ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Nurses Knowledge toward Essential Care for Adult Patients Undergoing Mechanical Ventilation at Critical Care Unit in Baghdad City

Hussein Hadi Atiyah, PhD¹, Musaab Majid Abdul-Wahhab, MSc.N², Sadeq A.Al-Fayyadh, PhD³

¹Professor Assistant, Adult Nursing Department, College of Nursing, University of Baghdad

²Instructor Assistant, Adult Nursing Department, College of Nursing, University of Baghdad

³Instructor, Adult Nursing Department, College of Nursing, University of Baghdad

Abstract: A mechanical ventilator is a positive- or negative-pressure breathing device that can maintain ventilation and oxygen delivery for a prolonged period, the primary function of mechanical ventilators is to promote alveolar ventilation and CO2 elimination, but they are often also used for correcting impaired oxygenation which may be a difficult task. Objectives: The study aimed to identify nurses' knowledge toward essential care for patient undergoing mechanical ventilation and to find out the relationship between nurses knowledge and their socio-demographic data. Result: The results of the study indicated that (64%) of the study sample were males and (58%) at age group (20-29) years old, (52%) were married, (46%) were graduate from Institute, (66%) had (1-5 years) experience in critical unit and (56%) had training session. The nurses' knowledge records a moderate level for endotracheal suctioning and weaningdomains and high level of knowledge for general information, communication, ventilator setting, and patient educationdomains. Furthermore, that a high level for a total score of nurses knowledge. Conclusions: According to the findings the study concluded that statistical associations were found between nurses educational levels, years of experience in critical unit and training sessions toward nurses' knowledge. Recommendation: Based on the findings, the study recommended to Prepare a special training programs to promote nurses knowledge concerning mechanical ventilation (especially in weaning and endotracheal suctioning techniques) added to that Encourage the nurses to complete their academic study to be equipped with advance skills& knowledge that enable them to provide efficient care.

Keywords: Critical care unit, Essential care, Mechanical ventilation, Nurse's knowledge

1. Introduction

Mechanical ventilation (MV) is used in around 30% to 70% of patients admitted in the critical care unit. A practical variation in care of mechanical ventilation were found, the research teamwas determined to explore differences exists regarding processes of care associated with mechanical ventilation (MV) management through a cross-sectional study in addition to characteristics that influence practice variation. This study provides baseline information on CCU nurses' knowledge level so health care authority can improve it, ultimately improving patients' outcomes. Improved outcomes will shorten patient's CCU length of stay, hospitalization as well as benefit the patient financially with decreased hospital costs [1]. If a patient has a continuous decrease in oxygenation (PaO2), an increase in arterial carbon dioxide levels (PaCO2), and apersistent acidosis (decreased pH), mechanical ventilationmay be necessary. Conditions such as thoracic or abdominalsurgery, drug overdose, neuromuscular disorders, inhalationinjury, COPD, multiple traumas, shock, multisystem failure, and coma all may lead to respiratory failure and the need formechanical ventilation. [2]. The selection of ventilator mode and settings for tidal volume, respiratory rate, positive end-expiratory pressure (PEEP) and inspiratory to expiratory ratio is dependent on the cause of the respiratory failure. The objectives are to: improve gas exchange, minimize damage to the lung by avoiding high lungVolumes, pressures and FiO, avoid adverse circulatory effects, make the patient comfortable without heavy Sedation or muscle paralysis by reducing the work of breathing and harmonizing interaction between patient and ventilator, Humidify and warm inspired gas to prevent inspissation's of secretions normally with a heat and moisture exchanger but occasionally with a hot water humidifier and arrange regular positioning, physiotherapy and suctioning to clear secretions and prevent proximal airway obstruction and distal alveolar collapse. The patient should be in a 30° head-up position to avoid aspiration. ^[3].

2. Methodology

A descriptive design study was carried out to assess nurses knowledge toward essential care for patients with mechanical ventilation, A non- probability (purposive) sample were gathered of 50 nurses who work at critical care unit in five hospitals and centers in Baghdad city (Iben-Al-Betar center, the Iraqi Center for Cardiac Diseases, Baghdad teaching hospital, Ibn al -Naffes hospital and ImamsKazimainmedical City).the researcher established the questionnaire format which composed of two parts and introductory page that invites the subjects to participate in the study, part I: socio demographic information sheet and part II: essential care for mechanical ventilation instrument. The content validity of the instrument was established through a panel of (11) experts. They were (8) faculty members from the College of Nursing University of Baghdad with different nursing specialty, (3) physicians from Ministry of Health Hospitals, experts had at least 8 years of experience in their specialist with a mean (28) year, and (SD=6.8). They were asked to review the questionnaire whether they agree or disagree with its content. Reliability Determination of the questionnaire was based on

Volume 6 Issue 4, April 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

the test — retest method. Ten Nurses who work at critical care unit on the same criteria of the original study were asked to repeat their response to the questionnaire after two weeks interval. The results of the study reliability were calculated by using correlation coefficient statistical method between the test and retest Nurses response which was $r=0.936. Relative \ to \ research \ ethical \ considerations, the National Institute of Health (NIH)/Office of Extramural Research have certified that both researchers have successfully completed the NIH web-based training course of protecting human research participants. The Institutional Review Board (IRB) at the Baghdad University/College of Nursing that was represented by the scientific committee approved the study after submitting the study proposal.$

3. Results

Table 1: Distribution of nurses' knowledge by their Socio Demographic Characteristics.

Demographic Characteristics.								
F	%	Cumulative						
		Percent						
32	64.0	64.0						
18	36.0	100.0						
50	100.0							
29	58.0	58.0						
15	30.0	88.0						
6	12.0	100.0						
50	100.0							
Mean \pm SD = 28 \pm 6.1627								
20	40.0	40.0						
	F 32 18 50 29 15 6 50 8 ± 6.	F %						

Married	26	52.0	92.0
Widowed	4	8.0	100.0
Total	50	100.0	
Level of education			
Secondary school graduate	7	14.0	14.0
Institute	23	46.0	60
BSN	16	32.0	92.0
Higher education	4	8.0	100.0
Total	50	100.0	
Number of years in critical care u	nit		
≤ 5 years	33	66.0	66.0
6- 10 years	6	12.0	78.0
11-15 years	5	10.0	88.0
More than 15 years	6	12.0	100.0
Total	50	100.0	
Training sessions			
Yes	28	56.0	56.0
No	22	44.0	100.0
Total	50	100%	

F. = frequency, %= Percentage

The demographic characteristics of (50) nurses indicated that the majority (64%) of the sample were males .In relation to the age group, the highest percentage (58%) of nurses were (20-29) years old, while the lowest percentage (12%) of the sample which (40-49) years old. Regarding marital status, the highest percentages (52%) of the study sample were married. Relative to educational level most of the study samples (46%) had institutional level, (66%) of sample work (1-5 yrs.) in critical care unit and most of the subjects (56%) had training session.

Table 2: Distribution Nurses knowledge domains toward essential care of mechanical ventilation according to their mean, SD, relative Sufficiency and Grade

	General information's	MOS	SD.	RS	G
1	Mechanical ventilation has become a common treatment, and nurses must be knowledgeable and	2.98	0.141	99.3	Н
	confident when caring for ventilator patients.				
2	Mechanical ventilation is indicated when the patient's spontaneous ventilation is inadequate to	3.00	0.00	100	Н
	maintain life				
3	Mechanical ventilation only serves to provide assistance for breathing and does not cure a	2.98	0.141	99.3	Н
	disease				
4	Sedation should be given to agitated ventilator patient to prevent extubation	2.860	0.404	95.3	Н
5	Ventilator-associated pneumonia (VAP) is a major complication of mechanical ventilation	2.38	0.830	79.3	M
	Communication				
1	Communication among care providers promotes optimal outcomes For mechanically ventilated	2.92	0.274	97.3	Н
	patients				
2	Ask simple yes/no questions to communicate with the patients	2.86	0.404	95.3	Н

Continued table (2)......

	Check ventilator settings and modes									
1	It's important to check vital signs, oxygen saturation, breath sounds, assess the patient's pain	2.98	0.141	99.3	Н					
	and anxiety levels when receive patient with ventilator									
2	Should be read the patient's order and Compare current ventilator settings with the settings	2.92	0.274	97.3	Н					
	prescribed in the order									
3	Must be sure that suction equipment and bag-valve mask are available for every patient with an	2.98	0.141	99.3	Н					
	artificial airway									
4	Respiratory rate's the number of breaths provided by the ventilator each minute	2.80	0.494	93.3	Н					
5	Tidal volume (TV), mean the volume of air inhaled per breath and expressed in milliliters	1.46	0.787	48.6	L					
6	Fraction of inspired oxygen (FiO2), expressed as a percentage (room air is 21%).	2.66	0.55	88.6	M					
7	Peak inspiratory pressure (PIP), the pressure needed to provide each breath. Target PIP is below	2.50	0.707	83.3	M					
	30 cm H2O.									
8	High PIP may indicate a kinked tube, a need for suctioning, bronchospasm, or a lung problem	2.94	0.239	98	Н					
9	Ventilator modes are assist-control (A/C), synchronized intermittent mandatory ventilation	2.90	0.303	96.9	Н					
	(SIMV) and pressure support ventilation (PSV)									
	V. I (V 4 A 12017)									

Volume 6 Issue 4, April 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

10	Peep: mean a positive end expiratory pressure and used for patients with heavy secretions	2.64	0.662	88	Н			
	Standard care for Endotracheal Suction							
1	Endotracheal suction done as needed—not according to a schedule	2.10	0.931	70	M			
2	Hyperoxygenate the patient before and after suctioning to help prevent oxygen desaturation	2.96	0.197	98.6	Н			
3	Don't instill normal saline solution into the endotracheal tube in an attempt to promote secretion	1.18	0.522	39.3	L			
	removal							
4	Limit suctioning pressure to the lowest level needed to remove secretions.	1.42	0.730	47.3	L			
5	Suctioning is done for shortest duration as possible to prevent hypoxia	2.96	0.197	98.6	Н			
6	airway humidifier recommended for patients with thick secretion	2.68	0.65	89.3	Н			
	patient and family Education							
1	Teach the patient and his family why mechanical ventilation is needed and emphasize the 2.94 0							
	positive outcomes it can provided							
2	Communicate desired outcomes and progression toward outcomes so the patient and family can	2.76	0.624	92	Н			
	actively participate in the plan of care.							
3	Reinforce the need and reason for multiple assessments and procedures, such as laboratory tests	2.92	0.274	97.3	Н			
	and X-rays.							
	Weaning							
1	spontanous breathing & stable parameter are the indications for ventilator weaning	2.96	0.197	98.6	Н			
2	Before weaning the patient must place on a T-piece	2.78	0.581	92.6	Н			
3	Evaluation of baseline vital signs and arterial blood gas(ABG _S) are important before weaning	1.48	0.814	49.3	Н			
4	It's important to Provide supplemental nasal cannula oxygen after extubation	1.66	0.875	55.3	Н			

SD= standard deviation, RS= Relative Sufficiency, G= Grade

Table 2 shows a high grade of nurses' knowledge in all items of weaning, educate the patient and communication domains while anotherdomains record (4items,7items, 3

items) for General information's, ventilator setting and endotracheal suctioning respectively.

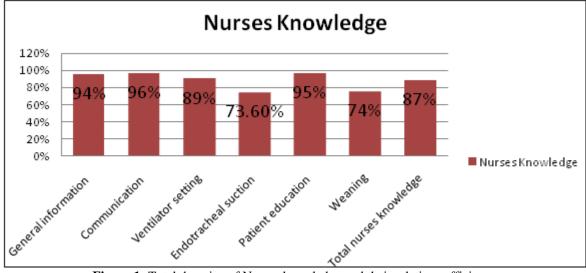


Figure 1: Total domains of Nurses knowledge and their relative sufficiency

This figure demonstrate that a high grade of knowledge in the four domain (general information, communication, ventilator setting, and patient education) while a moderate level for two domain (endotracheal suctioning and weaning).

Table 3: Association between socio-demographic information and Nurses knowledge toward mechanical ventilation

Total score of Nur	rses k	nowle	edge		T test& ANOVAs test				
Gender	F	%	Mean	SD	CV	df	p	sig	
Male	32	64	77.375	3.73087	0.51	48	0.612	0.612	NS
Female	18	36	77.8889	2.76297	0.31			113	
Age Group	F	%	Mean	SD	CV	df	p	sig	
20-29 years	29	58	76.7931	1 2.67768		49	0.172		
30-39 years	15	30	78.6667	4.43471	1.828			NS	
40-49 years	6	12	78.5	3.08221					
Marital Status	F	%	Mean	SD	CV	df	p	sig	
single	20	40	76.95	2.83725		49	0.56		
Married	26	52	78.0385	3.84167	0.572			NS	
Widowed	4	8	77.5	3.10913					
Educational Level		%	Mean	SD	CV	df	p	sig	
Secondary graduate	7	14	79.1429	3.7607	1.504	49	0.04	S	
Institute graduate	23	46	77.3043	3.77112	1.504		0.04	3	

Volume 6 Issue 4, April 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

	postgraduate	16	32	75.6875	2.70108					
	Higher education	4	8	79.75	1.5					
Yea	ars of work in critical care unit	F	%	Mean	SD	CV	df	p	sig	
	5 years and less	33	66	77.2727	3.06464		49 0.0			
	6- 10 years	6	12	76.8333	5.23132	1.048		40	0.02	C
	11-15 years	5	10	80	3.80789			0.03	S	
	Above 15 years	6	12	74.8333	2.56255					
	Training sessions	F	%	Mean	SD	CV	df	p	sig	
	yes	28	56	78.2857	2.92951	1.741	48	0.058	S	
	no	22	44	76.6364	3.77391	1.741	48	0.058	3	

CV = computed value, F = frequency, SD = standard deviation, DF = degree of freedom, S = significant, NS = not significant

This table shows that significant statistical associations were found between educational levels; years of work in critical care unit and training sessions while no association with other items (gender, age group and marital status)

4. Discussion

Part 1: Discussion of Socio-Demographic Characteristics of nurse's knowledge toward essential care of mechanical ventilation.

Throughout the course of data analysis of (50) nurses who work in critical care unit: the result indicates that the majority of the study sample (64 %) were males in comparison with (36%) female, most of them (58%) at the age group (20-29 yrs.). (Table 3)

This finding comes along with the study done by Nguyen; who conducted a cross-sectional multicenter study for mechanical ventilation and clinical practice heterogeneity in intensive care units and indicated that the majority of the subjects (67%) were males and most of them (19%) between the (20-30) years old. [4].

Regarding the marital status, educational level and number of years working in critical care unit, the majorities (54%) weremarried, (48%) graduate from the institute and (66%) work less than five years in critical care unit.

A descriptive research is designed to obtain more information about health care provider knowledge for mechanical ventilation, The study indicate that (63%) of the subject were married , (33%) bachelor graduate and (32.5%) have less than five years' experience in $ICU^{[5]}$.

Part 2: Discussion nurses knowledge level and association with socio-demographic data

In relation to nurses knowledge toward essential care of mechanical ventilation; a moderate level of nurses knowledge were found toward endotracheal tube suctioning domain and weaning domain, while a high level of knowledge toward another domains (general information, communication, ventilator setting and patient education).

These findings comes compatible with the study done by Khatib; who evaluate knowledge of critical care providers about evidence-based guidelines for ventilator and found that adequate knowledge with a moderate level (78%) were measured for 41 nurse^[6].

The study show that a significant statistical association were found between nurses educational level, years of working in critical care unit and training sessions and their educational level toward essential care for mechanical ventilation.

This result is supported by a study done bySaid; who conclude that nurses knowledge of mechanical ventilator were statistically associated with educational level (p value 0.04), years of work experience (p value 0.03) and training course (p value 0.05)^[7].

5. Conclusions

From the present study findings, the researchers have got the following conclusions.

- A high percentage of Nurses who work in critical care unit were males at age group 20-29 years old and most of them were married, have a diploma level, ≤ 5 years' experience in critical care unit and the majority have a training sessions
- All nurses' responses toward essential care of mechanical ventilation were at the high level of knowledge except in two domains (endotracheal suctioning and weaning) at a moderate level.
- Statistical associations were found between educational levels, years of working in critical unit, training sessions toward nurses' knowledge.

6. Recommendations

- 1) Preparing a special training program to promote nurses knowledge concerning mechanical ventilation (especially in weaning and endotracheal suctioning techniques).
- 2) Encourage the nurses to complete their academic study to be equipped with advance skills& knowledge that enable them to provide efficient care.
- 3) Activating the role of continuing educational units in each hospital.

References

- [1] Albert R, Clinical Critical Care Medicine, 1sted, Elsevier Inc., New York, 2011, ch 6, p 644, 577, 300.
- [2] Robert L, **Fundamentals of mechanical ventilation**, 1st ed, Mandu press inc, Cleveland 2011, P 56- 60.
- [3] Davidson's, **Principle and practice of medicine**, 21sted, Elsevier Inc, London, 2010, ch 5, p 104, 120, 145, 155, 170
- [4] Nguyen y, Perrodeau E, Guidet B: Mechanical ventilation and clinical practice in intensive care units, **Annals of Intensive Care**, 2014, vol.4, No.2, p1-14.

Volume 6 Issue 4, April 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

- [5] Demingo x, nurses' knowledge regarding weaning the critically ill patient from mechanical ventilation, **the journal of alternative and complementary medicine**, 2012, vol.3, no.4, p 34-53.
- [6] Khatib M and Salah Z, critical care Clinician Knowledge for preventing Ventilator- Associated Pneumonia, American Journal of Critical care, 2010, vol.19, No.3, p272- 297.
- [7] Said A, knowledge and practice of intensive care nurses on prevention of ventilator associated pneumonia at Muhimbili national hospital, dares salaam, tanzania, heart & lung journal, 2012, vol.1, no 1, p 1- 53.

Volume 6 Issue 4, April 2017 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY