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Abstract: The aim of this work is to resolve the problem of finding the optimal therapeutic protocols in cancer immunotherapy 

including the best dosage and timing of immunotherapy drug. We formulate this problem as an optimization problem by applying the 

theory of optimal impulsive control using a mathematical model of five ordinary differential equations that describe the kinetics of 

several populations (tumor cells and three types of immune cells) as well as the intervention of immunotherapy with interleukin2. 
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1. Introduction 
 

Mathematical modeling in the field of health, especially 

oncology, represents now a very rich area of research, it 

helps to understand the development of cancer and predict 

its evolution. There are several mathematical models which 

are, in some cases, validated with experimental results. One 

distinguishes those that describe the development of the 

tumor [1]-[9], those representing the interaction with 

immune cells [10]-[12] and those that consider the 

intervention of one or more therapies [13]-[17]. 

 

One of the most recent approaches to cancer therapy is the 

immunotherapy, it is based on stimulating the body's 

defenses against cancer cells with activators such as the 

interleukin2 (IL2) which is the main cytokine responsible 

for the activation of lymphocytes. The types of cancers 

treated in general with immunotherapy by continuous 

infusion or injections of IL-2, are the renal carcinomas and 

some types of melanomas. The treatment with IL-2 alone 

or in conjunction with other therapies has produced 

beneficial effects in the treatment of metastatic melanoma 

[18] and metastatic renal cancer [19]. Several lines of 

evidence suggest that the use of immunotherapy with the 

cytokine IL-2 can boost the immune system to fight cancer. 

The use of the interleukin-2 on human and animal immune 

system was studied by Rosenberg et al.[20], the 

experiments have demonstrated that IL-2 partially restores 

the immune deficiencies and immune response, it allows 

the generation of lymphokine activated killer cell (LAK) 

and stimulates the activated T cell migration. IL-2 

improves also the activity of CTL in different stages of the 

disease [17],[21]-[23] and promotes CTL proliferation 

[24], also increases the NK cells cytotoxicity [25]-[27]. 

 
Experimental studies on animals [28]-[30] and humans[31] 

have shown that treatment with maximal dose of IL-2 could 

produce regression of the tumor, specially the metastatic 

renal cell carcinoma [32], but it has a variety of toxic effects 

that limit its use. In contrast, several preclinical studies have 

suggested that the prolonged administration strategies with 

low dose of IL-2 might be more effective [33]. The usage of 

IL-2 with low dose for long time has double benefits; it 

enhances the antitumor action of IL-2 and at the same time 

minimizes its toxicity. In Rosenberg et al.[20] trials, the 

administration of IL-2 at low doses had no side effects and 

could also lead to the regression of tumor for patients with 

melanoma and renal carcinoma for different ways of IL-2 

administration, only or in combination with the lymphokine 

activated killer cell (LAK). 

 

The administration of IL-2 depends on the type of cancer and 

how advanced it is, the type of immunotherapy and how the 

body reacts to treatment. The optimal administration of IL-2 

is unknown, it is generally administrated for metastatic renal 

cell carcinoma and metastatic melanoma with such that: 

600,000 IU/kg (0.037 mg/kg) IV over 15 min every 8h for a 

maximum of 14 doses, then 9 days of rest, then a maximum 

of 14 more doses [34]. 

 
 
However, we can define the optimal dosing regimen for IL-2 

based on some techniques of optimization such as the optimal 

control theory which has contributed to the development of 

treatment strategies against cancer and to achieve different 

objectives: improving the effectiveness of treatment [35]-

[44], to predict the optimal duration of therapy [45], [46] and 

also to determine the optimal dose that minimizes both the 

tumor mass and side effects of therapy [15], [47], [48]. 

 

The optimal control problem studied in this paper is different 

from the conventional ones, in one hand we consider a 

mathematical model of De Pillis et al.[14] consisting of six 

differential equations describing a continuous evolution in 

time of tumor and immune cells. In the other hand we define 
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the control variable, which represents the dosage amount of 

IL-2, as not continuous in time due to the discrete manner of 

tacking the IL-2 doses. This has been referred to as hybrid 

system where the discrete and continuous behaviors are 

present. In order to solve this problem we formulate it as an 

impulsive optimal control problem, for which the main goal 

is to minimize the tumor cells number, then we apply 

theoretical and numerical methods used in such cases [49]-

[51]. 

 

2. Model of tumor-immune cells dynamics 

with therapy intervention  
 

One of the tumor-immune system and therapy intervention 

model is that developed by de Pillis et al. [14]. The authors 

in this work update the model of de Pillis et al.[52], to which 

they added additional cell interaction terms as well as 

chemotherapy and immunotherapy effects. Using a system of 

ordinary differential equations, the model describes the 

kinetics of four populations: tumor cells and three types of 

immune cells, as well as the chemotherapy and 

immunotherapy drugs concentrations in the bloodstream. 

 

In this paper we are interested by studying only the 

interaction of immunotherapy (with IL-2) and tumor-immune 

cells. For this reason we turn off the chemotherapy by 

setting 0M , with M is the concentration of chemotherapy 

drug in the bloodstream. In what follows, the tumor cells are 

denoted by T , the natural killer cells are denoted by N , the 

tumor specific T cells (CD8+T) are denoted by L , the 

Circulating lymphocyte cells are denoted by C and the 

immunotherapy with IL-2 concentration in the bloodstream 

is denoted by I . 

 

Tumor cells equation: it is assumed that the tumor cell 

population grows logistically, )1( bTaT  , in the absence of 

an immune response. The death of tumor cells due to NK 

cells takes the form cNT , whereas the death due to CD8+T 

is given by DT . The presence of tumor cells stimulates the 

NK cells, N

Th

T
g

2

2



, and CD8+T cells, L
TDK

TD
j

22

22


. 

 

NK cells equation: the source of the NK cell population, eC , 

is represented as a fraction of the circulating lymphocyte 

population, a simplification meant to represent the complex 

cascade of biological events that leads to NK cell 

stimulation. It's also assumed that a fraction of NK cells die 

when they have interaction with a tumor cell, this gives the 

term pNT  . 

 

CD8+T cells equation: it's assumed that CD8+T cells have a 

linear natural death rate, mL  , as well as a quadratic death 

rate, 
2

uNL . The CD8+T cells may also die through 

interaction with the tumor and this is represented by a mass 

action term qLT . Interactions of the tumor with the larger 

lymphocyte populations, N and C, stimulate CD8+T 

production, these stimulatory terms are represented by the 

two positive mass action terms, NTr
1

  , CTr
2

  . 

 

The Circulating lymphocytes equation: it's assumed that the 

Circulating lymphocytes have a constant source term and a 

linear death rate. 

 

The immunotherapy equation: although naturally produced, 

the cytokine IL-2 is often used to treat cancer. This model 

assumes a linear decay rate, additionally, when a CD8+T 

cells is stimulated by IL-2 it will secrete more IL-2 as 

represented by
I

I
g

LI
I

P


. 

 

All of the model assumptions and parameter values are 

mentioned in [14]. 

 

In the literature [38],[53]-[55], the cancer drugs 

administration may be considered in different ways, we note 

in this regard the continuous drug treatment regimens of 

immunotherapy presented by the control function u(t) which 

is continuous in time. However, this way is sometimes judged 

as far from the real way of cancer drugs administration for 

which only the pulse-dose make sense. In this work, we aim 

to study an optimal control problem in which the dynamical 

system involves a finite number of switching times it  and 

state jump at each of these switching times. At injection 

times it , ni ,...,,2,1 , the IL-2 concentration in 

bloodstream increases by an amount iu , ni ,...,,2,1 , with 

n  is the total number of IL-2 injections during the treatment 

period. 

 

For itt   the tumor-immune dynamics with drugs 

intervention is given by: 
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At itt =  the IL-2 concentration in the bloodstream is given 

by: 

 

iii utItI  )(=)(
 (2) 

 

 Where )( itI  is the concentration of IL-2 immediately 

before the injection, )( 

itI  is the concentration of IL-2 

immediately after the injection and iu  is the IL-2 amount at 

the 
thi  IL-2 injection time it , with ni 1,2,...,= . 

 

3. Optimal impulsive control problem 
 

We aim to find the optimal strategy of treatment which gives 

the optimal dosage and timing of injections. To describe this 

optimal control problem, we reformulate the IL-2 dosing 

using a control function as the sum of Dirac-delta function at 

time it  as follow:  

ii

n

i

utU 
1=

=)(                                 (3) 

So, we can rewrite the hybrid system (1)-(2) as  
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The optimal control for cancer immunotherapy has been 

extensively studied in the literature (see for example [38], 

[53]-[55]). In these works a continuous control function is 

used to indicate the continuous dosing of immunotherapy. 

The study of this optimal control problem is based on some 

standard theories such as the Pontryangin’s maximum 

principle generally used to find the optimal control 
*u  in 

terms of the state and the adjoint variables.  

 
In this paper we are interesting in special class of optimal 

control problems, called optimal impulsive control problems, 

in which the dynamical system (4) involves a finite number 

of switching times 
it , together with a state jump iu , 

ni 1,2,...,= . The state jumps from being continuous to 

being discrete when the continuous state trajectory crosses 

one of the switching times it , ni 1,2,...,=  [50], [51]. In 

this case, the optimal control problem may be presented as 

follow: 

 

Find vector 
nRu 2** ),(   such as  

),(=),( ),(

** uminuJ u     

 

 Where , the impulsive control variable space and 

),...,,;,...,,(=),( 2121 nn uuutttu with nti 1,...,=  

indicates the jump times, and 01,...,= nui  the optimal 

control with state jump. 

 

Each jumping procedure is carried out according to the 

following schedule:  

 

}1,2,...,=0

,...,01,...,=:),{(=),(= 21

niu

ttttniutuS

i

finalnii




 

 As result, our optimal impulsive control problem may be 

defined as follows: 

 

Problem (P): Subject to the system (4) with the initial 

condition ),,,,( 00000 ICLNT , find a schedule 

),(= uS  such that the total number of tumor cells 

during the treatment period can be minimized.  

 

dttTuuutttJuJ
final

t

nn )(=),...,,,,...,,(=),(
0

2121 
 (5) 

  

We are looking for an optimal vector 

),...,,,,...,,(=),( **

2

*

1

**

2

*

1

**

nn uuutttu  such that:  

}),(|),({min=),( ** uuJuJ   

 

We can notice that the objective function depends on the 

injection times 
*

1,...,= nit  and the dosage amounts
*

1,...,= niu , 

which means that the problem (P) cannot be resolved directly 

using classical optimization technique. Due to the difficulty 

to resolve this class of impulsive control problems, Liu et al. 

[50] have developed a computational method by 

transforming them into optimal parameter selection 

problems. We will use this method to resolve our impulsive 

control problem in the next section. 

 

4. Existence of an optimal solution for problem 

(P) 
 

In order to use the result of the existence of an optimal 

solution, theorem III 4.1, from Fleming and Rishel [56], we 

must cheek that:   

 

 The control variable space    is compact.  

Paper ID: ART20172431 DOI: 10.21275/ART20172431 1645 



International Journal of Science and Research (IJSR) 
ISSN (Online): 23197064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 6 Issue 4, April 2017 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

 The function )(SJS   is continuous.  

 

As we can see, from the definition of the space , we can 

deduce that it is compact. To cheek the continuity of the 

objective function )(SJ  with respect to the control space 

S  we transform the system (4) to an equivalent system with 

the control variables niut ii 1,...,=),,(  as parameters, as it 

is proposed by Liu et al.[50].  

 

Let 
TICLNTX ),,,,(=  and rewrite system (4) as: 


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Where 
55 RIRI: F and 

Te )(0,0,0,0,1=5 .  

We associate for X, the corresponding variable Y such as: 

 

[0,1]);)((= 11   sstttXY iiijij              (7) 

 

Where the index i , 11,...,= ni  represents the time 

interval ),( 1 ii tt   and j , 1,...,5=j  denotes the 
thj  state 

in system (6), with 0=0t  and f inaln tt =1 .  

 

We rewrite the system (1) in terms of the equivalent system 

using a discrete scheme on the index i  as follows: 

 

























































])[(=

])[(=

,]

)(

)[(=

,]

)[(=

,])(1)[(=

51

5

41
4

5

532

32

1422113

32

1

2

2

1

2

31

3

12

22

1

2

1

241

2

112111

1

iIii

i

iii
i

iI

iiI
ii

iiiii

i

i

i

iii

i

ii

i

i

i

iiii

i

iiiiiii

i

Ytt
ds

dY

Ytt
ds

dY

Yg

YYp
YuY

YYrYrYqY

Y
YDk

YD
jmYtt

ds

dY

YpY

Y
Yh

Y
gfYeYtt

ds

dY

DYYcYbYaYtt
ds

dY





 

                                                               (8) 

 

The initial conditions are:  

For 1=i , 011 =(0) TY , 012 =(0) NY , 013 =(0) LY , 

014 =(0) CY
, 015 =(0) IY

. 

For 1i  and 2,...,4=j , (1)=(0) 1)( jiij YY  .  

11)5(5 (1)=(0)   iii uYY
. 

Applying the transformation mentioned in (7) for which 

[0,1]),)(= 11   sstttt iii , then the objective 

function (5) become:  

dssYttdttTdttT iii
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We can notice that the continuity of the objective function (5) 

with respect to the dose time it  and dose amount iu  is 

equivalent to the continuity of the transformed function (9) 

with respect to it  and iu . The continuity of 1iY  with respect 

to it  and iu  is obtained due to the continuity of solutions of 

(8), which gives the continuity of the objective function (5) 

with respect to it  and iu  and implies the existence of an 

optimal solution for Problem (P). 

 

5. Computational Method  
 

Now, we utilize a generalized variational equation to 

calculate the derivatives of the objective function with 

respect to it  and iu  and then apply the gradient based 

methods to search for the minimum of the objective function. 

The gradient of the objective function (5) with respect to the 

dose times it  and dose amount iu  are resolved using the 

following propositions. 

 

Proposition 1 Consider IL-2 injection at time it  with dose 

amount iu .  For itt  ,  )(),(),...,( 51 tztutu  with 

 51 ,...,= uuu  solves the following equations: 

 

),)(())((=)(
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and  
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 With  

 

][0,)),((=
)(

),(=))((

6
finaltttXL

dt

tdX

tTtXL


 

dttTJtX
final

t

final )(==)(
0

6  , 0=(0)6X . The 

formulation of the lagrange problem is presented in Lemma 

4.1 in [49]. 
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Proposition 2 Consider IL-2 injection at time it  with dose 

amount iu .  For
itt  ,  )(),(),...,( 51 tZtUtU  with 

 51,...,= UUU  solves the following equations:  

0,=)(

,=)(

),()).((=

),()).((=
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i
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dt
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dt
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These two propositions give us the calculation of the partial 

derivatives 

it

J




 and 

iu

J




 which represent the basic 

elements for the numerical solution of the optimal control 

problem (P). 

 

6. Numerical simulation 

 

We will resolve our problem using the following 

optimization algorithm: 

     

Step 0: 

 Fix the final time f inalt , and the number of injections n  

 Initialize the variablesT , N , L , C , I , and the 

schedule ),...,,,,...,,( 00

2

0

1

00

2

0

1 nn uuuttt .  

 

For ni 1,...,=   

Step 1: Solve the system (1) via the fourth-order Runge-Kutta 

method. At the same time, solve the equations (10) and (11).  

 Step 2: Compute the gradient of the objective function with 

respect to it  and iu .  

 Step 3: Update the schedule using the steepest decent 

method as follow: 

i

t

k

i

k

i
t

J
htt



 =1

, 

i

u

k

i

k

i
u

J
huu




 =1

. 

Where k  is the iterations, and th  and uh  are small positive 

parameters. Go to step 0.  

 

Each iteration corresponds to one day. The initial condition 

of the first time
1

0t , expressed in days, is considered to be 

equal to 5 day as the initial day of starting treatment. 

Knowing that IL-2 is usually administered in 5-day cycles 

[57] all the next initial conditions of converged injections 

times
0

it , ni 2,...,=  follow the rule of the following 

iterative scheme:  

0

1

0

11...,=

0

1 = ttt nii   
For the number of doses 5=n  the computational method 

converges to five dose times. The first dose time converges 

from 5 days to 7 days, the second increases from 10 days to 

12 days, the third converges from 15 days to 18 days, the 

fourth one converges from 20 days to 23 days and finally the 

last one increase from 25 days to 27 days. This is illustrated 

in Figure 1(a). 

 

The numerical simulations indicate that if the IL-2 is 

administered one, two or three times ( 1,2,3=n ), the 

treatment cannot be efficient in tumor eradication. While, for 

4=n  we have noticed that the number of tumor cell 

population become to decrease and this number decreases 

remarkably for 5=n . Further noticed is that for 5>n  we 

have obtained the same result as 5=n . For this reason we 

will consider in the rest of our simulations five injections of 

IL-2.  

 

As it is noticed in Figure 1(b), the doses of the five injections 

increase from the same value kgIUui /72,000= , 

1,...,5=i  and finish up converging to different dosages. 

The dose of the first and the second injection converge to 

alike low amount kgIU/107.2 4  it is noticed that the 

second injection dose is a little higher than the first one. The 

third injection dose increases to kgIU/102.3 5 , the fourth 

injection dose converges to kgIU/105 5  and finally the 

last one increases to a high level kgIU/106.8 5  which is 

cannot be considered as high amount (the high amount used 

in Rosenberg et al.[19] is 
5107.2 IU/kg). The third and 

the fourth injection are administered for longer time than the 

first, the second and the five. 

 

We present in Figure 2 and Figure 3 the tumor cell 

population’s evolution as well as the evolution of NK cells, 

CD8+T cells and the Circulating lymphocytes before starting 

the therapy and after administering the IL-2. The Figure 2 

shows the evolution over time of the tumor and immune cell 

populations calculated via the numerical solution of the 

system (1) when no treatment is administered. We examine 

an initial tumor burden of 
710 cells, we notice that the 

immune system is unable to respond very well, which 

explains the increasing number of tumor cells that grow to a 

dangerous level. We can see the immunologic effects of 

growing tumor on immune cells. 

 

The Figure 3 presents plots of the tumor cell population and 

immune cell population in the presence of immunotherapy 

intervention. A situation for which the cancer is large enough 

and considered potentially detectable. By using the optimal 

schedule obtained in Figure 1, the tumor mass of 
710  cells 

decreases remarkably under the quarter of the initial size. 

 

The optimal strategy suggests that the best way to control 

tumor cell population is to start with low doses of IL-2 and to 

increase the dose gradually in order to prepare the body for 
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receiving high dose of IL-2. The use of repeated low doses of 

IL-2 (the fist and the second dose) from 5 days to 7 days and 

from 10 days to 12 days reduce the tumor cells number as it 

is presented in Figure 4(a) and increase the number of CTL 

cells as it is shown in Figure 4(b) we can notice that this 

number has risen from the initial value 10 to 
11102  after 

the second injection in day 10. This may be explained by the 

stimulating effect of IL-2 on CTL cells which active their 

proliferation and augment their number [17], [21]-[24]. 

 

We can also notice that the number of NK cells decreases too 

fast before starting therapy and diminished gradually after the 

first and the second injection, this is may be explained by the 

strategy of NK cells to kill the cancerous cells. Before the IL-

2 injection, the NK cells intervene to destroy tumor cells and 

they are destroyed along with them which explain the 

significant decrease. After the first and second dose, the IL-2 

increases the cytotoxicity of NK cells [25]-[27], they don’t 

die along with tumor cell in their first contact but they adopt 

such a competence to destroy more than one cancerous cell. 

The patient’s immunological health is measured by the 

number of circulating lymphocytes which should not drop 

below a threshold. This threshold is considered to be in the 

order of 
810  cells (see [58]).  

 

The stimulated effect of IL-2 on immune cells leads to 

decrease the number of tumor cells after the second injection 

in day 10, the third injection in day 15, the fourth injection in 

day 20 and the last high injection dose in day 25. After the 

last injection, we can remark as it is shown in Figure 4(d) that 

the tumor cells number decrease by coming close to the day 

100, which explains the decreasing number of CTL cells. In 

addition, the circulating lymphocytes number doesn’t drop 

below the defined threshold, as it is presented in Figure 3, 

which means that the patient’s body is responding positively 

to the therapy without noticing any significant toxicity. 

7. Conclusion 

 

The problem of finding an optimal schedule for 

immunotherapy with IL-2 is studied in this work by 

formulating it as an impulsive optimal control problem for 

which the results provide us with some elements of answer to 

the questions: when it is advantageous to take the IL-2 dose? 

and how much of IL-2 should be taken?  

 

The model used in this paper is that developed by De Pillis et 

al. [14] using a system of ordinary differential equations. 

This model describes the kinetics of four populations: tumor 

cells and three types of immune cells, as well as the IL-2 

drug concentrations in the bloodstream. 

 

The case of continuous administration of IL-2 using this 

same model has been studied in Zouhri et al. [48], their 

numerical simulations show that the immunotherapy with IL-

2 administered alone for tumor burden of 
610  cells was 

capable to reduce remarkably the tumor cell number, the 

optimal treatment consists of giving the entire high dose of 

IL-2 
6105  at the beginning of the treatment then the IL-

2 is turned off. In contrast, this same administration of IL-2 

was not effective neither in killing tumor of size 
710 cells 

nor in reducing the cancerous cell number. 

 

The impulsive optimal control approach applied in this work 

has allowed administering the IL-2 in discrete manner. The 

numerical simulations are generated using a computational 

method which combines a fourth order Runge-Kutta scheme 

with an optimization method. The results show that for five 

injections (n=5) and five injection times a tumor size of 
710  

is reduced under the quarter of its initial size. The dosage 

program recommends to start with low doses of IL-2, in order 

to stimulate the activity of CTL and NK cells, then to 

increase progressively the dose until reaching a high dose. 

 

Through the decreasing number of Tumor cells and CTL 

cells and the number of the circulating lymphocytes which 

has not dropped below the threshold (Figure 3), it’s is 

deduced that this high dose has no toxicity effects and the 

dosage program was efficient in tumor size minimization. 

 

 
 (a) 

 

 
(b) 

 

Figure 1: The evolution of the optimal schedule over time. a) 

Evolution of the five injection times. b) Evolution of the five 

injections amounts. 

 

Paper ID: ART20172431 DOI: 10.21275/ART20172431 1648 



International Journal of Science and Research (IJSR) 
ISSN (Online): 23197064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 6 Issue 4, April 2017 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

 
Figure 2: Tumor and immune cell populations over time 

when no treatment is administered. Initial conditions: 
710  

Tumor cells, 
310  NK cells, 10 TCD 8  cells, 

8106  

circulating lymphocytes. 

 

 
 

 
Figure 3: Tumor and immune cell populations over time 

when IL-2 is administered. Initial conditions: 
710  Tumor 

cells, 
310  NK cells, 10 TCD 8  cells, 

8106  circulating 

lymphocytes, IL-2 dosage equals to 
4107.2 IU/kg injected 

in day 5, kgIU/107.6 4  injected in day 10, 

kgIU/102.3 5  injected in day 15, kgIU/105 5  

injected in day 20 and kgIU/106.8 5  injected in day 25 

 

 
(a) 

 

 
(b) 
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(c) 

 
(d) 

Figure 4: Shapes of curves: a) and d) the tumor cell 

population before and after the last injection respectively. b) 

the CD8+T cells evolution and c) the NK cells evolution 

during the therapy for a dosage equals to 
4107.2 IU/kg 

injected in day 5, kgIU/107.6 4  injected in day 10, 

kgIU/102.3 5  injected in day 15, kgIU/105 5  

injected in day 20 and kgIU/106.8 5  injected in day 25. 
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