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1. Introduction 
 

Queues with discouraged arrivals have applications in 

Computer with batch job processing where job submissions 

are discouraged when the system is used frequently and 

arrivals are modeled as a Poisson process with state 

dependent arrival rate. Morse(1968) considers 

discouragement in which the arrival rate falls according to a 

negative exponential law. We consider the finite source of N 

customers arrive in a Poisson process with two arrival rates, 

0 , 1  a faster and slower rate of arrivals which controls 

the arrivals. The discouragement affect the arrival rate to the 

queueing system. Customer arrive in a poisson fashion with 

rate depends on the number of customers present in the 

system at that time that is 
n 1




. The service times and 

reneging times follow exponential distribution with 

parameters   and  . 

 

It is also assumed that whenever the queue size reaches a 

prescribed number R, the arrival rate reduces from 0 to 1  

and  it continues with the rate as long as the content in the 

queue was greater than some prescribed integer r[(r ≥ 0) and 

r < R] when the content reached r, the arrival rate changed 

back to 0  and the same process is repeated. It is also 

assumed that there is finite source of N customers. 

 

Queueing with impatience finds its origin during the early 

1950’s Haight(1959) studies a single server Markovian 

queueing system with reneging. Srinivaso Rao et al [5] have 

discussed M/M/1/∞ interdependent queueing model with 

controllable arrival rates. A. Srinivasan and M. Thiagarajan 

[6, 7] have analysed M/M/1/K interdependent queueing 

model with controllable arrival rates balking, reneging and 

spares.  

 

Choudhury and Medhi [1] have studied customer impatience 

in multi server queues, Kapodistria [2] has studied a single 

server Markovian queue with impatient customers and 

considered the situations where customers abandon the 

system simultaneously. Kumar and Sharma [3] have studied 

M/M/1/N queueing system with retention of reneged 

customers. Recently S. Premalatha and M. Thiagarajan [4] 

have studied interdependent discouraged Arrivals and 

Retention of Reneged customers with Controllable arrival 

rates. An attempt is made in this paper to obtain the relevant 

results of the M/M/1/K/N interdependent discouraged 

arrivals and Retention of Reneged customers with 

Controllable arrival rates is considered.  

 

2. Description of the Model  
 

It is assumed that the arrival process [X1(t)] and the service 

process [X2(t)] of the systems are correlated and follows a 

bivariate poisson process is given by 

P(X1=x1 

X2=x2;t)=
( )t1e
   

   
min(x x )

1 2 x d x dd 1 2
i

j 0

( t) ( )t ( )t 
 



    

Where x1x2=0,1,2,… 

0< i  ,   

0< < min( i , ), i=0,1 

with parameters 0 , 1 ,  and as mean faster and 

slower rate of arrivals, mean service rate and mean 

dependence rate(Co-variance between primary arrival and 

service processes) respectively. 

 

3. Steady State Equations  
 

Let Pn(0) denote the steady state probability that there are n 

customers in the system when the system is in the faster rate 

of arrival. Let Pn(1) denote the steady state probability that 
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there are n customers in the system when the system is in the 

slower rate of arrival. 

 

We observe that only Pn(0) exists when n = 0, 1, 2, 3, …. , 

r1, r; both Pn(0) and Pn(1) exist when n = R, R + 1, …, K. 

Further Pn(0) = Pn(1) = 0 if n > k. 

The steady state equations are 

N( λ0     )P0(0) + ( µ     )P1(0) = 0          --- (3.1) 

  
0

(N n) ( ) (n 1) p
n 1


 

   
        

Pn(0) + 

(N   n + 1)
 

 0

n

 
Pn-1(0) + [(µ   ) + n p ]Pn+1(0) = 

0 ; 1 ≤ n ≤ r   1 -----(3. 2) 

  
0

(N r) ( ) (r 1) p
r 1


 

   
        

Pr(0) + (N 

  r + 1)
 

 0

r

 
Pr-1(0) + [ (µ   ) + r p ]Pr+1(0) + [ (µ 

    ) + r p ]Pr+1(1) = 0 -----(3. 3) 

  
0

(N n) ( ) (n 1) p
n 1


 

   
        

Pn(0) + 

(N   n + 1)
 

 0

n

 
Pn-1(0) + [ (µ     ) + n p ]Pn+1(0) 

= 0 ; 1 ≤ n ≤ r -----(3. 4) 

  
0( )

(N R 1) ( ) (R 2) p
R


 

 
      

 
 PR-

1(0) + (NR + 2)
 

 0

R 1

 


PR-2(0) = 0 

 -----(3. 5) 

  1(N r 1) ( ) r p
r 2


 

   
      

  
 Pr+1(1) + [(µ 

    ) + ( r + 1)  p ]Pr+2(1)=0 

 -----(3.6) 

   1(N n) ( ) (n 1) p
n 1


 

   
      

  
Pn(1) + 

(N   n + 1)
 1

n

 
 Pn-1(1) + 

 [(µ ) + n p ]Pn+1(1)=0 -----(3.7) 

   1(N R) ( ) (R 1) p
R 1


 

   
      

  
PR(1) + 

(N   R + 1)
 

 1

R

 
PR-1(1) + (N R + 1)

 0

R

 
 PR-

1(0) + [ (µ   ) + R p ]PR+1(1) = 0 -----(3. 8) 

  1( )
(N n) ( ) (n 1) p

n 1


 

 
      

Pn(1) + (N 

  n + 1)
 

 1

n

 
Pn-1(1) + [ (µ   ) + n p ]Pn+1(1) = 0 

------(3. 9) 

  (µ   )PN(1) + 
 1

N

 
 PN 1(1) = 0 ------(3. 10)  

from ( 3.1 ) and ( 3.2 ), we get 

 Pn(0) = 

 

0
1

0

( ) ( )

! ( )



 






 

n
n

n

l

N

n l p

P0(0) , n = 0, 1, 2, 3, …, r --

--(3. 11) 

where ( N )n=N(N 1)(N   2) …… (N   n + 1). 

 

 

using (3. 11) in (3. 3), we get  

 Pr+1(0) = 

 

1
1 0

0

( ) ( )

( 1)! ( )



 








  

r
r
r

l

N

r l p

P0(0)   Pr+1(1) 

using the above result and (3.11) in (3.4), we get 

Pn(0) = 

 

0
1

0

( ) ( )

! ( )



 






 

n
n

n

l

N

n l p

P0(0) – 

 

r 1

1

1

P (1)

( ) 





 

 
n

l r

l p

 

 
n r 1 n r 2

0 0

n r 2

n r 1 n r 2

( ) (N r 1) ( )
(N r 2) ( ) r p

nP nP

 
 

   

 

   

    
     

 
+ ….. + 

   ( ) r p ... ( ) (n 2) p           r+1 ≤ n ≤ R – 1 -----(3.12) 

using (3.12) in (3.5), we get 

Pr+1(1) = 

 
 

 

   

R r0

R 1 0
l 0

R r 1 R r 2
0 0

R r 1 R r 2

R r 1 R r 2

0

( ) 1
N (R 1) (N) P (0)

R! ( ) l p

( ) ( )
(N r 1) (N r 2) ( ) r p ...

RP RP

( )
(N R 1) ( ) r p ... ( ) (R 3) p

R
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-----(3.13) 

using (3.13), (3.6) in (3.7), we recursively derive 

Pn(1)=

 

 

 







1

1

1

)(

)1(
n

rl

r

pl

P

      



































pnprpr

rN
nP

rN
nP

rn

rn

rn

rn

rn

rn





)2()(.....)(.....)(

)2(
)(

)1(
)(

2

2

2

1
1

1

1

1

 

-----(3. 14) 

where Pr+1(1) is given by (3.13) 

using (3.12) and (3.14) in (3.8), we get 

PR+1(1)=

 
 

    






















































prprRN

R

prrN
PR

rN
PR

pl

P
rR

rR

rR

rR

rR

R

rl

r











)(.....)()(
1

)(

.....)()2(
)1(

)(

)1(
)1(

)(

)(

)1(

1

1

1

1

1

1

1 -----(3. 15) 

 

using the above result in (3.9) and (3.10), we recursively 

derive 

Pn(1)=

 







1

1

1

)(

)1(
n

rl

r

pl

P



 

  

n r 1 n r 2
1 1

n R 1 n R 2

n r 1 n r 2

n R
1

n R 1

n R

( ) ( )
(N R 1) (N R 1)

nP nP

( )
( ) r p ... (N R 1)

nP

( ) r p ( ) (r 1) p ...( ) (R 2) p

 


 

     

   

   

   



 



  
     

 
 

      
 
        
 
  

 

R ≤ n ≤ K 

where Pr+1(1) is given by (3.13) 

 Thus from (3.11) to (3.15), we find that the steady state 

probabilities are expressed interms of P0(0).  

 

4. Characteristics of the Model 
 

The following system characteristics are considered and 

their analytical results are derived in this system. 

i) The probability P(0) that the system is in faster rate of 

arrivals. 

ii) The probability P(1) that the system is in slower rate of 

arrivals. 

iii) The probability P(0) that the system is empty. 

iv) The expected number of customers in the system 
0

sL , 

when the system is in the faster rate of arrivals. 

v) The expected number of customers in the system 
1

sL , 

when the system is in the slower rate of arrivals. 

vi) The expected waiting time of the customer in the system 

Ws 

 

The probability that the system is in faster rate of arrivals is  

P(0)=
k

n

n 0

P (0)



 

P(0)=
K

n

n R

P (0)


 + 
R 1

n

n r 1

P (0)


 

 + 
K

n

n R

P (0)


  

= 

 






























1

0
1

0

0

)(

)(

!

1R

n
n

l

n

pl
n




+ 

R 1

n

n r 1

P (0)


 

 + 

k

n

n R

P (0)


  

Since Pn(0) exists only when n=0, 1, 2, …, r1, r, r+1, r+2, 

…, R2, R1. 

We get 

P(0)= 
r

n

n 0

P (0)


  + 
R 1

n

n r 1

P (0)


 

                         -------(4.1) 

 

From (3.11), (3.12), (3.13) and (4.1), we get 

P(0)= 

 



























)0()(

)(

)(

!

1
01

0

0 PN

pl
n

nn

l

n




  

R
R 1

0
R 0

n 1
n r 1

l 0

( )A 1
(N) P (0)]

B R! [( ) l p]



 




 






 

   ----

(4.2) 

where 
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n r 1 n r 2
0 0

n r 1 n r 2

n r 1 n r 2

( ) ( )
A [(N r 1) [N r 2]

nP nP

[( ) r p] ... [( ) r p][( ) (r 1) p].....[( ) (n 2) p]

 

       

   

   

   

 
     

           

 

 
 

 
   

1 2
0 0

1 2
1 2

1 2
 

 

   

   
   

 
          

R r R r

R r R r
R r R r

N r N r r p
RP RP

 

         1 2                         r p r p R p  

 

The probability that the system is in slower rate of arrivals is 

   



K

n

n

0

11  

             




 


K

n

R

rn

K

Rn

nnn

0

1

1

111  

Since  1n  exists only when 

kRRrrn  ,1,2,,2,1   

 We get         



K

Rn

n

R

rn

n

11

111    ------(4.3)      

from (3.14),(3.15) and (4.3), we get 
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1 0
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where  

 

C = 
 

 
 

   
1 2

1 1

1 2
1 2

1 2
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The probability  00  that the system is empty can be calculate from the normalizing condition. 
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where A, B, C and D is given by (4.2) and (4.4) 

Now, we calculate the expected number of customers in the 

system. Let Ls
denote the average number of customers in 

the system, then we have 

sL  = 
0

sL + 
1

sL  

where 

0
sL = 

0

(0)
r

n

n

nP

    + 

1

1

(0)
R

n

n r

nP


 
  

and 
1

sL = 
1

1

(1)
R

n

n r

nP


 
  + (1)

K
n

n R

nP

  

using Little’s formula, the expected waiting time of the 

customer in the system is calculated as  s
s

L
W


  where 

 = 0 1(0) (1)P P   

 

5. Numerical Illustration 
 

r R K N 
0  1  µ     p 

0P (0) P(0) P(1) Ls Ws 

4 6 10 10 4 3 5 1 1 1 0.00899 0.75108 0.25991 3.44242 0.92436 

4 6 10 10 4 3 5 0 1 1 0.00539 0.62451 0.38009 3.85820 1.06924 

4 6 10 10 4 3 5 0.5 1 1 0.00687 0.68645 0.32667 3.66175 0.99888 

4 6 10 10 2 1 5 0.5 1 1 0.08143 0.89715 0.02140 2.01522 1.10987 

4 6 10 10 4 3 6 0.5 1 1 0.01213 0.73378 0.27408 3.42411 0.92608 

4 6 10 10 4 3 8 0.5 1 1 0.02807 0.83031 0.17161 2.98094 0.80217 

4 6 10 10 4 4 5 0.5 1 1 0.00661 0.66096 0.34242 3.74837 0.94333 

4 6 10 10 4 4 5 0 1 1 0.00514 0.59629 0.41856 3.95982 0.99507 

4 6 10 10 3 2 5 0.5 1 1 0.02250 0.84850 0.16899 2.91491 1.03974 

4 6 10 10 5 5 5 0 1 1 0.00179 0.44349 0.56470 4.49610 0.90083 

4 6 10 10 6 3 5 0.5 1 1 0.00096 0.44458 0.56445 4.41170 1.02577 

4 6 10 10 6 5 4 0.5 1 1 0.00036 0.34146 0.66817 4.76348 0.89377 

4 6 10 10 4 3 5 1 0 0 0.00899 0.75108 0.25991 3.44242 0.92436 

4 6 10 10 4 3 5 0.5 0.5 0.5 0.00300 0.53068 0.47630 4.21204 1.19944 

4 6 10 10 2 1 5 0 1 1 0.05232 0.89522 0.15245 2.35899 1.28004 

                         

6. Conclusion 
 

It is observed from the numerical value that when the mean 

service rate increases and the other parameters are kept 

fixed, P0(0), P(0) increases and P(1) decrease Ls decrease 

and Ws decreases. When the arrival rate decreases(the other 

parameters are keep fixed), P0(0),P(0) increases and P(1) 

decrease Ls increases and Ws decreases. When the mean 

dependence rate increases and the other parameters are keep 

fixed, P0(0) and P(0) increase, P(1) decrease. When the 

value of   increases and the other parameters are kept fixed 

P0(0) and P(0) increase, P(1) decrease. 

 

References 
 

[1] Choudhury. A and Medhi. P(2010)A simple analysis of 

customers impatience in multiserver queues, Journal of 

Applied Quantitative Methods, 5: 182-198. 

[2] Kapodistria. S(2011)The M/M/1 queue with 

synchronized abandonments Queueing systems, 68: 79-

109. 

[3] Kumar. R and Sharma. S. K(2012)An M/M/1/N 

queueing system with retention of reneged customers, 

Pakistan Journal of Statistics and Operations Research,        

8(4): 859-866. 

[4] Premalatha. S and Thiagarajan. M(2016) A single erver 

markovian queueing system with discouraged arrivals 

retention of reneged customers and controllable arrival 

rates, International Journal of Mathematical Archive-

7(2), 2016, 129-134 

[5] Srinivasa Rao. K, Shobha. T and Srinivasa Rao. 

P,(2000)The M/M/1/∞ interdependent queueing model 

with controllable arrival rates Opsearch, 37(1),    14-24. 

[6] Srinivasan .A and Thiagarajan. M(2006)The M/M/1/K 

interdependent queueing model with controllable arrival 

rates; International Journal of Management and systems, 

22, no-1,23-24. 

[7] Srinivasan. A and Thiagarajan. M(2007)The 

M/M/c/K/N interdependent queueing model with 

controllable arrival rates balking reneging and spares, 

Journal of statistics and applications, 2, Nos 1-2,56-65. 

Paper ID: 7041701 1321 




