Endovascular Treatment of Wide Neck Brain Aneurysm – WEB Device

Sirakov S.1, Popivanov P.2, Sirakov A.3, Sirakova K.4

1.3 UH St.IvanRilski – Sofia
2.4 UH Alexandrovska – Sofia

1. Introduction

For many years endovascular treatment is a method of choice in treating ruptured and unruptured aneurysms [1-4]. Up till now many different endovascular devices to treat intracranial aneurysms have been designed and enhanced. This is needed due to the large diversity of the anatomy and structural specifics of brain aneurysms. The standard coiling as well as balloon- and stent assisted coil introduction, using flow diverters and other techniques aim at protecting the vital cerebral arteries, the perforant branches by preserving their lumen passage and thus make the treatment of even complex aneurysm configurations efficient and safer.[5-9]

WEB device is an intra-secular ellipsoid of interwoven microscopic threads, envisaged for embolization of wide neck aneurysms, once its placement in the aneurysmal sac results in complete isolation of the aneurysm from blood circulation. There are several WEB devices already available for endovascular treatment: WEB-DL, WEB-SL and WEB-SLS in various sizes.

WEB implants are delivered like all other systems and the techniques they use for endovascular treatment. These devices are introduced by microcatheters of inner diameter > 0,027″. Placing such device type requires precise assessment of the aneurysm anatomy (morphology, cross-sectional diameter, height, and neck size) and for it the diagnostic methods of MRA, CT angiography and 3D angiography are being used. The aim is to define as accurate as possible the device type, needed for a given aneurysmand also its proper sizing. The size defining is an important part of the procedure. Using smaller than a given aneurysm matching device may provoke potentially insufficient aneurysm neck coverage, which results in its incomplete treatment and increases the chance of rechanneling. On other hand if the device is larger than needed for the given aneurysm theoretically there is no potential risk of aneurysmal sac rupture, since the radial force is very low, but there is a risk part of the device to protrude into a vital vessel.(10-12)

2. Clinical Case

This case describes our first experience with WEB device as one of the first 5 countries worldwide, using this device.

51-year old female was hospitalized in our clinic due to incidentally discovered, not-bleeding aneurysm (4,9/4,4 mm) of the middle cerebral artery. She had no medical history of hypertension, diabetes mellitus or head trauma.

The patient was put under general anesthesia and preventively given 2500 units of heparin to increase the activated partial thromboplastin time (aPTT). Following Seldinger catheterization of the right femoral artery a preoperative pan-angiography and 3d-post processing was carried out to enable precise selection of the right device size.

Figure 1: Data on right middle cerebral artery aneurysm

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY
The completed diagnostic and three-dimensional 3D angiography revealed presence of aneurysm of 5.2 mm diameter on the bifurcation of the right middle cerebral artery.

Figure 2: The 3D angiography image, visualizing exact dimensions and anatomic characteristics of the aneurysm

After defining the exact Web device size, we proceeded with selective catheterization of the aneurysmal sac. For this purpose micro-catheter Via 0.027” and micro-guide wire Syncro 2 0.014” were used. By roadmap angiography the aneurysmal sac was selectively catheterized placing the micro-catheter tip in its center. Then it was followed by delivery of the WEB device, being applying in the aneurysm until totally filling up its volume. The control angiography after detaching the WEB device didn’t visualize filling out of aneurysmal sac by contrast matter—an image, corresponding to total obliteration of the brain aneurysm. Also there was no visualization of prominence of the device to the lumen of the right middle cerebral artery.

Figure 3: WEB placement using micro-catheter; The proximal device marker is clearly seen in the aneurysmal sac
Two control contrast injections were applied (at 15 and 30 minute) not indicating any change in the image of the aneurysm treated.

![Control angiography with no data of rechanneling of the treated aneurysm](image)

Figure 5: Control angiography with no data of rechanneling of the treated aneurysm.

The patient had no postoperative complications or added neurological deficit. 5 days later she was discharged from the clinic.

The follow up control angiography held 3 months later does visualize any data for rechanneling of the treated aneurysm.
3. Discussion

The WEB device is a new, innovative endovascular technique, dedicated to the treatment of ruptured or unruptured wide neck aneurysms. The initial clinical practice reveals high applicability of this treatment with a good safety profile (no mortality and low chance of rechanneling). The efficacy is still to be precisely analyzed with an assessment of the long-term treatment stability, yet the initial results prove promising in case of the right choice and assessment of the device.

4. Conclusion

Our initial experience using the innovative WEB creates the impression of technically easy to use low-risk treatment of ruptured and non-ruptured wide neck cerebral aneurysms.

References

