outputted when the SOT is SIG, each 

one of the set's offspring (which is an NIP) is coded the set 

is updated to type B set, and updated as given above. 

After, the offspring are added to the end of LRS as type A 

sets when the set has grandchildren (the set's offspring 

aren't in the highest resolution level) to be coded in the 

current bit-plane coding pass. Finally m is decremented by 

1 to start a new bit-plane coding pass. 

 

In NNK also, each one of the next bit-plane coding passes 

starts by coding the pixels. At these passes NNK may 

contain NSPs or/and VIPs only. In the same way of coding 

the NIP, a VIP is coded exactly, except it is still ISIG 

when that there is no need to update it due to it is already a 

VIP. Otherwise, a NSP is refined by outputting its mth 

MSB to the bit-stream when it after is updated to VSP. 

Flowing, the LRS list is scanned two times. Only the sets 

of type B are inspected in the first scan. Its four offspring 

is computed for each set, which may be of type NSPs 

or/and VIPs. Whereas a NSP is updated to VSP when a 

VIP is coded as given above to be refined later in the 

second scan pass. All the sets in LRS are inspected in the 

second scan. It is processed exactly when the set is of type 

A in the same way as was done in the first coding pass. 

Otherwise, only the VSPs of the set's four offspring are 

refined, when the set is of type B, by outputting its mth 

MSB bit to the bit-stream. Lastly m is decremented to start 

a new bit-plane coding pass. 

 

3.3 The Proposed Algorithm for Highly Scalable-SLS 

(HS-SLS)  

 

3.3.1 Description of HS-SLS Description  

 

Generally speaking, a rate scalable bit-stream can be 

upgraded to a highly scalable one, i.e., a bit-stream that is 

resolution scalable and both rate if the coding information 

in each bit-plane coding pass are arranged in increasing 

order of resolution levels. As well, each level, in the output 

bit-stream, must be recognizable, permitting simple access 

to the data needed to rebuild the image during the scaling 

process, at the desired spatial resolution. Here, we the 

Highly Scalable-SLS (HS-SLS) algorithm is presented. 

The proposed algorithm is explicit in the sense that the 

transition to full scalability is done, within each bit-plane 

coding pass, by just identifying and separating the 

resolution levels. A individual feature of HS-SLS is that it 

adds, without the need of using the multiple resolution, the 

resolution scalability dependents lists as was done in HS-

SPIHT [14]. Further, it doesn't need to process all the 

image pixels twice, as was done in [17], in each bit-plane 

pass. This means that HS-SLS doesn't involve any 

increase, memory requirements, in complexity and 

management as compared to the original SLS. 

 

The HS-SLS coder has three facts that its work is based 

on. The first fact is that the once a set will be never 

removed when it is added to LRS, Thus if the sets are 

added to LRS according to a specific order. This means 

that the order will be preserved during the entire coding 

process when the sets are stored in increasing order of 

resolution levels, this order will be always preserved. The 

second fact is, in each resolution level, that the number of 

pixels is fixed. Let Ds denote the number of pixels in 

resolution level Hs. since A0 consists of NNF subband 

only, then D0 = (NNF×NNF). For s= 1, 2 … F, Ds is given 

by: 

 

Ds = 3 NNf+1−s × NNf+1−s  (3) 

 

For example, for F = 3, the number of pixels in H0 is 

(NN3 × NN3), and the number of pixels in H1 is 

3(NN3×NN3) and so on. Thus, except the highest since it 

have no descendants that the sets of each resolution level, 

in a specific fixed size part in the LRS, can be stored. 

Therefore, the LRS can be thought to consist of F parts 

which are referred to as Resolution Part (RP). HPs has size 

Ds and stores the sets that belong to level s. Table(1) 

depicts the adopted Resolution Parts within the LRS for F= 

3. 

 

Table 1: for the LRS for F=3 is the adopted resolution 

parts. 
HP0 HP1 HP2 

(NN3×NN3) 3(NN3×LL3) 3(NN3×NN3) 

 

The third fact except the highest is that for a set at any 

resolution level, at the next level, its offspring are located. 

Thus, these offspring, in its assigned resolution part, can 

be easily stored in straight forward manner without the 

need to use any additional markers and without the need of 

extra processing to characterize the level to which the set 

is belongs as is done in LHS-SPIHT and HS-SPIHT 

algorithms. for example, a set at level H0, its offspring are 

located at H1 and are stored in HP1 and so on. so as to 

hold trajectory of the sets that are added to the different 

resolution parts, HS-SLS appoints two small Resolution 

Index Tables denominated the Start the End Index Table 

and (EIT) Index Table (SIT) of size F each. EIT[0] and 

SIT[0] are both initialized to 0, and EIT[s] and S EIT[s], 0 

<s < F, are initialized to Ds-1 which is the maximum 

number of sets in level Hs-1. Each time a set is added to 

part HPs is then incremented with EIT[s]. Remember that 

the LRS is initialized by the (c, r) coordinates of the pixels 

of H0 (the NNF subband) that have offspring as type A 

sets. Evidently these sets are stored in RP0 and hence 

EIT[0] is updated to ¾ N0 because the top-left pixel of 

every (2×2) pixels has no descendent.  

 

As SLS exactly the HS-SLS works except that it makes 

use, with the associated LRS resolution parts, of resolution 

dependent coding passes. That is, the HS-SLS codes all the 

information for each bit-plane pass that belongs to R0 and 
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proceeds to H1, H2 and so on. This very easily can be 

attained by dealing with the resolution parts of the LRS in 

state the whole LRS and set sufficient markers within the 

bit-stream to distinguish, that belongs to the different 

resolution levels, the information. So as to explain the 

adopted coding method, remember that each bit-plane 

coding pass processes the LRS after it has been started by 

coding the NNF subband. Since NNFsymbolizesH0, hence 

each pass starts coding the pixels in H0. Following, the 

resolution parts of the LRS are remedied sequentially. 

Here, two times is scanned every resolution part PHs. All 

the sets in PRs, in each scan, that are determined by SIT[s] 

through EIT[s] are inspected. Only the sets of type B, in 

the first scan, are coded in the same way as was done with 

SLS. All the sets in PHsare inspected in the second scan. 

Only the VSPs of the set's four offspring are refined when 

the set is of type B as given before. Otherwise, the set is 

tested for significance when it is of type A. (0) is outputted 

and nothing is done when it is still ISIG. The set's type is 

updated to type B set when the set is tested SIG, and status 

of the set's four offspring is updated as given before and 

each one of it is coded. Then, each one of its four offspring 

is added to its location in HPs+1 when the set has 

grandchildren (its offspring isn't in the highest resolution 

level) which is determined by EIT[s+1] as type A sets and 

EIT[s+1]correspondingly is incremented. In this way, 

consequently every bit-plane coding pass will be coded in 

increasing order of resolution levels and LRS will also 

stores the sets in increasing order of resolution levels.  

 

As shown, by arranging the data that the proposed HS-SLS 

produced the highly scalable bit-stream without any need 

to additional memory management overhead and purely in 

increasing order of resolution levels. In contrast, due to 

dealing with multiple linked lists that the HS-SPIHT 

coders [12] has complex memory management and, as the 

nodes are added, each list is accessed randomly and 

removed to and from it continuously. That is, for each 

resolution level s (LISs, LSPs, and LIPs) that HS-SPIHT 

deals with a set of LIS, LSP and LIP lists. Further, HS-

SLS exhibits a slight complexity increment; due to the two 

coding methods differ only, with respect to SLS by the 

way the sets of the LRS are ordered. Since a very slight 

complexity increment that the SLS coder has with respect 

to SPIHT [17].Thus, with respect to SPIHT that also the 

HS-SLS algorithm has very slight complexity increment. 

In contrast, the SPIHT algorithm [13] has much less 

complexity than LHS-SPIHT due to, all the image pixels 

two times in each coding pass that LHS-SPIHT must 

process as stated before. These lineaments are individual 

to the proposed HS-SLS algorithm. Unfortunately, due to 

the output bits within each bit-plane layer are ordered 

according to the resolution levels and not according to 

their Rate Distortion (R-D) properties, the HS-SLS coder 

exhibits some performance degradation with respect to 

SLS. More specifically, all the pixels in resolution part 

PHs, it processes before proceeding to the next part 

PHs+1. This may lead to code pixels before pixels that 

have higher R-D properties leading performance 

deterioration that have lower R-D properties. It should be 

noted also that the LHS-SPIHT and HS-SPIHT suffer from 

this limitation. 

 

3.3.2 Scaling and Formation of Bit-stream  

 

By the HS-SLS encoder is shown in Figure (4) represents 

the structure of the bit-stream generated. It consists of 

body of the bit-stream and main header (Hm). The main 

header Hm contains the number of decomposition levels 

(F) and the maximum bit-plane (mmax), and data (D) field 

such as image dimension, the image name, etc. The bit-

stream consists of (mmax+ 1) layers. Every bit-plane level 

corresponds to each layer. Each bit-plane layer consists, by 

the layer body, of the layer length tag (Lm) is followed. 

Lm identifies, in bytes of layer m, the contribution to the 

total bit-stream. One for each resolution level that the body 

of the layer consists of (F+1) parts. The indicating the 

number of bytes that belong to resolution level s in each 

resolution part consists of a length tag (Ps). It should be 

noted, at the beginning of each bit-plane part that all 

header information is used solely by the image parser and 

does not need to be sent to the decoder. However, these 

markers may be kept within the bit-stream so as to 

improve the error resilience.  

 

The HS-SLS bit-stream, at any desirable bit rate, can 

easily be reordered for multi-resolution decoding. An 

image bit-rate B bit per pixel (bpp) and at resolution s can 

be reconstructed from the bit-stream discard all other 

levels and by keeping the resolution levels 0, 1…s, i.e. 

levels s+1, s+2…F, in each bit-plane layer. Until the bit-

rate equals to the requested bit-rate, B so the procedure is 

continued for each layer. 

 

 
Figure 4: General structure ofbit-stream HS-SLS 

 

4. Discussion for Experimental Results 
 

The proposed HS-SLS algorithm is implemented by 

MATLAB programming language. The test is performed 

to the popular gray-scale (512×512) pixels 'Trees', 'Pout', 

'Camera man', and 'Moon' test images shown in Figure (5). 

Using the bi-orthogonal 9/7 Daubechies (2-D) DWT with 

5 dyadic decomposition levels is transformed for each 

image and the transform coefficients are rounded to the 

nearest integer prior to coding. The results of HS-SLS are 

compared with the SLS, SPIHT, LHS-SPIHT and HS-

SPIHT algorithms [12]. The results are represented by the 

algorithm's computational complexity, its, its memory 

requirements, and its performance. 
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Figure 5: pixels test images for Gray-scale 8 bpp 

(512×512) 

 

4.1. Performance  
 

From figures 6a, 6b, 6c, and 6d that indicate the 

performance is measured by the Peak Signal to Noise 

Ratio (PSNR) versus the average number of bits per pixel 

(bpp) as the compression bit-rate. PSNR is given by: 

 

PSNR = 10log10
MAX 2

MES
 dB  (4) 

 

where MSE is Mean-Squared Error and MAX is the 

maximum value of the pixel between the reconstructed and 

the original images defined as: 

 

MSE =  1

M ×N
   I0 c, r − Is c, r  2N

r=1
M
c=1 (5) 

 

where Is  is the rebuild image, I0 is the original image and 

number of pixels that is image size M × N. Clearly, larger 

PSNR and smaller MSE values correspond to lower of 

distortion. 

 

 
Figure 6a: PSNR (dB) vs. Bit-rate (bpp) at full Resolution 

( F = 5, and s= 5) for Trees 

 

 
Figure 6a: PSNR (dB) vs. Bit-rate (bpp) at full Resolution 

( F = 5, and s= 5) for Trees 

 

 
Figure 6c: PSNR (dB) vs. Bit-rate (bpp) at full Resolution 

(F = 5, and s= 5) for Camera man 

 

 
Figure 6d: PSNR (dB) vs. Bit-rate (bpp) at full Resolution 

(F = 5, and s= 5) for Moon 

 

So that, returning for figures 6a, 6b, 6c and 6d can depicts 

the following results: 

 

 SPIHT for 'Trees' and 'Pout' images has slightly bad 

PSNR than the SLS and it has comparable PSNR for 

'Moon' and 'Camera man' images. This points that the 

state-of-art rate scalable image compression algorithms 

is less competitive with SLS.  

 The SLS has slightly higher PSNR than The HS-SLS. 

This is expected in increasing order of resolution levels 

and not according to their rate distortion (R-D) 

properties due to HS-SLS doesn't preserve the 

information ordering as the pixels in each bit-plane 

coding pass are coded. Notice that this also chains is 

found in the LHS-SPIHT and HS-SPIHT algorithms.  

 The PSNR SPIHT for 'Trees' of are lower than that of 

LHS-SPIHT and HS-SPIHT. Due to the above reasons, 

this is not possible. Moreover, due to using another 

version of the image, this may be occurred.  

 

The PSNR of the proposed LHS-SLS and the HS-SPIHT 

are very close for 'Trees' and 'Moon images' while HS-SLS 

gives better PSNR for 'Pout' and 'Camera man' images 

especially at low bit-rates. This shows that the state-of-art 

highly scalable image compression algorithms has also 

less performance comparable PSNR with the proposed 

HS-SLS algorithm. 

 

The size of the original image is  1 2F−s  ×  1 2F−s   for 

an image at resolution s, 0 ≤ s ≤F. Thus, due to the 

recovered and original images don't have the same size 

that a direct application of PSNR equation is not possible 

for s < F. Further, if the original image has higher than the 

recovered image resolution, so the numerical results 

provide of the highly scalable algorithms and too in [13] 

the same method adopted is used. An image at resolution s 

corresponds to the NNF-s subband that the fact this 

method is based on. So, reconstructed NNF-s subbands 

and the original can be compared instead of reconstructed 
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images and the original. Here, (M×N) and MAX 

symbolize the size and the maximum pixel value for the 

given NNF-s subbands respectively. For an 8 bpp gray-

scale that the MAX value image is equal to (255×2F−s). 

This is after applying (F-s) levels of 2-D wavelet 

decomposition due to the fact that resolution level s is 

obtained from the original image, with filters having a DC 

amplification of  2 [4]. For example, a reconstructed 

image at s = 5 has the full size and MAX = 255 if a 

512×512 image is decomposed with K = 5. Otherwise, at s 

= 4, the rebuild image has 256×256 pixels and MAX = 

510. According to the number of pixels in the original full 

size image that the bit-rates for all levels are calculated. 

This enables not only to compare, for a given resolution at 

different bit rates, the results obtained but also to compare 

the results, at a given coding budget, related to different 

spatial resolutions. Figures (7a-9d) indicate the results of 

the HS-SPIHT, LHS-SPIHT, and the proposed HS-SLS 

algorithms at 1/4, 1/2, and 1/8 resolutions respectively. 

These figures pretend the PSNR notability of the proposed 

HS-SLS algorithm over the LHS-SPIHT algorithm for bit-

rates and all scales. The only exception is for the image 

„Camera man‟ at 1/8 resolution. Further, HS-SLS is better 

than HS-SPIHT for „Pout‟ and „Moon‟ images which are 

more complex than „Trees‟ and „Pout‟‟ despite of the 

complex memory management of the HS-SPIHT 

algorithm and the huge memory requirements. 

 

 
Figure 7a: PSNR vs. Bit-rate at 1 / 2 Resolution (F = 5, 

and s = 4) for Trees 

 

 
Figure 7b: PSNR vs. Bit-rate at 1 / 2 Resolution (F = 5, 

and s = 4) for Pout 

 

 
Figure 7c: PSNR vs. Bit-rate at 1 / 2 Resolution (F = 5, 

and s = 4) for Camera man 

 

 
Figure 7d: PSNR vs. Bit-rate at 1 / 2 Resolution (F = 5, 

and s = 4) for Moon 

 

 
Figure 8a: PSNR vs. Bit-rate at 1 / 4 Resolution (F = 5, 

and s= 3) for Trees 

 

 
Figure 8b: PSNR vs. Bit-rate at 1 / 4 Resolution (F = 5, 

and s= 3) for Pout 

 

 
Figure 8c: PSNR vs. Bit-rate at 1 / 4 Resolution (F = 5, 

and s= 3) for Camera man 

 

 
Figure 8d: PSNR vs. Bit-rate at 1 / 4 Resolution (F = 5, 

and s= 3) for Moon 
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Figure 9a: PSNR vs. Bit-rate at 1 / 8 Resolution (F = 5, 

and s= 3) for Trees 

 

 
Figure 9b: PSNR vs. Bit-rate at 1 / 8 Resolution ( F = 5, 

and s= 3)for Pout 

 

 
Figure 9c: PSNR vs. Bit-rate at 1 / 8 Resolution ( F = 5, 

and s= 3)for Camera man 

 

 
Figure 9d: PSNR vs. Bit-rate at 1 / 8 Resolution ( F = 5, 

and s= 3)for Moon 

 

4.2. Complexity 

 

Previously as mentioned, due to HS-SLS need very little 

extra processing for encoding the resolution levels that the 

HS-SLS includes a slight complexity increment with 

respect to SLS in increasing order at the encoder and for 

decoding the resolution level and for the scaling process in 

increasing order at the decoder. Otherwise, the SPIHT has 

much lower complexity than LHS-SPIHT due to the 

SPIHT needs to process all image pixels two times per bit-

plane coding pass in addition the above tasks. Figures 10a-

d indicate the complexity of the algorithms exemplified by 

the CPU processing time (measured in milliseconds 

(msec)) desired by the algorithm to decode and to encode, 

at several bit-rates, the full scale "Trees" image. As it can 

be obviously demonstrated, the proposed LHS-SLS runs 

slower than HS-SPIHT. 

 

 
Figure 10a: Processing bite rate vs. time coding for 

"Trees" image 

 

 
Figure 10b: Processing bite rate vs. time decoding for 

"Trees" image 

 

4.3. Requirements of memory 

 

The algorithm, at a given bit-rate, to compress the image 

when the amount of computer memory needed to 

measuring that is the memory requirement. It is worth to 

noting that the HS-SPIHT can use different size lists 

whose sizes depends on compression rate and the image 

size. Moreover, the using of dynamic memory allocation is 

from a necessity which in turn slows the algorithm. 

Therefore, the lists are assigned the maximum size to 

avoid this problem. The maximum memory of SPIHT is 

the same as HS-SPIHT which is given by [11]: 

 

MEMSPIHT
mas = d 9LG

32
  Bytes (6) 

 

Where d is number of bits to save the pixel (r, c) 

coordinates, d =   log2 L  +  log2 G  . The LHS-SPIHT 

uses, with total memory of (L × G)/2 Bytes, a fixed 

memory with an average of 4 bits/pixel. Lastly, the 

maximum memory of SLS is equals to fixed memory 

which is used the HS-SLS which is given by [14]: 

 

MEMSLS = d LG

32
 +  LG

4
 Bytes (7) 

 

For example, the size is (512×512), d = 2 ×log2(512) = 18 

bits for gray-scale full resolution image. Hence the total 

memory wanted by LHS-SPIHT, HS-SPIHT and HS-SLS 

are 1160 KB, 128 KB and 208 KB respectively. The HS-

SLS has, with respect with LHS-SPIHT, only 80 KB of 

memory increment. However, HS-SPIHT still requires 

much greater memory than HS-SLS. 

 

5. Conclusions 
 

The Highly Scalable Single List SPIHT (HS-SLS) is 

presented in this paper. The original rate scalable SLS 

coder successfully is extended with the proposed HS-SLS 
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algorithm to a highly scalable scheme that supports 

combined rate scalability and resolution. By arranging the 

data that is implemented easily in increasing order of 

resolution levels using resolution-dependent parts list and 

resolution-dependent coding passes. Fully scalable bit-

stream of the HS-SLS algorithm, for all lower spatial 

resolution decoding, that is flexibly using a very pure 

scaling process that is achieved on-the-fly and without the 

need to decode the main bit-stream. The LHS-SPIHT 

encoder has bad PSNR and higher complexity than HS-

SLS as indicated from the experimental results. In many 

applications, the proposed scheme can be involved such as 

retrieval systems and image storage, and especially over 

heterogeneous networks when is multimedia information 

transmission, where a wide variety of users need to be 

differently serviced according data processing capabilities 

and to their network access. As well, very suitably for 

hardware implementation due to the fixed size memory 

usage is made with the HS-SLS algorithm. In the end, for 

volumetric and 3-D image compression systems are very 

useful the HS-SLS algorithm due to this algorithm give its 

benefiting from its reduced simplicity and memory. 
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