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Abstract: The paper utilizes a small feature set formed by the polarization nulls of the target’s resonances to identify airborne model 

targets.Once linked to the target resonances, the small feature set can reflect shape attributes like the elongation, symmetry, and tilt 

degrees in the individual target substructures. Based on a 3D feature space formed by these three degrees, the identification approach 

applies Euclidean distance measure to identify two electrically similar targets of similar resonance behavior. The identification 

performance indicated that the feature set is robust, and in particular, the elongation feature demonstrated superior discriminative 
ability. 
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1. Introduction 
 
As the need to identify radar targets accurately as either 

friendly or hostile at a distance in confrontational situations is 

essential to most defense applications, the function of the 

radar signal processing should involve actively classifying 

the targets categorically and then identify them individually. 

Such process of decision making often relies upon target 

recognition algorithms based on template matching or 

statistical models.  Importantly, it is common to use the 

resonance frequency set, which in turn relates to the target 

dimensions, to categorize or classify it in the learning 

database and then use the target’s shape to identify it. 

Henceforth, the classification then identification stages lead 
to computationally efficient target recognition methods. For 

targets of similar resonance set but different shape, then 

recognition is possible based on the shape attributes like 

symmetry, elongation, and tilt degrees. Such attributes 

inferred from characteristics polarization of the target as the 

target works like a transformer of the incident wave 

polarization. Henceforth, the incorporation of characteristics 

polarization states (CPS) with a radar signature is beneficial, 

e.g. [1-4], and will also enhance the target backscattering 

return; and subsequently, the ability to better identify radar 

targets even if the targets are of the same class category such 
as airborne targets, e.g. [5-8]. 

 

However, A full polarization information about the target 

individual structures requires the CPS set along the target 

dominant resonant frequencies  In this respective, the 

Singularity Expansion Model (SEM) [10] and the Method-

Pencil-Function (MPOF) algorithm [11] come in handy. The 

SEM express the late-time portion of the backscattered signal 

as a sum of exponentially decaying signals of complex 

natural resonances (CNR), of course, with the assumption of 

sufficient broadband illumination of the target under test. The 

MPOF enables the estimation of the target CNR set from the 
backscattered late-time response even with low Signal-to-

Noise ratio (SNR), where a CNR forms a minimal set of 

parameters to represent the target signature, i.e. the complex 

frequency and the associated strength, namely residue. 

Henceforth, a quadrature matrix of the orthonormal set of 

residues at a single resonance will carry information about an 

individual target structure. By applying a Lagrangian 

optimization to the power terms, the second moments, a 

matrix of the residue with the antenna directions as Stokes 

variables, the optimum antenna directions (represented by 

four Stokes variables) for null reception can be found, and 

subsequently the required shape degrees[12]. 

 

For identification stage, the polarization angle set will form 
the variables of the feature space with their observations, i.e. 

samples, generated with a preset signal to noise ratio (SNR). 

To be able to identify a target, its associated angles should 

form recognizable and discriminable patterns in the feature 

space.  As the pattern becomes more recognizable, the 

identification task will be simpler even with simple distance 

measures [13, 14]. Here, an observation or a sample is 

represented by a point in 3D space formed by the three shape 

degrees at a particular resonance frequency. Therefore, for 

each resonance, there will be a separate feature set to 

evaluate its respective identification performance. For given 

target conditions, we quantify the quality of identification as 
the probability or number of correct identification decisions 

as a function of the environment disturbance. 

 

Hence, the new contribution of this paper is the evaluation of 

an identification algorithm based on the proposed 

polarization angle set, and in cases of fully and partially 

polarized wave. Section 2 presents the signal preprocessing 

steps, co-nulls derivation process, and then the identification 

approach. Section 0shows the target model and the 

identification performances for a different set of shape 

degrees and resonances. Finally, section 4reaches 
conclusions and point out the direction of further studies.  

 

2. Method 
 

Obtain the transient response by Fourier transforming the 

low-pass filtered frequency response with the filter’s cutoff 

set above the highest resonance of interest. The calculation of 
a sufficiently broadband frequency response is made feasible 

by the method of moments using FEKO software[15].Set the 

SNR level by adding Additive White Gaussian noise 

(AWGN) to the transient signal, then select the late-time 

onset after the specular response has vanished (approximately 

at twice the maximum target dimension L per speed of light 

c, i.e. 2L/c). Apply the MPOF to the truncated late time 
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portion to extract the CNR. The late time signal a(t)is 

represented by the SEM model as a sum or series of CNR as 

follows:  
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Such that M, c, , and ω terms denote respectively the 
number of CNRs excited, the residue, the damping factor, 

and the frequency of the CNR mode. The extraction of a 

CNR is sensitive to noise and late-time onset selection, for 

this make sure the reconstructed signal resembles the original 
signal to a significant extent [16]. 

 

2.1 Co-null states 

 

Typical preprocessing steps to derive the co-nulls are: 

For a CNR of interest, and for three polarization directions, 

i.e. two orthogonal co-polarization and one cross-polarization 

due to reciprocity, construct the 2x2 residue matrix for this 

particular CNR as follows[17]: 

C = [
cxx cxy

cyx cyy
] (2) 

Where subscripts xx and yy denote the co-polarization 

directions, and xy=yx (due to reciprocity) denote the cross-

polarizations directions. Then, establish the co-power 

equation with the second moments (Kronecker product) of 

the residue matrix C and the fictitious antenna in Stokes 

vector form g as follow: 
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To derive the co-null states in Stokes variables terms g1, 2, 3, 

solve simultaneously (by the Lagrangian optimization 

method)the three partial derivatives of the power equation in 

(3)as a function of the Stokes variables and the constraint 

condition Φ as follows: 

 

Subject to Pggg),g,g(g  2
3

2
2

2
1321Φ , where 0<P<1.  

The P account for the loss of polarization degree in the wave 

polarization mainly due to noise. Theoretically, we can 

handle this loss with ensemble average, so that will not affect 

the computation of the estimated proposed angles if properly 
averaged. 

 

Now, the two co-null states gcn1 and gcn2 are in the form of 

Stokes vector, such that: 

1st. The elongation degree β (0-45o) is determined by taking 

the dot product of the null vectors as  

 β =45o-(45ox|gcn1 gcn2|) 
2nd. The symmetry degree ε (0-45o) is determined from the 

g3 sum of the two co-nulls as 

 ε= ½sin-1 (g3cn1+g3cn2) 

3rd. The tilt degree τ (0-90o) is determined from theg1 and 

g2of the two co-nulls as 

 τ =½tan-1[(g2cn1+g2cn2)/(g1cn1+g1cn2)] 

2.2 Identification process 

 

Based on supervised learning approach, the identification 

process involves two modes of operations: (a) an off-line 

training mode to build the cataloged database and (b) real-

time testing mode.  In the training mode, use samples of the 
feature set of known candidate targets to construct the targets 

database.  Then the testing mode involves deriving the 

feature set of an unknown target under observation and 

making a decision as to the identity of this unknown target.  

In general, decision-making includes determining the 

proximity (similarity) between a test sample and the 

cataloged database to declare the identity of the observed 

target, assuming the availability of the target measured in the 

database. 

 

In this case, consider the shape degrees as the variables of the 

feature space for each resonance, in another word; select the 
angles as the dimensions of the feature space. Assuming 

known target aspect, keep the target’s aspect constant such in 

the case of moving targets. In general, we will evaluate the 

identification performance by a pairwise distance measure of 

the unknown test sample to the corresponding estimated 

sample in stored in the training database. Hence, assign the 

unknown sample to the target with the minimum defined 

distance. The identification process includes two stages as 

follows: 

 

Training stage: 
1st. Preset the level of AWGN, generate N corrupted 

observations/samples of angles at each CNR.(In the 

testing stage, the same N samples are considered the 

test samples.) 

2nd. Build the training database for each CNR by taking the 

ensemble average of its associated samples.(Thus the 

training samples are estimated with preset level of 

SNR.) 

3rd. For stationary targets, repeat for all target aspect angles 

of interest (omitted in our case).  

 

Testing stage: 
4th. Generate a new sample or use the N samples from the 

training stage as the test samples. 

5th. Expressed in degrees, measure the distance, e.g. 

Euclidian type, between the tested sample and the 

targets trained sample, i.e. estimated. 

6th. Assign this sample to the target with the minimum 

aggregate distance accumulated across the angles and 

resonances of interest. 

 

The results will then show how well the identification 

algorithm performs by counting the number of correct 
identification instances and expressing the result as a 

percentage of total trials. 

 

3. Results 
 

Figure 1 depicts the modeled aircraft, where the angle θr 

defines the rotation of the target longitudinal axis from the u3 
axis in a counterclockwise direction. The angles θw and θt 

represent the inclination degrees in the wing and the tail 

sections along the longitudinal axis. Figure 2 depicts the 

target sections current vs. frequency responses, which 
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provides a breakdown of the aircraft resonant frequencies (as 

indicated by the relevant peaks in the spectrum) and shows to 

which geometrical section a resonance belongs. In this case, 

the estimated resonance set is predominately at 150, 300, 410 

and 490MHz corresponding respectively to the mid, nose-

wing, wing and tail sections. 
 

For comparison purpose, select two shape configurations 

A and B as listed in Table I.  Figure 3 depicts a 2D feature 

space with only the tilt and the elongation angles as 

dimensions, here, the scatter plot forms a pool of 40-test 

sample generated with 5dB SNR. Generated with AWGN, 

the distribution is normal for the samples in the feature space, 

as expected.  In the tilt dimension, as expected both targets 

A&B45 reflect a tilt angle around 45o at all resonances, 

whereas target B20 has a tilt angle around 20o. Figure 4 

demonstrates the training samples estimated based on 

ensemble average of each pool of observations as depicted in 
Figure 3. These estimates will form the cataloged database in 

the training stage. Most distinctive feature is the elongation 

angle along the third and fourth resonances, which in turn is 

related to the wing and the tail sections, respectively. This 

distinctiveness coincides with the fact that the targets shapes 

differ in these two parts. Figure 5 gives an example of the 

distance calculated for 40 trials based on the symmetry angle 

associated with the fundamental resonance only. As 

mentioned earlier, this feature is redundant for this type of 

symmetrical targets, and as expected, its probability of 

correct identification is around 50%, i.e. random. Listed in 
Table II are the results of identification performances as per 

shape degrees and a different set of resonances. The 

symmetry, in this case, is the least distinctive feature, 

whereas the elongation angle has the highest probability of 

correct identification. Among the individual resonances, 

linked to the wings the third resonance is the most distinctive 

as the identification rate is the highest in general. Also, it is 

clear that combining the shape degrees and largely the 

resonance modes enhance the identification performance. 

 

4. Conclusions 
 
Even for a single and low-order resonance, the elongation 

feature has demonstrated superior identification ability for 

the same class case but with parts of different inclination 

degrees.  Therefore, evaluating this polarization angle at the 

target resonances is most beneficial for decision-making. 

Also, the elongation angle is invariant with target orientation 

along the line of sight.  In general, the distribution of 

observations in the feature space constructed by the 

symmetry, tilt, and elongation angles is straightforward and 

recognizable for the case of a simple wire target with a fixed 

aspect angle; therefore the decision algorithm such as 
distance learning was simple to implement and sufficient for 

this scenario or case. However, expect the complexity of 

decision-making algorithm to increase with unknown target 

aspect angle, e.g. buried or concealed target and the more is 

the structural complexity of the target. For further studies the 

following are considered; (a) the space diversity in the target 

aspect angle; (b) targets in half space, e.g. [18];(c)exploiting 

other algorithms of decision making like the nearest neighbor 

or even statistical methods, especially nonparametric types, 

e.g. [19]. 
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Table I: Targets A and B configurations. 
Target Rotation  θr Wing inclination θw Tail inclination θt 

A 45 30 60 

B45 45 45 45 

B20 20 45 45 

 

Table II: Targets A&B identification Results for each polarization angle under5dB SNR condition. 
Resonance under test Symmetry (ε) Tilt(τ) Elongation (β) 

1 50 47.5 100 

2 57.5 82.5 100 

3 65 87.5 100 

4 55 75 100 

1&2 58 83 100 

3&4 63 78 100 

1, 2&3 60 90 100 

All 60 95 100 
 

 
Figure 1: The shape and Dimensions (in cm) of the generalized aircraft model 

 

 

 
Figure 2: Current-frequency responses of the selected segments belonging to the nose (#8), wing(#30), mid(#50), and tail 

stabilizer (#78), respectively. 
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                                       (a) Target A       (b)  Target B45        (c) Target B20 

Figure 3: Feature space formed by Elongation-Tilt with pools of targets A &B observations under SNR of 5dBand along all 

four resonances 

 
(a) Target A     (b)  Target B45      (c) Target B20 

Figure 4: The estimated Elongation-Tilt scatter plot for A &Btargets along all four resonances 

 
Figure 5: A stemplot of the training-test distances. Based on symmetry-fundamental resonance feature at 5dB SNR setup 
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