
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Multi Rates and Resolutions SPIHT with Low

Memory

Yahya Ali Lafta AL Husseini

University of Kufa, Faculty of Engineering, Department Electronics & Communication, Iraq

Yahyaa.alhusseini[at]uokufa.edu.iq

Abstract: For improvement a highly scalable image compression system in order at sizes (resolutions) and qualities (bit rate) are

obtained to obtain simply decoding that is achieved by a compressed image. Since, there are many users when the Internet is used and

into required that is various user's request. Thus, need how can able to induce that without complexity and much data can be has quality

and preserve their size. Therefore, a novel algorithm dominated Highly Scalable-Single List-SPIHT (HS-SLS) is proposed to introduce

those purpose. The adaptable bit-stream which is created from HS-SLS algorithm when that is both rate scalable and resolution are

gotten as a robustly scalable bit-stream. This can readily its encoder, at any bit-rate involving, can be modified to different resolution

requirements, without the required to decode the bit-stream, a very straightforward scaling process that is implemented on-the-fly. An

unique feature of the novel algorithm is that due to its easy memory management it has low requirement and low memory complexity. As

well as, the size can be established which avoid the dynamic memory allocation problem due to the size of the applicable memory is

stationary. For hardware enforcement, the HS-SLS algorithm very convenient due to its merits. As compared to the original SPIHT

algorithm that, for these worthy features is very petty shorthand in the algorithm's performance, the price is paid.

Keywords: Highly Scalable Image Compression, Low Memory Image Compression, Set Partitioning image Compression Rate scalability,

Resolution scalability, Wavelet image compression SPIHT, Zero-tree coding

1. Introduction

Nowadays have a witnessed a wide utilize of video topics

and image on the Internet and also for many applications

that Image security becomes increasingly important, video

surveillance, confidential transmission, medical and

military applications [1, 2].Users have been provided the

option to reduce significant amount and the size of image

through image compression[3]. However, for a particular

scenario, there are many attributes may be even more

important. For example, the primary concern may be

observed for decoding time in medical diagnosis. Besides

that, low power consumption and small memory are

essential for mobile devices. Over packet networks for

broadcasting, scalability in resolution or/and bit rate may

take seniority [1]. Moreover, Scalable image compression

may attain packages with more number of notions related

to quality preservation with image compression. At the

meantime, the web server can rapidly and easily regulate

the bitrate to be transmitted in order to occupy the wide

range of network bandwidth alteration when a good

scalability is used as a key feature. Moreover, a good

codec, hand-held and portable devices request capability

suitable for those applications should also be need minimal

power consumption and easy to implement [4].

Researchers have developed many approaches to achieve

scalable image compression [2]. Wavelet Transform has

received a considerable interest to develop new image

compression algorithms. The Wavelet means when a

signal is represented that the high pass coefficients

represent localized change in short data segment, and the

low pass coefficients represent slow changing long data

segment. It approaches a wonderful framework in which

both long term trend and short-term anomaly can be

analyzed on equal footing. So that, the eventual wavelet

coefficient can be easily scaled in resolution whereby the

original one is larger than an image should be

reconstructed with 2
M

 times, where M is the level of

wavelet coefficients [6]. The whole original image is

induced due to the DWT apply Image compression

methodologies utilizing. In the different regions of interest

should be the wavelet coefficient relationship when the

different compression ratios are applied, in which either

each wavelet domain band of the image itself is clustered

or the transformed image, respectively [5]. When the

coefficients into subbands are arranged belonging to

different resolutions or scales that makes possible

decoding or coding different scales. Due to the local nature

of the transform that makes possibility selected regions of

interest in the image for random access, so at different

scales to decode a particular region of an image when one

can select regions of subbands [2].

Figure 1: dyadic wavelet transform for Subbands of a 3-

level

Since the invers discrete wavelet transform (IDWT) has in

its construction bank filter that make us to do subband

arrangement so by three stages of a swap high and low

pass vertical and horizontal filtering of outcome low

vertical and low horizontal subbands followed by 2:1

downsampling. Figure 1 illustrated the analysis and

Paper ID: ART20172536 DOI: 10.21275/ART20172536 1193

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

synthesis for two stages. The source image itself just can

be considered by the first stage and the first stage input

low horizontal, low vertical, 2nd stage is called the LL2

subband that is merely a coarse, where it reduced by factor

22 of the original image in both dimensions. The NN1

subband yields from filtering and upsampling of, BN2,

BB2, NN2, and LH2 subbands which it is two times the

scale of NN2 so it is, by a factor of 21, still scaled down

from the original. For getting the full gauge reconstruction

of the original input that for one more stage repeats on the

LL1 subband. Thus, we can get a reduced gauge version of

the original image at each synthesis stage [2]. However,

converting the image samples into a more compressible

form when the two-dimensional Discrete Wavelet

Transform (2D-DWT) is used with JPEG2000 standard

where providing it the resolution scalability which it

considers one of the outstanding features for it [5].

Whatever a base stream providing scalable (refinement)

streams as well as a low (base) image quality is generated

by Scalable image coding that successively improves the

image quality [7].

2. Related Work

The core of the JBEG2000 standard is called the

embedded block coding with optimized truncation

(EBCOT) algorithm, among all wavelet-based scalable

image compression it is the most efficient. Due to using

arithmetic coding the algorithm has high computational

complexity unfortunately. Each coefficient in each bit-

plane coding pass when three times is scanned Therefore

to get the intended highly scalable bit-stream a time

consuming rate distortion optimization process is required

to the compressed bit stream. Attaining in general Digital

Signal Processor (DSP) or Purpose Processor (GPP) chips

are made EBCOT very difficult and slow with those

factors [12, 17].

Besides this such as Partitioning Embedded block

(SPECK)[9] and Set Partitioning in Hierarchical Trees

(SPIHT)[8] for setting portioning image compression

algorithms when at all in performance compared to

JPEG2000 [10] the coders run by about (5-7) times faster

and possess all the desirable features and sacrifice very

little. The maximum magnitude in it is above is

determined a certain threshold when some kind of

significance testing for sets of pixels employs by these

schemes. The set is significant (SIG) when it is partitioned

and it is represented by one symbol when it is insignificant

(ISIG). In any case the SIG sets until all pixels are

encoded, the same process should be recursively repeated.

So these schemes achieve advantages such as they

generate a rate scalable compressed bit-stream, good

performance and they have relatively low computational

complexity. Keeping track of which pixels/sets need to be

tested these algorithms is used linked lists for the high

memory requirements that is the price to be paid for these

advantages. The image size may be less than the lists sizes

at high rates. In addition, due to the continual process of

removing and adding nodes to and from these lists a

variable data dependent the need for complex memory

management and memory requirement is caused with the

use of lists [11]. Lately, the generated bit-stream do not

provide a bit-stream and does not explicitly support

resolution scalability that can be simply rearranged

according to the rate and resolution desired by a decoder

[12, 13].

Obtaining highly scalable bit stream such as the set

partitioning schemes added to the resolution scalability has

been presented, in the literature, via several works. The

Highly Scalable-SPIHT (HS-SPIHT) algorithm is offered

by A. Mertins and H. Danyali [13]. Here, producing highly

scalable bit-stream due to the original rate scalable SPHIT

is upgraded. The resolution scalability is appended via The

HS-SPIHT through the resolution-dependent coding passes

and introduction of multiple resolution-dependent lists. No

explicit rate allocation mechanism considers the simplicity

of bit-stream scaling process that is the main advantage of

the HS-SPIHT coder. Yet, the terms of high memory

requirements are still the drawbacks for both the HS-

SPIHT and original SPIHT. Furthermore, in order to store

the resolution level of each set in the corresponding

resolution dependent list so the HS-SPIHT needs a

mechanism to distinguish it. Obviously, the algorithm

complexity compared to the original SPIHT is increased

for these requirements [13].

K. KhanandA. monauwer offered the Listless HS-SPIHT

(LHS-SPIHT) [14]. Here, the resolution attached list is

replaced when by state markers with an average of 4

bits/coefficient should be using with HS-SPIHT to hold

trajectory of set significance information and pixels. There

is similarity when the set partitioning rules is used LHS-

SPIHT and HS-SPIHT too so that identical bit-stream

should be produced. Since the coder considers having high

computational unfortunately due to, in each coding pass,

the entire image pixels twice time must be processed via

the coder, though in memory usage the coder is very

efficient. the newly significant pixel is coded when

Insignificant Pixel Pass at the first time and finding

significant in the previous coding passes when the pixels is

refined in the refinement pass at second time. Two main

aims are worthily noted when the SPIHT uses the list: the

first aim as the lists are processed in a specific order

whereby preserving information ordering should obtain

performance. The second goal, in each coding pass, in the

lists as only the elements stored are processed in order

complexity reduction[15, 16]. Thus eliminating the lists

will obviously may decrease its performance and increase

the complexity of the algorithm. Here the LHS-SPIHT

reduces memory usage at the cost of decreasing

performance and increasing complexity so that it swaps

memory for efficiency and complexity i.e.

In stance of employ the coder to satisfy its requirement

such as low memory that has been proposed in [17] where

is depicted Single List SPIHT (SLS) as a novel coder. This

coder has memory about six times less than the original

SPIHT. Actually a rate scalable bit-stream is produced via

the SLS coder as SPIHT. The experimental results and

theoretical analysis indicated the proposed SLS algorithm

has nearly the same complexity as the original SPIHT and

has better performance. Indeed thus give enhance the

performance of SPIHT without paying any additional

overhead cost and without affecting its simplicity and also

Paper ID: ART20172536 DOI: 10.21275/ART20172536 1194

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

by about six times the memory requirements is reducing.

In order in this paper the SLS algorithm to achieve a

highly scalable bit-stream that should be upgraded. Highly

Scalable-Single List SPIHT (HL-SLS) is depicted with the

proposed algorithm. Solving the scalability problem with

the new HL-SLS coder is induced through the introduction

of the resolution dependent bit-plane coding passes and the

resolution dependent parts list. Moreover, as the original

SLS encoder, the proposed HL-SLS has nearly the same

memory requirements and the same complexity and

management. The remainder of the paper is organized as

follows: section III gives brief review for the SPIHT and

the SLS algorithms. Section IV introduces the new HS-

SLS algorithm. Section V covers the simulation results of

the algorithm. Finally, Section VI gives the concluding

remarks of the paper and presents new directions for future

work.

3. The SPIHT and the Single List SPIHT

(SLS) algorithms

3.1 SPIHT

A procedure that uses recursions splitting of sets of

samples or of partitioning guided by a threshold test is the

Set partition coding, so it is the principles of a data

compression method [8]. This technique is based on some

very simple principles; it considers one of the most

interesting aspects, however is also very surpassing,

effective other coding methods that may seem much more

advanced theoretically. It is also the primary entropy

coding method in the well-known Set Partitioning in

Hierarchical Trees (SPIHT) [9]. For direct coding of

natural images should not be chosen like the set partition

coding due to it not be efficient. Therefore, with small

maximum values the source must contain primarily sets of

samples to be efficient. Thus, here a source transformation

is requested such as discrete wavelet (DWT) [8]. The

DWT as a number of nonoverlapping spatial orientation

trees (SOT) can be viewed. Due to at the same spatial

direction these trees branch successively to higher

frequency subbands, they so called. Figure 2 shows SOT

in the wavelet transform domain [2].

Figure 2: A SOT of DWT L denotes grand-descendant set

and O denotes offspring the full descendant set D =O ∪ L.

As well a way that each node has either four offsprings or

no offspring is the tree defined where always form a group

of 2X2 neighboring pixels. From Figure 2 also can be

shown the tree divide it's the set of all coefficients

descending (grand) that means the set of from nods the all

descendants and immediate offspring (child) coefficients

from the child coefficients that means the set of from a

single node the three or four nodes branching [2].

.

A comparison of two values is involved of the SPIHT

algorithm a time which results in no/yes condition. From

Figure 3, Namely for stored insignificant information

require three ordered lists: the List of Insignificant Sets

(LIS), which the set of coefficients are having their

magnitude smaller than the threshold considered, is one of

the three lists categorizes sorting pass coefficients, the

second list is List of Insignificant Pixels (LIP) that the

threshold considered is larger than their magnitude pixel,

last one is List of Significant Pixels (LSP) whose

magnitude is greater than that of considered threshold. The

ability of this coding method can be to generate codes with

fractional bits due to obtaining by optimal performance.

Therefore, widely it is used in different image compression

technique [10].

Figure 3: Flow chart for Initialization of lists can be used

to code the significance of trees rooted in groups of pixels

of size 2X2

For one each bit-plan level, the SPIHT algorithm consists

of several bit-plan and initialization coding passes. Based

on the maximum value of the DWT firstly it computes

mmax which presents the maximum value of the DWT

image that it given by:

mmax = log2 max∀ c,r ∈I Fc,r (1)

where at location (c, r) Fc,r is a wavelet coefficient, I is the

DWT image and in order to start decoding at mmax , z is

the nearest integer ≤ z. mmax as a side information is sent

to the decoder within the bit-stream. Afterwards with the

coordinates of all the pixels in the LLK subband, the

algorithm is initialized the LIP, the LSP as an empty list,

and the LIS have offspring as type A sets with all the

coordinate of pixels in LLK subband. The refinement and

sorting are two passes that is encoded for each bit-plane.

Here, for the first bit-plan is made for the sorting pass

Paper ID: ART20172536 DOI: 10.21275/ART20172536 1195

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

only. The refinement pass codes the pixels and the new

SIG pixels are identified the sorting pass that at previous

passes are found SIG. when

2m = Fc,r < 2m+1 (2)

A pixels Fc,r is considered SIG for given bit-plane with

respect to m. similarly, the set contains one or more SIG

pixels when with respect to m a set of pixels is considered

SIG.

For significance with respect to m each entry in LIP is

tested during the sorting pass. a (0) is transmitted to the

compressed bit-stream when the pixel is ISIG. Moreover, a

sign bit and a(1) acting the sign of that pixel (e.g., 1 for

negative and 0for positive pixel) are transmitted to the bit-

stream when the pixel is SIG. Later, the testing for each set

in LIS that symbolize the root of an SOT as follows: the

SOT of type A is tested when this type is the set for

significance. a(0) is transmitted when the SOT is ISG(i.e.,

by a single bit the whole SOT is coded). in other hand,

a(1) is transmitted when the SOT is SIG, so that each one

of the set's four children is tested. If a(1), its sign bit are

transmitted to the bit-stream, and the child is SIG, so to the

end of LSP its coordinates are added. Furthermore, the

coordinates of a(0)are added to LIP when the child is SIG

and a(0) is transmitted, in the next bit-plan passes, to be

tested. Lastly, the set is moved as a type B set to end of

LIS when the set has grandchildren. Otherwise, the set of

four children are added to the end of LIS as type A sets to

be tested in the current pass, the set is removed from LIS,

and a (1) is transmitted when the set is of type B and has at

least one SIG child. Moreover, the set remains in LIS to be

tested in next bit-plane passes, and a (0) is transmitted (all

the set's children are ISIG).

All pixels in the LSP except those which have been added

to the refinement pass during the current pass that by

outputting its nth MSB are refined to the bit-stream. For

bit-plane m after finishing refinement passes and sorting,

m is decremented by 1 to begin coding the next bit-plane.

3.1.1 Drawbacks of the SPIHT algorithm [11, 13]

1. It has complex memory management due to adding

nodes and the removing to the LIS and LIP lists.

2. Due to using the lists it needs a huge amount of

memory. More precisely the LSP and LIS lists which

store the (c, r) coordinates of individual pixels dominate

the total storage. The number of image pixels is equal to

the maximum number of entries in each list. Otherwise,

due to its stores the (c, r) coordinates of the roots of the

SOTs, the LIS has less memory requirement. As well,

the roots in the highest level (BB1, BN1, and

NB1subbands) are not stored due to they don't have

descendants. The maximum number of entries of LIS is

one-fourth of image pixels due to the size of these

subbands is 3/4 the image size.. Thus, the working

memory of SPIHT is at least 2.25 times the image size.

3. It does not explicitly support resolution scalability due

to it produces a rate scalable bit-stream and thus cannot

be easily reordered according to resolution and the rate

desired by the decoder.

4. Due to the number of list entries can't be determined in

advance as the lists sizes cannot be pre-allocated it

depends on the amount of image details and on the

compression bit-rate. This problem can solve by using

pre-allocating the lists to the maximum size or either

dynamic memory allocation. Evidently, and the latter

one increases its memory requirements due to the former

solution slows the algorithm.

3.2 SLS

The SLS algorithm [17] overcomes the huge memory

requirements and the complex memory management

drawbacks of the original SPIHT algorithm (the first three

drawbacks). In addition, the SLS coder has slightly better

performance than SPIHT. The basic idea of the SLS is

based on the fact that the LIP and LSP are constructed

from the offspring (the four children) of a root that belongs

to a SIG SOT. So, instead of storing the offspring in these

lists, they can be recomputed in each pass. Evidently, this

will increase the complexity of the algorithm. However,

this complexity increment is compensated by the reduced

memory management overhead (as shown shortly). The

SLS algorithm replaces the LIP and LSP lists (which

dominate the total memory usage) by two bits state

marker. In other words, each pixel is provided by two

status bits referred to as σ to determine the type of the

pixel as follows:

 An ISIG pixel that is not yet tested is New ISIG Pixel

(NIP) when σ = 0.

 A pixel that is tested ISIG in the previous passes is

Visited ISIG Pixel (VIP) when σ = 1.

 A pixel that just becomes SIG in the current bit-plane

pass is: New SIG Pixel (NSP) when σ = 2.

 A pixel that is tested SIG in the previous passes is

Visited SIG Pixel (VIP) when σ = 3.

In addition, using of a single list is made the SLS encoder

described the List of Root Sets (LRS). Like the LIS, the

LRS also saves the (c, r) coordinates of the roots of the

SOTs. So one-fourth the image size is for the LRS exactly

that is the same memory size as the LIS. Yet,

implementing the LRS as a simple 1-D array is made

possible with the adopted coding method that is accessed

sequentially in First In First Out (FIFO) manner, it will be

never removed due to once a set is added to the LRS. In

contrast, the SPIHT coder used with the LIS must be

implemented as a linked list that is accessed randomly due

to the continual process of removing nodes and adding to

from it. Evidently, implementing removing the LSP and

LIP with the LRS as a 1-D array together will greatly

simplify the memory management problem. Further, the

type field used with, differently, the LRS is used. In the

LRS a set that has no SIG SOT or A set of type A is

untested set and a set of type B has one or whereas in the

LIS set of type B represents the root of all descendants and

a set of type A represents the root of all descendants and

excluding the four direct offspring.

The SLS algorithm consists of several bit-planes coding

passes and an initialization stage. At initialization, it first

outputs the maximum bit-plane mmax and computes to the

Paper ID: ART20172536 DOI: 10.21275/ART20172536 1196

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

bit-stream, and set m to mmax. Then, in LLK subband, it

saves the (c, r) coordinates of the pixels that have offspring

in the LRS as type A sets. By coding NNK subband, the

first bit-plane pass starts which consists only of New ISIG

pixels (NIPs). Each NIP, with respect to m, is tested for

significance. If it is still ISIG, a(0) is updated to VIP and it

is outputted to the bit-stream. If it becomes SIG, a(1) is

updated to NSP, it and its sign bit are outputted to the bit-

stream. Flowing, the sets of the LRS (which are sets of

type A) are sequentially processed. Its SOT is computed

for each set and then, with respect to m, tested for

significance. a (0) is outputted (i.e., the whole SOT is

represented by a single bit) when the SOT is still ISIG.

Otherwise, a (1) is outputted when the SOT is SIG, each

one of the set's offspring (which is an NIP) is coded the set

is updated to type B set, and updated as given above.

After, the offspring are added to the end of LRS as type A

sets when the set has grandchildren (the set's offspring

aren't in the highest resolution level) to be coded in the

current bit-plane coding pass. Finally m is decremented by

1 to start a new bit-plane coding pass.

In NNK also, each one of the next bit-plane coding passes

starts by coding the pixels. At these passes NNK may

contain NSPs or/and VIPs only. In the same way of coding

the NIP, a VIP is coded exactly, except it is still ISIG

when that there is no need to update it due to it is already a

VIP. Otherwise, a NSP is refined by outputting its mth

MSB to the bit-stream when it after is updated to VSP.

Flowing, the LRS list is scanned two times. Only the sets

of type B are inspected in the first scan. Its four offspring

is computed for each set, which may be of type NSPs

or/and VIPs. Whereas a NSP is updated to VSP when a

VIP is coded as given above to be refined later in the

second scan pass. All the sets in LRS are inspected in the

second scan. It is processed exactly when the set is of type

A in the same way as was done in the first coding pass.

Otherwise, only the VSPs of the set's four offspring are

refined, when the set is of type B, by outputting its mth

MSB bit to the bit-stream. Lastly m is decremented to start

a new bit-plane coding pass.

3.3 The Proposed Algorithm for Highly Scalable-SLS

(HS-SLS)

3.3.1 Description of HS-SLS Description

Generally speaking, a rate scalable bit-stream can be

upgraded to a highly scalable one, i.e., a bit-stream that is

resolution scalable and both rate if the coding information

in each bit-plane coding pass are arranged in increasing

order of resolution levels. As well, each level, in the output

bit-stream, must be recognizable, permitting simple access

to the data needed to rebuild the image during the scaling

process, at the desired spatial resolution. Here, we the

Highly Scalable-SLS (HS-SLS) algorithm is presented.

The proposed algorithm is explicit in the sense that the

transition to full scalability is done, within each bit-plane

coding pass, by just identifying and separating the

resolution levels. A individual feature of HS-SLS is that it

adds, without the need of using the multiple resolution, the

resolution scalability dependents lists as was done in HS-

SPIHT [14]. Further, it doesn't need to process all the

image pixels twice, as was done in [17], in each bit-plane

pass. This means that HS-SLS doesn't involve any

increase, memory requirements, in complexity and

management as compared to the original SLS.

The HS-SLS coder has three facts that its work is based

on. The first fact is that the once a set will be never

removed when it is added to LRS, Thus if the sets are

added to LRS according to a specific order. This means

that the order will be preserved during the entire coding

process when the sets are stored in increasing order of

resolution levels, this order will be always preserved. The

second fact is, in each resolution level, that the number of

pixels is fixed. Let Ds denote the number of pixels in

resolution level Hs. since A0 consists of NNF subband

only, then D0 = (NNF×NNF). For s= 1, 2 … F, Ds is given

by:

Ds = 3 NNf+1−s × NNf+1−s (3)

For example, for F = 3, the number of pixels in H0 is

(NN3 × NN3), and the number of pixels in H1 is

3(NN3×NN3) and so on. Thus, except the highest since it

have no descendants that the sets of each resolution level,

in a specific fixed size part in the LRS, can be stored.

Therefore, the LRS can be thought to consist of F parts

which are referred to as Resolution Part (RP). HPs has size

Ds and stores the sets that belong to level s. Table(1)

depicts the adopted Resolution Parts within the LRS for F=

3.

Table 1: for the LRS for F=3 is the adopted resolution

parts.
HP0 HP1 HP2

(NN3×NN3) 3(NN3×LL3) 3(NN3×NN3)

The third fact except the highest is that for a set at any

resolution level, at the next level, its offspring are located.

Thus, these offspring, in its assigned resolution part, can

be easily stored in straight forward manner without the

need to use any additional markers and without the need of

extra processing to characterize the level to which the set

is belongs as is done in LHS-SPIHT and HS-SPIHT

algorithms. for example, a set at level H0, its offspring are

located at H1 and are stored in HP1 and so on. so as to

hold trajectory of the sets that are added to the different

resolution parts, HS-SLS appoints two small Resolution

Index Tables denominated the Start the End Index Table

and (EIT) Index Table (SIT) of size F each. EIT[0] and

SIT[0] are both initialized to 0, and EIT[s] and S EIT[s], 0

<s < F, are initialized to Ds-1 which is the maximum

number of sets in level Hs-1. Each time a set is added to

part HPs is then incremented with EIT[s]. Remember that

the LRS is initialized by the (c, r) coordinates of the pixels

of H0 (the NNF subband) that have offspring as type A

sets. Evidently these sets are stored in RP0 and hence

EIT[0] is updated to ¾ N0 because the top-left pixel of

every (2×2) pixels has no descendent.

As SLS exactly the HS-SLS works except that it makes

use, with the associated LRS resolution parts, of resolution

dependent coding passes. That is, the HS-SLS codes all the

information for each bit-plane pass that belongs to R0 and

Paper ID: ART20172536 DOI: 10.21275/ART20172536 1197

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

proceeds to H1, H2 and so on. This very easily can be

attained by dealing with the resolution parts of the LRS in

state the whole LRS and set sufficient markers within the

bit-stream to distinguish, that belongs to the different

resolution levels, the information. So as to explain the

adopted coding method, remember that each bit-plane

coding pass processes the LRS after it has been started by

coding the NNF subband. Since NNFsymbolizesH0, hence

each pass starts coding the pixels in H0. Following, the

resolution parts of the LRS are remedied sequentially.

Here, two times is scanned every resolution part PHs. All

the sets in PRs, in each scan, that are determined by SIT[s]

through EIT[s] are inspected. Only the sets of type B, in

the first scan, are coded in the same way as was done with

SLS. All the sets in PHsare inspected in the second scan.

Only the VSPs of the set's four offspring are refined when

the set is of type B as given before. Otherwise, the set is

tested for significance when it is of type A. (0) is outputted

and nothing is done when it is still ISIG. The set's type is

updated to type B set when the set is tested SIG, and status

of the set's four offspring is updated as given before and

each one of it is coded. Then, each one of its four offspring

is added to its location in HPs+1 when the set has

grandchildren (its offspring isn't in the highest resolution

level) which is determined by EIT[s+1] as type A sets and

EIT[s+1]correspondingly is incremented. In this way,

consequently every bit-plane coding pass will be coded in

increasing order of resolution levels and LRS will also

stores the sets in increasing order of resolution levels.

As shown, by arranging the data that the proposed HS-SLS

produced the highly scalable bit-stream without any need

to additional memory management overhead and purely in

increasing order of resolution levels. In contrast, due to

dealing with multiple linked lists that the HS-SPIHT

coders [12] has complex memory management and, as the

nodes are added, each list is accessed randomly and

removed to and from it continuously. That is, for each

resolution level s (LISs, LSPs, and LIPs) that HS-SPIHT

deals with a set of LIS, LSP and LIP lists. Further, HS-

SLS exhibits a slight complexity increment; due to the two

coding methods differ only, with respect to SLS by the

way the sets of the LRS are ordered. Since a very slight

complexity increment that the SLS coder has with respect

to SPIHT [17].Thus, with respect to SPIHT that also the

HS-SLS algorithm has very slight complexity increment.

In contrast, the SPIHT algorithm [13] has much less

complexity than LHS-SPIHT due to, all the image pixels

two times in each coding pass that LHS-SPIHT must

process as stated before. These lineaments are individual

to the proposed HS-SLS algorithm. Unfortunately, due to

the output bits within each bit-plane layer are ordered

according to the resolution levels and not according to

their Rate Distortion (R-D) properties, the HS-SLS coder

exhibits some performance degradation with respect to

SLS. More specifically, all the pixels in resolution part

PHs, it processes before proceeding to the next part

PHs+1. This may lead to code pixels before pixels that

have higher R-D properties leading performance

deterioration that have lower R-D properties. It should be

noted also that the LHS-SPIHT and HS-SPIHT suffer from

this limitation.

3.3.2 Scaling and Formation of Bit-stream

By the HS-SLS encoder is shown in Figure (4) represents

the structure of the bit-stream generated. It consists of

body of the bit-stream and main header (Hm). The main

header Hm contains the number of decomposition levels

(F) and the maximum bit-plane (mmax), and data (D) field

such as image dimension, the image name, etc. The bit-

stream consists of (mmax+ 1) layers. Every bit-plane level

corresponds to each layer. Each bit-plane layer consists, by

the layer body, of the layer length tag (Lm) is followed.

Lm identifies, in bytes of layer m, the contribution to the

total bit-stream. One for each resolution level that the body

of the layer consists of (F+1) parts. The indicating the

number of bytes that belong to resolution level s in each

resolution part consists of a length tag (Ps). It should be

noted, at the beginning of each bit-plane part that all

header information is used solely by the image parser and

does not need to be sent to the decoder. However, these

markers may be kept within the bit-stream so as to

improve the error resilience.

The HS-SLS bit-stream, at any desirable bit rate, can

easily be reordered for multi-resolution decoding. An

image bit-rate B bit per pixel (bpp) and at resolution s can

be reconstructed from the bit-stream discard all other

levels and by keeping the resolution levels 0, 1…s, i.e.

levels s+1, s+2…F, in each bit-plane layer. Until the bit-

rate equals to the requested bit-rate, B so the procedure is

continued for each layer.

Figure 4: General structure ofbit-stream HS-SLS

4. Discussion for Experimental Results

The proposed HS-SLS algorithm is implemented by

MATLAB programming language. The test is performed

to the popular gray-scale (512×512) pixels 'Trees', 'Pout',

'Camera man', and 'Moon' test images shown in Figure (5).

Using the bi-orthogonal 9/7 Daubechies (2-D) DWT with

5 dyadic decomposition levels is transformed for each

image and the transform coefficients are rounded to the

nearest integer prior to coding. The results of HS-SLS are

compared with the SLS, SPIHT, LHS-SPIHT and HS-

SPIHT algorithms [12]. The results are represented by the

algorithm's computational complexity, its, its memory

requirements, and its performance.

Paper ID: ART20172536 DOI: 10.21275/ART20172536 1198

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 5: pixels test images for Gray-scale 8 bpp

(512×512)

4.1. Performance

From figures 6a, 6b, 6c, and 6d that indicate the

performance is measured by the Peak Signal to Noise

Ratio (PSNR) versus the average number of bits per pixel

(bpp) as the compression bit-rate. PSNR is given by:

PSNR = 10log10
MAX 2

MES
 dB (4)

where MSE is Mean-Squared Error and MAX is the

maximum value of the pixel between the reconstructed and

the original images defined as:

MSE = 1

M ×N
 I0 c, r − Is c, r 2N

r=1
M
c=1 (5)

where Is is the rebuild image, I0 is the original image and

number of pixels that is image size M × N. Clearly, larger

PSNR and smaller MSE values correspond to lower of

distortion.

Figure 6a: PSNR (dB) vs. Bit-rate (bpp) at full Resolution

(F = 5, and s= 5) for Trees

Figure 6a: PSNR (dB) vs. Bit-rate (bpp) at full Resolution

(F = 5, and s= 5) for Trees

Figure 6c: PSNR (dB) vs. Bit-rate (bpp) at full Resolution

(F = 5, and s= 5) for Camera man

Figure 6d: PSNR (dB) vs. Bit-rate (bpp) at full Resolution

(F = 5, and s= 5) for Moon

So that, returning for figures 6a, 6b, 6c and 6d can depicts

the following results:

 SPIHT for 'Trees' and 'Pout' images has slightly bad

PSNR than the SLS and it has comparable PSNR for

'Moon' and 'Camera man' images. This points that the

state-of-art rate scalable image compression algorithms

is less competitive with SLS.

 The SLS has slightly higher PSNR than The HS-SLS.

This is expected in increasing order of resolution levels

and not according to their rate distortion (R-D)

properties due to HS-SLS doesn't preserve the

information ordering as the pixels in each bit-plane

coding pass are coded. Notice that this also chains is

found in the LHS-SPIHT and HS-SPIHT algorithms.

 The PSNR SPIHT for 'Trees' of are lower than that of

LHS-SPIHT and HS-SPIHT. Due to the above reasons,

this is not possible. Moreover, due to using another

version of the image, this may be occurred.

The PSNR of the proposed LHS-SLS and the HS-SPIHT

are very close for 'Trees' and 'Moon images' while HS-SLS

gives better PSNR for 'Pout' and 'Camera man' images

especially at low bit-rates. This shows that the state-of-art

highly scalable image compression algorithms has also

less performance comparable PSNR with the proposed

HS-SLS algorithm.

The size of the original image is 1 2F−s × 1 2F−s for

an image at resolution s, 0 ≤ s ≤F. Thus, due to the

recovered and original images don't have the same size

that a direct application of PSNR equation is not possible

for s < F. Further, if the original image has higher than the

recovered image resolution, so the numerical results

provide of the highly scalable algorithms and too in [13]

the same method adopted is used. An image at resolution s

corresponds to the NNF-s subband that the fact this

method is based on. So, reconstructed NNF-s subbands

and the original can be compared instead of reconstructed

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
26

28

30

32

34

36

38

40
Trees 1PSNR vs. Bit-rate at full Resolution (K = 5, and r = 5)

PSNR(dB)

B
ite

 ra
te

SPIHT

HS-SPIHT

LHS-SPIHT

SLS

HS-SLS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40
Pout 1PSNR vs. Bit-rate at full Resolution (K = 5, and r = 5)

PSNR(dB)

B
ite

 ra
te

(b
pp

)

SPIHT

HS-SPIHT

LHS-SPIHT

SLS

HS-SLS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
26

28

30

32

34

36

38

40
Camerama 1 PSNR vs. Bit-rate at full Resolution (K = 5, and r = 5)

PSNR(dB)

B
ite

 ra
te

(b
pp

)

SPIHT

HS-SPIHT

LHS-SPHIT

SLS

HS-SLS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
20

22

24

26

28

30

32

34

36

38

40
Moon 1 PSNR vs. Bit-rate at full Resolution (K = 5, and r = 5)

PSNR(dB)

B
ite

-r
at

e

SPIHT

HS-SPIHT

LHS-SPIHT

SLS

HS-SLS

Paper ID: ART20172536 DOI: 10.21275/ART20172536 1199

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

images and the original. Here, (M×N) and MAX

symbolize the size and the maximum pixel value for the

given NNF-s subbands respectively. For an 8 bpp gray-

scale that the MAX value image is equal to (255×2F−s).

This is after applying (F-s) levels of 2-D wavelet

decomposition due to the fact that resolution level s is

obtained from the original image, with filters having a DC

amplification of 2 [4]. For example, a reconstructed

image at s = 5 has the full size and MAX = 255 if a

512×512 image is decomposed with K = 5. Otherwise, at s

= 4, the rebuild image has 256×256 pixels and MAX =

510. According to the number of pixels in the original full

size image that the bit-rates for all levels are calculated.

This enables not only to compare, for a given resolution at

different bit rates, the results obtained but also to compare

the results, at a given coding budget, related to different

spatial resolutions. Figures (7a-9d) indicate the results of

the HS-SPIHT, LHS-SPIHT, and the proposed HS-SLS

algorithms at 1/4, 1/2, and 1/8 resolutions respectively.

These figures pretend the PSNR notability of the proposed

HS-SLS algorithm over the LHS-SPIHT algorithm for bit-

rates and all scales. The only exception is for the image

„Camera man‟ at 1/8 resolution. Further, HS-SLS is better

than HS-SPIHT for „Pout‟ and „Moon‟ images which are

more complex than „Trees‟ and „Pout‟‟ despite of the

complex memory management of the HS-SPIHT

algorithm and the huge memory requirements.

Figure 7a: PSNR vs. Bit-rate at 1 / 2 Resolution (F = 5,

and s = 4) for Trees

Figure 7b: PSNR vs. Bit-rate at 1 / 2 Resolution (F = 5,

and s = 4) for Pout

Figure 7c: PSNR vs. Bit-rate at 1 / 2 Resolution (F = 5,

and s = 4) for Camera man

Figure 7d: PSNR vs. Bit-rate at 1 / 2 Resolution (F = 5,

and s = 4) for Moon

Figure 8a: PSNR vs. Bit-rate at 1 / 4 Resolution (F = 5,

and s= 3) for Trees

Figure 8b: PSNR vs. Bit-rate at 1 / 4 Resolution (F = 5,

and s= 3) for Pout

Figure 8c: PSNR vs. Bit-rate at 1 / 4 Resolution (F = 5,

and s= 3) for Camera man

Figure 8d: PSNR vs. Bit-rate at 1 / 4 Resolution (F = 5,

and s= 3) for Moon

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
25

30

35

40

45

50

55

PSNR(dB)

Bi
t r

at
e(

bp
p)

Trees 2 PSNR vs. Bit-rate at 1 / 2 Resolution (K = 5, and r = 4)

HS-SPIHT

LHS-SPIHT

HS-SLS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
25

30

35

40

45

50

55
 Pout 2 PSNR vs. Bit-rate at 1 / 2 Resolution (K = 5, and r = 4)

PSNR(dB)

Bi
te

 ra
te

(b
pp

)

HS-SPIHT

LHS-SPIHT

HS-SLS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
25

30

35

40

45

50
Camera man 2PSNR vs. Bit-rate at 1 / 2 Resolution (K = 5, and r = 4)

PSNR(dB)

Bi
te

 ra
te

(b
pp

)

HS-SPIHT

LHS-SPIHT

HS-SLS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
25

30

35

40

45

50

55
MOON 2 PSNR vs. Bit-rate at 1 / 2 Resolution (K = 5, and r = 4)

PSNR(dB)

B
ite

 ra
te

(b
pp

)

HS-SPIHT

LHS-SPIHT

HS-SLS

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
30

35

40

45

50

55

60

65

70

75
Trees 3PSNR vs. Bit-rate at 1 / 4 Resolution (K = 5, and r = 3)

PSNR(dB)

B
it

ra
te

(b
pp

)

HS-SPIHT

LHS-SPIHT

HS-SLS

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
25

30

35

40

45

50

55

60

65

70

75
Pout3PSNR vs. Bit-rate at 1 / 4 Resolution (K = 5, and r = 3)

PSNR(dB)

Bi
te

 ra
te

HS-SPIHT

LHS-SPIHT

HS-SLS

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
25

30

35

40

45

50

55

60

65

70

75

PSNR(dB)

B
it

ra
te

(b
pp

)

Camera man 3 PSNR vs. Bit-rate at 1 / 4 Resolution (K = 5, and r = 3)

HS-SPIHT

LHS-SPIHT

HS-SLS

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
25

30

35

40

45

50

55

60

65

70

75

PSNR(dB)

B
it

ra
te

Moon 3 PSNR vs. Bit-rate at 1 / 4 Resolution (K = 5, and r = 3)

HS-SPIHT

LHS-SPIHT

HS-SLS

Paper ID: ART20172536 DOI: 10.21275/ART20172536 1200

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 9a: PSNR vs. Bit-rate at 1 / 8 Resolution (F = 5,

and s= 3) for Trees

Figure 9b: PSNR vs. Bit-rate at 1 / 8 Resolution (F = 5,

and s= 3)for Pout

Figure 9c: PSNR vs. Bit-rate at 1 / 8 Resolution (F = 5,

and s= 3)for Camera man

Figure 9d: PSNR vs. Bit-rate at 1 / 8 Resolution (F = 5,

and s= 3)for Moon

4.2. Complexity

Previously as mentioned, due to HS-SLS need very little

extra processing for encoding the resolution levels that the

HS-SLS includes a slight complexity increment with

respect to SLS in increasing order at the encoder and for

decoding the resolution level and for the scaling process in

increasing order at the decoder. Otherwise, the SPIHT has

much lower complexity than LHS-SPIHT due to the

SPIHT needs to process all image pixels two times per bit-

plane coding pass in addition the above tasks. Figures 10a-

d indicate the complexity of the algorithms exemplified by

the CPU processing time (measured in milliseconds

(msec)) desired by the algorithm to decode and to encode,

at several bit-rates, the full scale "Trees" image. As it can

be obviously demonstrated, the proposed LHS-SLS runs

slower than HS-SPIHT.

Figure 10a: Processing bite rate vs. time coding for

"Trees" image

Figure 10b: Processing bite rate vs. time decoding for

"Trees" image

4.3. Requirements of memory

The algorithm, at a given bit-rate, to compress the image

when the amount of computer memory needed to

measuring that is the memory requirement. It is worth to

noting that the HS-SPIHT can use different size lists

whose sizes depends on compression rate and the image

size. Moreover, the using of dynamic memory allocation is

from a necessity which in turn slows the algorithm.

Therefore, the lists are assigned the maximum size to

avoid this problem. The maximum memory of SPIHT is

the same as HS-SPIHT which is given by [11]:

MEMSPIHT
mas = d 9LG

32
 Bytes (6)

Where d is number of bits to save the pixel (r, c)

coordinates, d = log2 L + log2 G . The LHS-SPIHT

uses, with total memory of (L × G)/2 Bytes, a fixed

memory with an average of 4 bits/pixel. Lastly, the

maximum memory of SLS is equals to fixed memory

which is used the HS-SLS which is given by [14]:

MEMSLS = d LG

32
 + LG

4
 Bytes (7)

For example, the size is (512×512), d = 2 ×log2(512) = 18

bits for gray-scale full resolution image. Hence the total

memory wanted by LHS-SPIHT, HS-SPIHT and HS-SLS

are 1160 KB, 128 KB and 208 KB respectively. The HS-

SLS has, with respect with LHS-SPIHT, only 80 KB of

memory increment. However, HS-SPIHT still requires

much greater memory than HS-SLS.

5. Conclusions

The Highly Scalable Single List SPIHT (HS-SLS) is

presented in this paper. The original rate scalable SLS

coder successfully is extended with the proposed HS-SLS

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
25

30

35

40

45

50

55

60

65

70

75
Trees 4 PSNR vs. Bit-rate at 1 / 8 Resolution (K = 5, and r = 2)

PSNR(dB)

B
it

ra
te

(b
pp

)

HS-SPIHT

LHS-SPIHT

HS-SLS

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
25

30

35

40

45

50

55

60

65

70

75
Pout 4 Table (4): PSNR vs. Bit-rate at 1 / 8 Resolution (K = 5, and r = 2)

PSNR(dB)

B
it

ra
te

(b
pp

)

HS-SPIHT

LHS-SPIHT

HS-SPIHT

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
25

30

35

40

45

50

55

60

65

70

75
Camer man 4 PSNR vs. Bit-rate at 1 / 8 Resolution (K = 5, and r = 2)

PSNR(dB)

B
it

ra
te

(b
pp

)

HS-SPIHT

LHS-SPIHT

HS-SLS

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
25

30

35

40

45

50

55

60

65

70

75
Moon 4PSNR vs. Bit-rate at 1 / 8 Resolution (K = 5, and r = 2)

PSNR(dB)

B
it

ra
te

(b
pp

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
15

20

25

30

35

40
Processing time vs. Bit-rate for "Trees" image

Coding time(msec)

B
it

ra
te

SPIHT

LHS-SPIHT

SLS

HS-SLS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

10

15

20

25

30

35

40
Processing time vs. Bit-rate for "Trees" image

Coding time(mesc)

B
ite

 ra
te

SPIHT

LHS-SPIHT

SLS

HS-SLS

Paper ID: ART20172536 DOI: 10.21275/ART20172536 1201

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

algorithm to a highly scalable scheme that supports

combined rate scalability and resolution. By arranging the

data that is implemented easily in increasing order of

resolution levels using resolution-dependent parts list and

resolution-dependent coding passes. Fully scalable bit-

stream of the HS-SLS algorithm, for all lower spatial

resolution decoding, that is flexibly using a very pure

scaling process that is achieved on-the-fly and without the

need to decode the main bit-stream. The LHS-SPIHT

encoder has bad PSNR and higher complexity than HS-

SLS as indicated from the experimental results. In many

applications, the proposed scheme can be involved such as

retrieval systems and image storage, and especially over

heterogeneous networks when is multimedia information

transmission, where a wide variety of users need to be

differently serviced according data processing capabilities

and to their network access. As well, very suitably for

hardware implementation due to the fixed size memory

usage is made with the HS-SLS algorithm. In the end, for

volumetric and 3-D image compression systems are very

useful the HS-SLS algorithm due to this algorithm give its

benefiting from its reduced simplicity and memory.

References

[1] Mrs. Nimse Madhuri S Int." Scalable Image

Encryption Based Lossless Image Compression

“Journal of Engineering Research and Applications

ISSN: 2248-9622, Vol. 4, Issue 10(Part - 6), October

2014, pp.51-55.

[2] W. A. Pearlman and A. Said "Image Wavelet Coding

Systems: Part II of Set Partition Coding and Image

Wavelet Coding Systems Foundations and Trends_ in

Signal Processing" Vol. 2, No. 3 (2008) 181–246_c

2008.

[3] Yang Y., et al "Scalable image coder for mobile

device" 6th International Conference on Information,

Communications &Signal Processing > 1 – 5, 2007.

[4] Jie Liang, "Highly Scalable Image Coding for

Multimedia Applications ACM Multimedia" 97 -

Electronic Proceedings November 8-14, 1997.

[5] R. Kavitha, Sundararajan .M, Arulselvi S., "Proficient

Image Compression using the Wavelet Transform and

Fuzzy C-Means Clustering “International Journal of

Innovative Research in Science, Engineering and

Technology Vol. 4, Issue 5, May 2015.

[6] Jin Li, "Image Compression - the Mechanics of the

JPEG 2000", Microsoft Research, Signal Processing,

One Microsoft Way, Bld. 113/3374, Redmond, WA

98052.

[7] J. Vis. "Scalable line-based wavelet image coding in

wireless sensor networks Commune. Image" R. 40

(2016) 418–431.

[8] W. A. Pearlman and A. Said "Image Wavelet Coding

Systems: Part I of Set Partition Coding and Image

Wavelet Coding Systems Foundations and Trends_ in

Signal Processing" Vol. 2, No. 3 (2008) Vol. 2, No. 2

(2008) 95–180.

[9] A. Said and W. A. Pearlman, “A new, fast and

efficient image codec based on set partitioning in

hierarchical trees, ” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 6, no. 3, pp.

243–250, June 1996.

[10] S. Tripathi, A. Ahirwar “Improved Image

Compression by Set Partitioning Block Coding by

Modifying SPIHT (IJCSIT)" International Journal of

Computer Science and Information Technologies,

Vol. 7 (5), 2016, 2152-2157

[11] Ranjan, K. et al, "Listless Block-tree Set Partitioning

Algorithm for Very Low Bit-rate Embedded Image

Compression,” Elsevier, International Journal of

Electronics and Communications, pp 985-995, 2012

[12] http://www.cipr.rpi.edu/research/SPIHT

[13] Danyali H. and Mertins A., “Flexible, Highly scalable,

Object-based Wavelet Image Compression Algorithm

for Network Applications,” IEE Proc. Visual Image

Signal processing, Vol. 151, No. 6, pp. 498-512, Dec.

2004

[14] M. Alamand E. Khan, “Listless Highly Scalable Set

Partitioning in Hierarchical Trees Coding for

Transmission of Image over Heterogeneous

Networks”, International Journal of Computer

Networking, Wireless and Mobile Communications

(IJCNWMC), Vol.2, Issue 3 pp. 36-48, Sep 2012.

[15] D. Taubman et al, “Embedded Block Coding in

JPEG2000,” Signal Processing: Image

Communication Vol. 17, No. 1, pp. 49-72, Jan. 2002

[16] Ordentlich E. et al, “A Low-Complexity Modeling

Approach for Embedded Coding of Wavelet

Coefficients,” Proc. IEEE Data Compression Conf.

(Snowbird), pp. 408-417, March 1998

[17] Ali Kadhim Al-Janabi, “Low Memory Set-

Partitioning in Hierarchical Trees Image Compression

Algorithm”, International Journal of Video & Image

Processing and Network Security IJVIPNS-IJENS,

Vol.13, No.02, pp. 12-18, April 2013

Author Profile

Dr. Yahya Ali Lafta was born in Hilla, Iraq, in

February 1960. He graduated in engineering

Electronics aviation in 1982 from academic

engineering air Force Yugoslavia and received

Force Yugoslavia and received the M.Sc. degree in 1984,

both from the University of Belgrade, Yugoslavia. In

2012, he received the Ph.D. degree from the University of

LJMU, U.K. He is currently a Lecturer at the Department

electronics& communication faculty engineering of Kufa,

Iraq. His research interests include video coding and

networking, compressed-domain algorithms, robust coding

techniques for wireless communications, and multimedia

networks.

Paper ID: ART20172536 DOI: 10.21275/ART20172536 1202

https://www.infona.pl/contributor/0@bwmeta1.element.ieee-art-000004449701/tab/publications
https://www.infona.pl/resource/bwmeta1.element.ieee-pub-000004446227/tab/bContent
https://www.infona.pl/resource/bwmeta1.element.ieee-pub-000004446227/tab/bContent

