ψ-Primary Submodules

Nuhad S. AL-Mothafar¹, Adwia J. Abid Al-Khalik²
¹Department of Mathematics, College of Science, University of Baghdad
²Department of Mathematics, College of Science, Al-Mustansiriya University

Abstract: Let R be a commutative ring with identity and M be a unitary R-module. Let $\delta(M)$ be the set of all submodules of M, and $\psi: \delta(M) \rightarrow \mathbb{M} \cup \{\emptyset\}$ be a function. We say that a proper submodule P of M is ψ-primary if for each $r \in R$ and $x \in M$, if $rx \in P$, then either $x \in P + \psi(P)$ or $r^n M \subseteq P + \psi(P)$ for some $n \in \mathbb{Z}_+$. Some of the properties of this concept will be investigated. Some characterizations of ψ-primary submodules will be given, and we show that under some assumptions primesubmodules and ψ-primarysubmodules are coincide.

Keywords: Prime submodule, Primary submodules, ϕ-primesubmodules

1. Introduction

Throughout this paper, R is a commutative ring with identity and M is an R-module. A proper ideal P of a ring R is primary if for all elements $a, b \in R, ab \in P$ implies either $a \in P$ or $b \in P$. One of the natural generalizations of primary ideals which have attracted the interest of several authors in the last two decades is the notion of primary submodules. These have led to more information on the structure of the R-module M. For an ideal I of R and a submodule N of M, let $I[N]$ denote the radical of I, and $[N : M] = \{r \in R : rM \subseteq N\}$ which is clearly an ideal of R.

A proper submodule P of M is called a primary submodule if $r \in R$ and $x \in M$ with $rx \in P$ implies that $r^n \in [P : M]$ for some $n \in \mathbb{Z}_+$. A proper ideal of R is said to be prime ideal if $a, b \in I$ implies that either $a \in I$ or $b \in I$. A proper submodule N of M is said to be prime submodule of M if $r \in R$ and $x \in M$ with $rx \in N$ implies that $r \in [N : M]$ or $x \in N$. [3].

Khashasri and Jafarextended the notion of primary submodule to ϕ-primary submodule. Let M be an R-module and $\delta(M)$ be the set of all submodules of M and $\phi: \delta(M) \rightarrow \mathbb{M} \cup \{\emptyset\}$. A function. A proper submodule P of M is said to be ϕ-primary if $r \in R$ and $x \in M$, $rx \in P \cup \{\emptyset\}$ implies that $r \in [P : M]$ or $x \in P$ [4]. In this paper, we define and study the notion of primary submodules.

2. Basic Properties of ψ-PrimarySubmodules

First we give the following definition.

Definition (2.1): Let M be an R-module and $\delta(M)$ be the set of all submodules of M. Let $\psi: \delta(M) \rightarrow \mathbb{M} \cup \{\emptyset\}$ be a function. A proper submodule N of M is said to be ψ-primary if for each $r \in R$, $x \in M$, if $rx \in N$, then $x \in N + \psi(N)$ or $r^n M \subseteq N + \psi(N)$ for some $n \in \mathbb{Z}_+$.
Consider the Z-module \(Z \), the submodule \(2Z \) of \(Z \) (since it is primary) but \(2Z \not\subseteq 30Z \) and \(30Z \) is not \(\psi \)-primary submodule of \(Z \). Since if \(\psi(N) = N, \forall N \leq M \) and \(6.5 = 30 \in 30Z \) but \(5 \not\in 30Z + 30Z = 30Z \).

(6) \(I \) is a \(\psi \)-primary ideal of \(R \) if and only if \(I \) is a \(\psi \)-primary submodule of \(R \).

(7)Let \(M = Z_{12} \) as a \(Z \)-module and \(N = \langle \sigma \rangle \). \(N \) is not \(\psi \)-primary submodule of \(M \).

Proof: Let \(\psi(\mathbb{Z}_{12}) \rightarrow (\mathbb{Z}_{12}) \supseteq (\mathbb{Z}) \), where \(\psi(N) = N + \langle \sigma \rangle, \forall N \leq \mathbb{Z}_{12} \). Now, \(2.3 = 6 \in N \), but \(3 \notin N + \psi(N) \) and \(2^n \notin \{ 2^n \} \). Thus \(\psi(N) = N + \langle \sigma \rangle \) and \(\psi(N) = N + \langle \sigma \rangle \).

(8) The only \(\psi \)-primary submodule of a simple module is \(\{ 0 \} \). Therefore \(\{ 0 \} \) of a simple \(Z \)-module \(Z_p \) (\(p \) is prime) is \(\psi \)-primary submodule.

(9) Let \(M = Z \otimes Z \) as a \(Z \)-module, \(N = 2Z \otimes \{ 0 \} \), then \(N \) is not \(\psi \)-primary submodule of \(M \).

Proof: Let \(\psi(M) \rightarrow (M) \supseteq (\mathbb{Z}) \), such that \(\psi(M) = M, \forall N \leq M \). Now, \(2(1,0) = 0 \). \(1,0 \notin N + \psi(N) \) and \(2^n \notin \{ 2^n \} \). Therefore \(\psi(M) = M \).

For a \(\psi \)-primary, we called \(P \)- \(\psi \)-primary submodule, where \(P = \{ N + \psi(M) : M \} \).

The following theorem gives some characterizations for \(\psi \)-primary submodules.

Theorem (2.3):

Let \(N \) be a proper submodule of an \(R \)-module \(M \) and \(\psi(N) \). Then the following statements are equivalent:
1. \(N \) is a \(\psi \)-primary submodule of \(M \).
2. For every submodule \(K \) of \(M \) and for every ideal \(I \) of \(R \) such that \(IK \subseteq N \), implies that either \(K \subseteq N + \psi(N) \) or \(I \subseteq P = \{ N + \psi(M) : M \} \).

Proof: (1) \(\rightarrow \) (2): Let \(IK \subseteq N \), where \(I \) is an ideal of \(R \) and \(K \) is a submodule of \(M \). Suppose \(K \subseteq N + \psi(N) \), then there exists \(k \in K \) such that \(k \notin N + \psi(N) \). It is clear that for each \(y \in I \), thus \(y \in N \). But \(N \) is \(\psi \)-primary submodule of \(M \) and \(k \notin N + \psi(N) \), hence \(y \notin P = \{ N + \psi(M) : M \} \). Therefore \(I \subseteq P \).

(2) \(\rightarrow \) (1): Let \(r \in R, m \in M \) such that \(rm \in N \). Then \(r > > m > > N \). So either \(m > > N + \psi(N) \) or \(r < P = \{ N + \psi(M) : M \} \) by (2); i.e., either \(m \notin N + \psi(N) \) or \(r \in P = \{ N + \psi(M) : M \} \). Therefore \(N \) is \(\psi \)-primary submodule of \(M \).

We can give the following result.

Proposition (2.4):

Let \(N \) be a proper submodule of an \(R \)-module \(M \). Then \(\sqrt{[N + \psi(M) : M]} = \sqrt{[N + \psi(M) : K]} \) for each submodule \(K \) of \(M \) such that \(K \supseteq N + \psi(N) \), then \(N \) is \(\psi \)-primary submodule of \(M \).

Proof: submodule of \(M \). Let \(r \in R, m \in M \) such that \(rm \in N \) and suppose \(m \notin N + \psi(N) \). Let \(K = N + \psi(N) + < m > \). Therefore \(K \supseteq N + \psi(N) \), \(m \in K \) and \(s \in [N : K] \subseteq [N + \psi(N) : K] \subseteq [N + \psi(N) : M] \). It follows that \(r \in [N + \psi(M) : M] \) and hence \(N \) is \(\psi \)-primary submodule.

However, we can give another corollary of proposition (2.4). But first we state and prove the following lemma which is needed.

Lemma (2.5):

Let \(N \) be proper submodule of an \(R \)-module \(M \), then \(\sqrt{[N + \psi(M) : M]} = \sqrt{[N + \psi(M) : K]} \) for each submodule \(K \) of \(M \) such that \(K \supseteq N + \psi(N) \).

Proof: Since \(K \subseteq M \) so \(\sqrt{[N + \psi(M) : M]} \subseteq \sqrt{[N + \psi(M) : K]} \). Let \(r \in \sqrt{[N + \psi(M) : M]} \), hence \(r^n \in N + \psi(N) \) for some \(n \in \mathbb{Z} \). But \(N + \psi(N) \subseteq K \), implies that there exists \(x \in K \) and \(r^n \in N + \psi(N) \). Hence \(r^n x \in N + \psi(N) \) for some \(n \in \mathbb{Z} \), and then \(r \in \sqrt{[N + \psi(M) : M]} = \sqrt{[N + \psi(M) : K]} \). Therefore \(\sqrt{[N + \psi(M) : M]} = \sqrt{[N + \psi(M) : K]} \) for each submodule \(K \) of \(M \) such that \(K \supseteq N + \psi(N) \).

Corollary (2.6):

Let \(N \) be a proper submodule of an \(R \)-module \(M \), then \(\sqrt{[N + \psi(M) : M]} = \sqrt{[N + \psi(M) : K]} \) for each submodule \(K \) of \(M \) such that \(K \supseteq N + \psi(N) \).

Now, the following proposition shows that under the condition \(\psi(N) \subseteq N \) for all submodule \(N \) of \(M \), the corvers of proposition (2.4) is true.

Proposition (2.7):

If \(N \) is a \(\psi \)-primary submodule of an \(R \)-module \(M \) and \(\psi(N) \subseteq N \), then \(\sqrt{[N + \psi(M) : M]} = \sqrt{[N + \psi(M) : K]} \) for each submodule \(K \) of \(M \) such that \(K \supseteq N + \psi(N) \).

Proof: Since \(N \) is a \(\psi \)-primary submodule of \(M \), then \(\sqrt{[N + \psi(M) : M]} = \sqrt{[N + \psi(M) : K]} \) for each submodule \(K \) of \(M \) such that \(K \supseteq N + \psi(N) \).
It is well known if N is a primary submodule of an R-module, then $[N:M]$ is a primary ideal of R, see [6]. But for a ψ-primary we have:

Remark (2.8):
If N is ψ-primary submodule of M, then it is not necessarily that $[N:M]$ is ψ-primary ideal of R.

Now, the following proposition shows that under the condition $\psi(N) \subseteq N$ for all submodule N of M the above statement is true.

Proposition (2.9):
If N is a ψ-primary submodule of an R-module M and $\psi(N) \subseteq N$, then $[N:M]$ is a ψ-primary ideal of R.

Proof:
Since N is a ψ-primary submodule of an R-module M and $\psi(N) \subseteq N$, so N is a primary submodule by (2.2, 2), then $[N:M]$ is a primary ideal of R and hence is a ψ-primary ideal of R.

Remark (2.10):
If $[N:M]$ is ψ-primary ideal of R, then it is not necessarily that N is ψ-primary submodule of M, for example, for $M = Z \oplus Z$ as a Z-module, $N = 2Z \oplus (0)$, N is not ψ-primary submodule of M, by (2.2, 8). But $[N:M] = [2Z \oplus (0) : Z \oplus Z] = 0$ is an apriori ideal of Z and hence ψ is ψ-primary ideal of Z.

Now, we shall give characterization of ψ-primary submodules, but first recall the following: Let R be any ring. A subset S of R is called multiplicatively closed if $1 \in S$ and $ab \in S$ for every $a,b \in S$. We know that every proper ideal P is prime if and only if $R-P$ is multiplicatively closed sub set of R, [1]. And if N is submodule of an R-module M and S is multiplicatively closed sub set of R, then $N(S) = \{x \in M : \exists t \in S, such that tx \in N\}$ be a submodule of M and $N \subseteq N(S)$.

Proposition (2.11):
Let N be a proper submodule of an R-module M. If $[N + \psi(M):M]$ is a prime ideal of R and $N(S) \subseteq N + \psi(N)$ for each multiplicatively closed sub set of R such that $S \cap [N + \psi(M):M] = \phi$, then N is ψ-primary submodule of M.

Proof:
Let $r \in R, m \in M$ such that $rm \in N$ and suppose $m \not\in N + \psi(N)$, $r \not\in [N + \psi(M):M]$. Claim the set $S = \{1, r, r^2, \ldots, \ldots, \}$, this is multiplicatively closed sub set of R and it is clear that $S \cap [N + \psi(M):M] = \phi$, since $[N + \psi(M):M]$ is a prime ideal of R and $m \not\in N + \psi(N)$ implies that $m \not\in N(S)$ and so $r \not\in N$ which is a contradiction. Therefore either $m \in N + \psi(N)$ or $r \not\in [N + \psi(M):M]$ and hence N is ψ-primary submodule of M.

Conversely, if N is ψ-primary submodule of M, to prove $N(S) \subseteq N + \psi(N)$. Let $x \in N(S)$, so there exists $t \in S$ such that $tx \in N$. But N is ψ-primary submodule of M, so either $x \in N + \psi(N)$ or $t \in [N + \psi(M):M]$. But $t \in [N + \psi(M):M]$ implies that $S \cap [N + \psi(M):M] = \phi$ which is a contradiction. Thus, $x \not\in N + \psi(N)$ and hence $N(S) \subseteq N + \psi(N)$.

Proposition (2.12):
If $[N + \psi(M):M]$ is maximal ideal of R, then N is ψ-primary submodule of M.

Proof:
Let $r \in R, m \in M$ such that $rm \in N$. If $r \not\in [N + \psi(M):M]$, then $R = \{< r > + [N + \psi(M):M]\}$. Therefore there exist $s \in R$ and $k \in [N + \psi(M):M]$ such that $1 = sr + k$ and so $m = srm + km \in N + \psi(N)$ for some $n \in Z$. Therefore N is ψ-primary submodule of M.

Proposition (2.13):
Let N be a proper submodule of an R-module M such that $[K:M] \not\subseteq [N + \psi(N):M]$ for each submodule K of M and containing $N + \psi(N)$ properly. If $[N + \psi(N):M]$ is a primary ideal of R, then N is ψ-primary submodule of M.

Proof:
Suppose $[N + \psi(N):M]$ is a primary ideal of R, to prove N is ψ-primary submodule of M. Let $r \in R, m \in M$ such that $rm \in N$ and suppose $m \not\in N + \psi(N)$. Let $K = N + \psi(N) +< m >$, it is clear that $N + \psi(N) \subseteq K$, and so $[K:M] \not\subseteq [N + \psi(N):M]$. Then there exists $s \in [K:M]$ and $s \not\in [N + \psi(N):M]$. Thus, $sM \subseteq K$ and $sM \not\subseteq N + \psi(N)$. But $M \subseteq K$, implies, $r \not\in rM \subseteq rK = r(N + \psi(N) +< m >) \subseteq N + \psi(N)$ and $rs \in [N + \psi(N):M]$. Since $[N + \psi(N):M]$ is a primary ideal of R and $s \not\in [N + \psi(N):M]$, so $r^n \in [N + \psi(N):M]$ for some $n \in Z$. Therefore N is ψ-primary submodule of M.

Recall that an R-module M is called multiplication module if for every submodule N of M, there exists an ideal I of R such that $IM = N$, equivalently; for every submodule N of M, $N = [N:M]$. See [7].

Corollary (2.14):
Let N be a proper submodule of a multiplication R-module M. Then N is ψ-primary submodule of M if $[N + \psi(N):M]$ is a primary ideal of R.

Proof:
Suppose $[N + \psi(N):M]$ is a primary ideal of R, to prove N is ψ-primary submodule of M. Let $r \in R, m \in M$ such that $rm \in N$ and suppose $m \not\in N + \psi(N)$. Let $K = N + \psi(N) +< m >$, it is clear that $N + \psi(N) \subseteq K$. Since M is multiplication, so $[K:M] \not\subseteq [N + \psi(N):M]$ by [9, remark (2.15), chapter one]. Then there exists $s \in [K:M]$ and $s \not\in [N + \psi(N):M]$. Thus, $sM \subseteq K$ and $sM \not\subseteq N + \psi(N)$. But, $sM \subseteq K$, implies, $r \not\in rM \subseteq rK = r(N + \psi(N) +< m >) \subseteq N + \psi(N)$ and $rs \in [N + \psi(N):M]$. Since $[N + \psi(N):M]$ is a primary ideal of R and $s \not\in [N + \psi(N):M]$, so $r^n \in [N + \psi(N):M]$ for some $n \in Z$. Therefore N is ψ-primary submodule of M.

As another consequence of (2.13), we have the following result:

Corollary (2.15):
Suppose

Proof:

Since \(M \) is cyclic, then \(M \) is a multiplication. Hence the result follows immediately from corollary (2.14).

Recall that an \(R \) – module \(M \) is said to be a bounded module if there exists an element \(x \in M \) such that \(\text{ann} M = \text{ann} x \), where \(\text{ann}_x M = \{ r \in R : rm = 0, \forall m \in M \} \). And an \(M \) – module is said to be fully stable if each submodule is stable, where a submodule \(N \) of an \(R \) – module \(M \) is said to be stable if \(f(N) \subseteq N \) for each \(f \in \text{Hom}(N, M) \).

Corollary (2.16):

Let \(N \) be a proper submodule of a bounded fully stable \(R \)-module \(M \). Then \(N \) is \(\psi \)-primary submodule of \(M \) if \([N + \psi(N):M] \) is a primary ideal of \(R \).

Proof:

Since \(M \) is a bounded fully stable \(R \)-module, \(M \) is cyclic by [10]. Hence the result follows immediately from corollary (2.14).

proposition (2.17):

Let \(P \) be an ideal of a ring \(R \) and let \(M \) be an \(R \)-module. Then a proper submodule \(N \) of \(M \) is a \(P \)-\(\psi \)-Primary if and only if

1. \(\subseteq [N + \psi(M):M] \), and
2. \(\not\subseteq N \), for all \(c \in R \setminus P, m \in M \setminus N + \psi(N) \).

Proof:

Suppose \(N \) is a \(P \)-\(\psi \)-Primary. To prove that (1) and (2) are hold. It is clear that \(P = \sqrt{[N + \psi(M):M]} \). Therefore \(\subseteq [N + \psi(M):M] \).

Now if \(c \in R \setminus P \) and \(m \in M \setminus N + \psi(N) \), then \(c \not\in [N + \psi(M):M] \) and \(m \not\in N + \psi(N) \), hence \(cm \not\in N \). Conversely, let \(c \in R \) and \(m \in M \) such that \(m \not\in N + \psi(N) \), then \(c \not\in [N + \psi(M):M] \). Since \(\not\subseteq [N + \psi(M):M] \), and \(m \not\in N + \psi(N) \) and \(c \not\in P \). Therefore, \(c \in R \setminus P \). Hence \(cm \not\in N \), which implies that \(N \) is a \(P \)-\(\psi \)-Primary.

proposition (2.18):

Let \(M \) be an \(R \)-module and \(N_1, N_2 \) be two submodules of \(M \). If \(K \) is a \(P \)-\(\psi \)-primary submodule of \(M \) such that \(N \cap L \subseteq K \), then \(L \subseteq K + \psi(K) \) or \([N: M] \subseteq P = \sqrt{[K + \psi(M):M]} \)

Proof:

Suppose \([N: M] \not\subseteq [K + \psi(M):M] = P \), so there exists \(s \in [N: M] \) and \(s \not\in P = \sqrt{[K + \psi(M):M]} \). Let \(t \in L \), then \(st \in L \cap N \) and so \(st \in K \). But \(K \) is \(\psi \)-primary submodule of \(M \) and \(s \not\in \sqrt{[K + \psi(M):M]} \). Therefore \(t \in K + \psi(K) \), thus \(L \subseteq K + \psi(K) \).

Corollary (2.19):

Let \(A \) be an ideal of \(R \) and \(N \) be a submodule of \(.. \)If \(K \) be a \(P \)-\(\psi \)-primary submodule of \(M \) such that \(AM \cap N \subseteq K \), then either \(AM \subseteq K + \psi(K) \) or \(N \subseteq K + \psi(K) \).

proposition (2.20):

Let \(M \) be an \(R \)-module and \(N \) be a submodule of \(M \). If \(P = [N + \psi(N):M] \) is a primary ideal of \(R \), then \(\sqrt{[N + \psi(M):M]} \). And an \(\phi \)-module is said to be fully stable if each submodule is stable, where a submodule \(N \) of an \(R \)-module \(M \) is said to be stable if \(f(N) \subseteq N \) for each \(f \in \text{Hom}(N, M) \).

Proof:

Since \(rM \subseteq M \), \(\sqrt{[N + \psi(M):M]} \subseteq \sqrt{[N + \psi(M):rM]} \). Let \(\alpha \in [N + \psi(M):M] \). Hence \(\alpha r \in [N + \psi(N):M] \). For some \(r \in E \), and so \(\alpha r \in [N + \psi(N):M] \). But \([N + \psi(N):M] \) is a primary of Rand \(r \not\in [N + \psi(N):M] \), so \(\alpha r \not\in [N + \psi(N):M] \) for some. Thus, \(r \in [N + \psi(M):M] \). Therefore, \(\sqrt{[N + \psi(M):M]} \subseteq [N + \psi(M):M] \) and hence \([N + \psi(M):M] = \sqrt{[N + \psi(M):rM]} \). Now, we can give the following proposition:

Proposition (2.21):

Let \(N \) be an \(R \)-module and \(P = [N + \psi(N):M] \). If the ideal \([N + \psi(N):<x>] = P \), for each \(x \in M, x \not\in N + \psi(N) \), then \(N \) is a \(\psi \)-primary submodule of \(M \).

Proof:

Let \(r \in R, x \in M \) such that \(rx \in N \) and suppose \(x \in N + \psi(N) \). Thus \(r \in [N + \psi(N):<x>] = P \), for \(s \in r \in P \). Therefore \(N \) is a \(\psi \)-primary submodule of \(M \).

Note:

The intersection of two \(\psi \)-primary submodules of an \(R \)-module \(M \) need not be \(\psi \)-primary submodule of \(M \), for examples:

1. The \(Z \)-module \(Z_6 \) has two \(\psi \)-primary submodules, \(N_1 = \langle 2 \rangle \) and \(N_2 = \langle 3 \rangle \). But \(N_1 \cap N_2 = \langle 6 \rangle \) is not a \(\psi \)-primary submodule of \(N_6 \). Since \(r = 3, x = 2 \), and \(\psi(N) = N \forall N \subseteq M \), then \(rx = 3.2 = 6 \not\in \langle 2 \rangle + \psi(\langle 2 \rangle) = \langle 6 \rangle \). But \(2 \not\in \langle 6 \rangle + \psi(\langle 6 \rangle) = \langle 6 \rangle \), and \(3 \not\in \langle 2 \rangle + \psi(\langle 2 \rangle) = \langle 6 \rangle \).

2. The \(Z \)-module \(Z_{12} \) has two \(\psi \)-primary submodules, \(N_1 = \langle 2 \rangle \) and \(N_2 = \langle 3 \rangle \). But \(N_1 \cap N_2 = \langle 6 \rangle \) is not a \(\psi \)-primary submodule of \(Z_{12} \) as we have seen in (2.2, (7)).

However, we have the following proposition:

Proposition (2.22):

If \(K \) is a \(\psi \)-primary of an \(R \)-module \(M \) and \(L \subseteq M \) such that \(\psi(K) \subseteq K \). Then either \(N \subseteq K \) or \(K \cap N = \psi \cap \phi \)

Proof:

Suppose that \(N \not\subseteq K \), then \(K \cap N \) is a proper submodule of \(N \). Let \(r \in R, m \in N \) such that \(rm \in K \cap N \). Suppose \(m \not\subseteq (K \cap N) + \psi(K \cap N) \), where

Volume 6 Issue 4, April 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: ART20172269 DOI: 10.21275/ART20172269 1118
\(\psi : \delta(N) \rightarrow \delta(N) \cup \{\phi\}\) be a function, then \(m \not\in K\). We must show that \(r^n N \subseteq (K \cap N) + \psi(K \cap N)\) for some \(n \in Z^+\).

Since \(K\) is \(\alpha\psi\)-primary submodule of \(M\) and \(m \not\in K + \psi(K)\), this implies that \(r^n M \subseteq K + \psi(K) = K\) for some \(n \in Z^+\) and some \(n \in Z^+\). Therefore \(K\) is a \(\psi\)-primary in \(N\).

Proposition (2.23):

Let \(\phi : M \rightarrow M'\) be an anhomomorphism. If \(N\) is \(\psi\)-primary submodule of an \(R\)-module \(M'\), such that \(\phi(M) \subseteq N\) and \(\psi(\phi^{-1}(N)) = \phi^{-1}(\psi(N))\), then \(\phi(N)\) is \(\psi\)-primary submodule of \(M\), where \(\psi : \delta(M') \rightarrow \delta(M) \cup \{\phi\}\) and \(\psi : \delta(M) \rightarrow \delta(M) \cup \{\phi\}\).

Proof: First, we must show that \(\phi^{-1}(N)\) is a proper submodule of \(M\). Suppose that \(\phi^{-1}(N) = M\), then \(\phi(M) \subseteq N\), which a contradiction to the assumption. Let \(r \in R, m \in M\) such that \(rm \in \phi^{-1}(N)\). Then \(\phi(m) \in N\) and \(\psi(\phi^{-1}(N)) = \phi^{-1}(\psi(N))\). Suppose \(\phi^{-1}(N) \neq \psi^{-1}(N)\), for some \(n \in Z^+\). Therefore, \(\phi^{-1}(N)\) is a \(\psi\)-primary submodule of \(M\).

Theorem (2.24):

Let \(f : M \rightarrow M'\) be an epimorphism and let \(N < M\) such that \(ker f \subseteq N\). If \(N\) is a \(\alpha\psi\)-primary submodule of \(M\), then \(f(\psi(N)) = \psi(f(N))\). Suppose \(f(N)\) is \(\psi\)-primary submodule of \(M'\), where \(\psi : \delta(M') \rightarrow \delta(M) \cup \{\phi\}\) and \(\psi : \delta(M) \rightarrow \delta(M) \cup \{\phi\}\).

Proof: First, we must show that \(f(N)\) is a proper submodule of \(M'\). Suppose \(f(N) = M\). Therefore, \(M\) is a \(\psi\)-primary submodule of \(M\). Let \(r \in R, m \in M\) such that \(rm \in ker f \subseteq N\) which implies that \(rm \in ker f \subseteq N\) and \(N\) is a \(\psi\)-primary, so either \(m \in N + \psi(N)\) or \(r^n M \subseteq N + \psi(N)\) for some \(n \in Z^+\). If \(m \in N + \psi(N)\), then \(m \in f(N) + f(\psi(N))\); that is \(m \in f(N) + f(\psi(N))\) or \(m \in f(N) + f(\psi(N))\). If \(r^n M \subseteq N + \psi(N)\), then \(r^n f(M) \subseteq f(N) + f(\psi(N))\), which implies that \(r^n M \subseteq f(N) + f(\psi(N))\) for some \(n \in Z^+\).

Corollary (2.25):

Let \(M\) be an \(R\)-module, \(K < N < M\) and \(N\) is an \(\alpha\psi\)-primary of \(M\). Then \(N/K\) is an \(\alpha\psi\)-primary submodule of \(M/K\) where \(\psi : \delta(M/K) \rightarrow \delta(M/K) \cup \{\phi\}\).

Proof: Let \(\phi : N \rightarrow N/K\) be the natural mapping, then the result follows by proposition (2.25).

Proposition (2.26):

Let \(M\) be an \(R\)-module and \(K < N < M\). Then \(N/K\) is an \(\psi\)-primary submodule of \(M/K\) and \(\psi(N/K) = \psi(N)/K\).

Proof: Let \(r \in R, m \in N/K\) with \(m \neq K\), where \(m = K\), for some \(m \in M\). So we have \(m \in N\), which gives that either \(m \in N + \psi(N)\) or \(rM \subseteq N + \psi(N)\). Therefore, \(m \in N + \psi(N)\) or \(rM \subseteq N + \psi(N)\) for some \(n \in Z^+\). Hence \(N/K\) is an \(\psi\)-primary submodule of \(M/K\).

References

