
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Secure and Memory Efficient De-Duplication On

Encrypted Data in Cloud Storage

Divya R, Arthi R, Indhumathi .M, Dr. U. V. Arivazhagu, M.E, M.B.A, Ph.D

Professor & Head of the Department of CSE, Kingston Engineering College

Abstract: Today most of the Attackers target to social media network data’s, this happen in malicious Environment. User doesn’t know

if our sharing data may be misused by attacker. We propose novel concept “OTP” based data view, data owner can ease to identify

malicious user, because consumer should be validate for receive any data from data owner. All stored data must be based on Data

Lineage concept .Data Lineage means share one copy of data to all users and also maintain all accessed consumer information for that

data. In this way we can avoid Duplications and easy to identify data leakage. Effectively manage Database memory. In this paper, we

propose a novel server-side deduplication scheme for encrypted data. It allows the cloud server to control access to outsourced data even

when the ownership changes dynamically by exploiting randomized convergent encryption and secure ownership group key distribution.

This prevents data leakage not only to revoked users even though they previously owned that data, but also to an honest-but-curious

cloud storage server. In addition, the proposed scheme guarantees data integrity against any tag inconsistency attack. Thus, security is

enhanced in the proposed scheme. The efficiency analysis results demonstrate that the proposed scheme is almost as efficient as the

previous schemes, while the additional computational overhead is negligible.

Keywords: De-duplication, Cloud storage, Encryption, OTP, Revocation.

1. Introduction

Cloud computing provides scalable, low-cost, and

location-independent online services ranging from simple

backup services to cloud storage infrastructures. The fast

growth of data volumes stored in the cloud storage has led

to an increased demand for techniques for saving disk

space and network bandwidth.

Most of the attacker easily steal the key from the cloud

server and misuse it. In this paper we provide a security to

key by using one time password and we avoid data

duplication.

We provide a ownership to the data owner by using the

proof of ownership. The hash function for the data will be

generated using the MD5 algorithm. And the key,

encryption, decryption are done using the DES algorithm.

Deduplication techniques can be categorized into two

different approaches: deduplication over unencrypted data

and deduplication over encrypted data. We propose a

deduplication scheme over encrypted data. The proposed

scheme ensures that only authorized access to the shared

data is possible, which is considered to be the most

important challenge for efficient and secure cloud storage

services in the environment where ownership changes

dynamically. It is achieved by exploiting a group key

management mechanism in each ownership group. As

compared to the previous deduplication schemes over

encrypted data, the proposed scheme has the following

advantages in terms of security and efficiency. First,

dynamic ownership management guarantees the backward

and forward secrecy of deduplicated data upon any

ownership change. As opposed to the previous schemes,

the data encryption key is updated and selectively

distributed to valid owners upon any ownership change of

the data through a stateless groupkey distribution

mechanism using a binary tree. The ownership and key

management for each user can be conducted by the semi-

trusted cloud server deployed in the system.

However, previous deduplication systems cannot support

differential authorization duplicate check, which is

important in many applications. In such an authorized

deduplication system, each user is issued a set of

privileges during system initialization. Each file uploaded

to the cloud is also bounded by a set of privileges to

specify which kind of users is allowed to perform the

duplicate check and access the files. Before submitting his

duplicate check request for some file, the user needs to

take this file and his own privileges as inputs. The user is

able to find a duplicate for this file if and only if there is a

copy of this file and a matched privilege stored in cloud.

2. Background Work

Xuexue Jin et al(2013) ,Explained that Cloud computing

is viewed as the next generation architecture of IT

companies. As promising as it is, cloud computing also

brings forth many new security issues when users

outsource sensitive data to cloud servers. To keep

sensitive users' data confidential against untrusted servers,

existing solutions usually apply cryptographic methods.

With data encryption, the same file will become different

from each other, thus deduplication which is widely

adopted by cloud storage service providers meets some

challenges. Current method to solve the problem is to

make use of some information computed from the shared

file to achieve deduplication of encrypted data, say

convergent encryption. But this piece of information

which is computable from the file via a deterministic

public algorithm is not really meant to be secret. To this

end, we propose a scheme to address the deduplication of

encrypted data efficiently and securely with the help of

ensure ng the ownership of the shared file, encrypting

data using keys at user's will and realizing the anonymous

store through the digital credential. We achieve this aims

Paper ID: 29031708 99

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

through proof of ownership (POW), proxy re-encryption

(PRE) and digital credential..

Jong Hwan Park et al(2008) ,explained that Broadcast

encryption allows a sender to securely distribute

messages to a dynamically changing set of users over an

insecure channel. In a public key broadcast encryption

(PKBE) scheme, this encryption is performed in the

public key setting, where the public key is stored in a

user's device, or directly transmitted to the receivers

along with ciphertexts. In this paper, we propose two

PKBE schemes for stateless receivers which are

transmission-efficient. A distinctive feature in our first

construction is that, different than existing schemes in

the literature, only a fraction of the public key related to

the set of intended receivers is required in the decryption

process. This feature results in the first PKBE scheme

with O(r) transmission cost and O(1) user storage cost

for r revoked users. Our second construction is a

generalized version of the first one providing a tradeoff

between ciphertext size and public key size. With

appropriate parametrization, we obtain a PKBE scheme

with (Oradicn) transmission cost and O(1) user storage

cost for any large set of n users. The transmission cost of

our second scheme is at least 30\% less than that of the

recent result of Boneh et al.'s PKBE scheme, which is

considered as being the current state-of-the-art. By

combining the two proposed schemes, we suggest a

PKBE scheme that achieves further shortened

transmissions, while still maintaining O(1) user storage

cost. The proposed schemes are secure against any

number of colluders and do not require costly re-keying

procedures followed by revocation of users.

Kazuhide Fukushima et al(2009) ,explained that Digital

content distribution services require that 1) only valid user

devices that has a valid key can decrypt the broadcasting

content, 2) the keys can no longer be used to decrypt the

content, if keys in a device are revealed, and 3) invalid

users who illegally use keys in a device can be identified.

This paper proposes a broadcast encryption scheme with

traitor tracing based on the ternary tree structure. We

design a new cover-finding algorithm and label

assignment algorithm in order to achieve a coalition-

resistant revocation and tracing schemes. In our scheme,

the number of labels stored in a client device can be

reduced by about 20.4 percent and the average header

length by up to 15.0 percent in the case where the total

number of devices is 65,536. The efficiency of the traitor

tracing is the same as the complete subtree method, and its

computational cost imposed on a client device stays

within O(logn). Our scheme is an improvement of the

complete subtree and difference subset methods.

Xiaofeng Chen et al(2015), explained that Data

deduplication is a technique for eliminating duplicate

copies of data, and has been widely used in cloud storage

to reduce storage space and upload bandwidth. However,

there is only one copy for each file stored in cloud even if

such a file is owned by a huge number of users. As a

result, deduplication system improves storage utilization

while reducing reliability. Furthermore, the challenge of

privacy for sensitive data also arises when they are

outsourced by users to cloud. Aiming to address the above

security challenges, this paper makes the first attempt to

formalize the notion of distributed reliable deduplication

system. We propose new distributed deduplication

systems with higher reliability in which the data chunks

are distributed across multiple cloud servers. The security

requirements of data confidentiality and tag consistency

are also achieved by introducing a deterministic secret

sharing scheme in distributed storage systems, instead of

using convergent encryption as in previous deduplication

systems. Security analysis demonstrates that our

deduplication systems are secure in terms of the

definitions specified in the proposed security model. As a

proof of concept, we implement the proposed systems and

demonstrate that the incurred overhead is very limited in

realistic environments.

Dharani p et al(2015) explained that which is widely used

in cloud to reduce storage space and increase bandwidth.

Convergent encryption has been extensively adopted for

secure deduplication, in order to use efficiently and

reliably manage a huge number of convergent keys. A

baseline approach named as Dekey is used to distribute

the convergent key which would be shared across multiple

servers. But implementation of Dekey using the Ramp

secret sharing scheme has some limitations; a heavy

computational cost is required to make n shares and

recover the secret as a solution to this problem. Hence a

new (k, L, n)-threshold ramp scheme (extension of

existing ramp scheme) is proposed which is perfect, idle

and faster secret sharing scheme, every combination of k

or more participants can recover the secret, but every

group of less than k participants cannot obtain any

information about the secret.

3. System Architecture

Figure 1: System architecture

In this section we describe a detailed description of the

architecture. At first the user login in to the cloud and

creates a profile. User first uploads the file. The file is sent

to the data checker for giving the ownership for the user.

Paper ID: 29031708 100

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

It is checked using the MD5 algorithm. MD5 algorithm

generates the hash function. Message-Digest (Fingerprint)

algorithms are special functions which transform input of

(usually) arbitrary length into output (so-called

"fingerprint" or "message digest") of constant length.

Message-Digest algorithms serve in digital signature

applications for guaranteeing consistency (integrity) of

data. Commonly used model is as follows (message-digest

in cooperation with asymmetric cryptography): And if the

file already exists the data checker can easily identify

using hash function. If the file does not exist already then

the key will be generated and stored in the cloud. The

ownership will be given to data owner. The key will be

generated using the DES algorithm. This key performs the

binary rotation operation. It encrypts and decrypt the

given message that includes key generation algorithm

also. It performs binary rotation process for the security of

the key. The uploaded file will be in encrypted form if

other users want to view the file they give request to view

the file. After receiving the request from the other user the

one time password will be sent to their mail. Other user

gets the link and one time password to view the file. They

must view the link and enter into the link to view the

uploaded file. By this way that data can be kept secured

and other has no authorization to forward those files to

some other. If the same file is uploaded again the data

checker finds and does not accepts the file and does not

give the ownership to that particular user. It is stored in

the cloud.

4. Deduplication on Encrypted Data

 DeDuplication using MD5.

 Data set creation and finding duplication.

 Shared Dataset.

 Security and key generator

5. Deduplication using MD5

Data owner can upload data’s, that data are split into

multipart data then send to trusted data checker, job of the

data checker is to generate signature key from MD5 and

compare with previous keys, if mismatch then that data

send to Key generator Server, Job of the key generator are

generate encryption key as user specified algorithm

,finally encrypt then store in Database.

The deduplication algorithm should guarantee tag

consistency against any poison attacks. That is, the

deduplication algorithm should allow the valid owners to

verify that the data downloaded from the cloud storage

have not been altered. It sends to trusted data checker, job

of the data checker is to generate signature key from MD5

A data owner encrypts the data and outsources it to the

cloud storage.

This is a client who owns data, and wishes to upload it

into the cloud storage to save costs. A data owner encrypts

the data and outsources it to the cloud storage with its

index information, that is, a tag. If a data owner uploads

data that do not already exist in the cloud storage, he is

called an initial uploader; if the data already exist, called a

subsequent uploader since this implies that other owners

may have uploaded the same data previously, he is called

a subsequent uploader.

Dataset Creation and Finding Deduplication

In this Module We create data owner dataset, this dataset

only map owner with our upload data’s , we maintain

common database for effectively find duplications. The

files will be uploading only once. If another data owner

going to upload the same file in database means they will

get the notification (the data is already uploaded in

database).So data owner can save cost and time.

In this Module We create data owner dataset, this dataset

only map owner with our upload data’s .we maintain

common database for effectively find duplications.

The files will be uploading only once. So data owner can

save cost and time. This is an entity that provides cloud

storage services. It consists of a cloud server and cloud

storage.

Duplication may done in 2 ways. They are;

 Duplication over encrypted data

 Duplication over non encrypted data

In order to preserve data privacy against inside cloud

server as well as outside adversaries, users may want their

data encrypted. In the context of deduplication, backward

secrecy means that any user should be prevented from

accessing the plaintext of the outsourced data before

uploading the data. Conversely, forward secrecy means

that any user who deletes or modifies the data in the cloud

storage should be prevented from accessing the

outsourced data after its deletion or modification.

6. Shared Dataset

Share Dataset is an light weight dataset that only contain

mapping file metadata information, in our project we

maintain one common big data database instead of unique

because efficiently find duplication and memory

management, if data owner share our data to client that

data not replicate instead map client name.

This is an entity that provides cloud storage services. It

consists of a cloud server and cloud storage. The cloud

server deduplicates the outsourced data from users if

necessary and stores the deduplicated data in the cloud

storage. The cloud server maintains ownership lists for

stored data, which are composed of a tag for the stored

data and the identities of its owners. The cloud server

controls access to the stored data based on the ownership

lists and manages (e.g., issues, revokes, and updates)

group keys for each ownership group as a group key

authority. The cloud server is assumed to be honest-but-

curious. That is, it will honestly execute the assigned tasks

in the system; however, it would like to learn as much

information about the encrypted contents as possible.

Thus, it should be deterred from accessing the plaintext of

the encrypted data even if it is honest.

Paper ID: 29031708 101

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

7. Security and Key Generator

We are implementing “Dynamic Encryption key

Generation”. It means all shared data only view with data

owner permission, so we can avoid from unknown access.

Unauthorized users who cannot prove ownerships should

not be able to decrypt the ciphertext stored in the cloud

storage. Additionally, the cloud server is no longer fully

trusted in the system. Thus, unauthorized access from the

cloud server to the plaintext of the encrypted data in the

cloud storage should be prevented.

Social users are group members they can only view and

share the data. If want show the data mean they need to

get permission to data owner then data owner will send

Encryption key after they can view the data. If data owner

does not provide the KEY mean user cannot view the file

Key will be generator using the DES key generating

algorithm. The key is kept safe by using the rotation shift.

Des performs binary rotation .so the key is kept safe.

8. MD5 Algorithm

MD5 is an algorithm that is used to verify data integrity

through the creation of a 128-bit message digest from data

input (which may be a message of any length) that is

claimed to be as unique to that specific data as a

fingerprint is to the specific individual.

 Step 1. Append Padding Bits

 Step 2. Append Length

 Step 3. Initialize MD Buffer

 Step 4. Process Message in 16-Word Blocks

 Step 5. Output

Procedure PLR,GLR(f,x)

 If |∆Hpt - ∆Hpt-1 |< |∆Hpt-1 - ∆Hpt-2 | then

 //promote exploration

 if lattConf = 2(n/2 ×n) then

 lattConf =4(n/2×n/2);

 else if lattConf=4(n/2×n/2) then

 lattConf = (n×n);

 else if lattConf=(n×n) then

 lattConf =n(1×n/2);

 else

 lattConf =n(1×n/2);

 end if

 else if |∆Hpt - ∆Hpt-1 |>|∆Hpt-1 - ∆Hpt-2 | then

 //promote exploration

 if lattConf = n(1 ×n/2) then

 lattConf =(n×n);

 else if lattConf=(n×n) then

 lattConf =4 (n/2×n/2);

 else if lattConf=4(n/2×n/2) then

 lattConf =2(n/2×n);

 else

 lattConf =2(n/2×n);

 end if

else

end if

end procedure

9. DES Algorithm

The Data Encryption Standard is a block cipher,

meaning a cryptographic key and algorithm are applied to

a block of data simultaneously rather than one bit at a

time. To encrypt a plaintext message, DES groups it into

64-bit blocks.

Step 1: Create 16 subkeys, each of which is 48-bits long.

The 64-bit key is permuted according to the following

table, PC-1. ...

Step 2: Encode each 64-bit block of data.

Cipher (plainBlock[64], RoundKeys[16, 48],

cipherBlock[64])

{ permute (64, 64, plainBlock, inBlock,

InitialPermutationTable)

 split (64, 32, inBlock, leftBlock, rightBlock)

for (round = 1 to 16) { mixer (leftBlock, rightBlock,

RoundKeys[round])

if (round!=16) swapper (leftBlock, rightBlock)

 }

combine (32, 64, leftBlock, rightBlock, outBlock)

permute (64, 64, outBlock, cipherBlock,

FinalPermutationTable)

 }

mixer (leftBlock[48], rightBlock[48], RoundKey[48])

{ copy (32, rightBlock, T1)

function (T1, RoundKey, T2)

 exclusiveOr (32, leftBlock, T2, T3)

copy (32, T3, rightBlock)

 }

 swapper (leftBlock[32], rigthBlock[32])

 {

copy (32, leftBlock, T)

 copy (32, rightBlock, leftBlock)

 copy (32, T, rightBlock)

}

 function (inBlock[32], RoundKey[48], outBlock[32])

{

 permute (32, 48, inBlock, T1,

ExpansionPermutationTable)

exclusiveOr (48, T1, RoundKey, T2)

 substitute (T2, T3, SubstituteTables)

permute (32, 32, T3, outBlock, StraightPermutationTable)

}

 substitute (inBlock[32], outBlock[48],

SubstitutionTables[8, 4, 16])

{

 for (i = 1 to 8)

{

row ←2 *inBlock[i* 6 + 1] + inBlock [i *6 + 6]

col ←8 * inBlock[i *6 + 2] + 4 * inBlock[i *6 + 3] + 2 *

inBlock[i *6 + 4] + inBlock[i *6 + 5]

value = SubstitutionTables [i][row][col]

 outBlock[[i *4 + 1] ←value / 8;

 value ←value mod 8 outBlock[[i *4 + 2] ←value / 4;

value ←value mod 4 outBlock[[i * 4 + 3]← value / 2;

value ← value mod 2 outBlock[[i * 4 + 4]← value } }

Key generation:

Paper ID: 29031708 102

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Key_Generator (keyWithParities[64], RoundKeys[16, 48],

ShiftTable[16])

{

 permute (64, 56, keyWithParities, cipherKey,

ParityDropTable)

 split (56, 28, cipherKey, leftKey, rightKey)

for (round = 1 to 16)

{

 shiftLeft (leftKey, ShiftTable[round])

shiftLeft (rightKey, ShiftTable[round])

combine (28, 56, leftKey, rightKey, preRoundKey)

 permute (56, 48, preRoundKey, RoundKeys[round],

KeyCompressionTable)

 }

 }

 shiftLeft (block[28], numOfShifts)

{

 for (i = 1 to numOfShifts)

 {

 T← block[1]

for (j = 2 to 28)

 {

 block [j−1] ← block [j]

}

 block[28]← T

}

 }

Comparison using the existing project:

Existing Project

1. The existing system may not effectively find data

duplication because that only effect data encryption

under same key so it lead to security flaw.

2. The threat now extends to our personal lives: plethora of

personal information is available to social networks and

smart phone providers and is indirectly transferred to

untrustworthy third party and fourth party applications.

3. The data will stored in cloud and no separate multipart

data is created.

Proposed Concepts:

1. The proposed concepts uses one time password so the

key keep on changing (“Dynamically Generate

Encryption key “) and by this the security increases

2. Here the proof of ownership is given only to data

owners who first upload the file and only the data

owners can share or transfer file to the user so by this

way the messages will not be unwontedly leaked.

3. That data is sent into multi part and generate a signature

key for each part, key based on part content so we can

easy to identify data duplication.

10. Efficiency

The comparative results for the theoretical efficiency of

the scheme are summarized in below graph the analysis

results of each scheme in terms of the communication and

storage overhead are shown. For communication

overhead, “upload message size” represents the

communication cost required for the data outsourcing

process; “download message size” represent the

communication cost required for ciphertext downloading

and tag checking processes, and “rekeying message size”

represents the communication cost required for rekeying

the data encryption key. For storage overhead, “key size”

and “tag size” represent the size of the keys and tag

information that each owner needs to store, respectively.

For the upload and download message sizes, the proposed

scheme is the same as the basic RCE scheme. In LR, the

communication overhead for verifying PoW is

additionally included in the download message. In the

scheme, the PoW verification and tag checking processes

are done during the data upload the phase by the data

owner.

However, they can be executed during the data download

phase without loss of functionality and efficiency. Thus,

we suppose they are executed during the download phase

as in and the proposed scheme for the sake of fair

comparison. With regard to the rekeying message size,

only the proposed scheme supports key updates upon

ownership changes for data. In the proposed scheme, the

rekeying message size (i.e., size of C3 i) would be

(n−m)log n n−m Ck. This additional message plays an

important role in enhancing the backward and forward

secrecy, and enforces fine-grained user access control to

the outsourced data in contrast to the other schemes.

Whereas, the encryption key is determined by the message

itself, it is selected by the initial uploader and never

updated during the lifetime of the data in the system.

Thus, even if the other schemes do not need the additional

rekeying messages, they cannot guarantee the data privacy

during the windows of vulnerability in the practical cloud

environment where the ownership changes dynamically as

time elapses. The above graph clearly shows the variation

between the before paper and the current paper.

11. Results and Discussion

The goal of the proposed system is to increase security to

the data and avoid duplication. Here we use a message

digest technique to avoid the duplication of the file. The

message digest technique generates a hash function by

using that hash function the data checker can easily find

the duplicate data because for the same file the generated

hash function will also be same. So it is easy to find the

duplication. By finding the duplication we can increase

the storage and efficiency. We use a data encryption

standard for encrypting, decrypting and key generation.

The encryption and decryption process uses a 64 bit key

so if the attacker gets the file the key cannot be identified

Paper ID: 29031708 103

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

and the data will be kept safe. And for the key generation

it performs the binary rotation operation. This binary

rotation keeps on moving the key so the key cannot be

hacked. The data owner provides will provide the one

time password to the other user. So the other users are

requested to view the file only once and they don’t have

authorization to share that particular file to third party

applications. So therefore our project is more efficient and

secure.

User 1 login form:

Here the user1 enters into the form and creates the profile.

User1 profile:

In this profile the user can either upload a files and he can

view the other users uploaded file

User1 view others shared file

In this the user1 can view the other users shared file that

will be in the encrypted form

User1 upload profile

Here user1 should upload his file that includes a message

and the file will be in the form of a image

User 1 storage details

Paper ID: 29031708 104

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Here the data checker checks the file and verify the

duplication. If the duplication does not exists then the data

will be stored successfully

Viewing user1’s upload file

Here user1 will view his uploaded files and shares the file.

User2 profile

In this profile the user2 can either upload a files and he

can view the other users uploaded file

User2 viewing the encrypted data

Here the user2 will view the encrypted data and send the

request to view the file.

OTP request

By clicking the link the otp will be sent to the user that is

used to view the uploaded file.

Viewing OTP

Paper ID: 29031708 105

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 4, April 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Here the user will view the one time password and by

clicking the link they can view the message

OTP profile

Here the user will enter into the OTP profile and view the

file.

User2 viewing the encrypted file

In this the user2 views the correct file from the encrypted

form using the one time password and this user can only

view the file and cannot share the files to others.

12. Conclusion

Dynamic ownership management is an important and

challenging issue in secure deduplication overencrypted

data in cloud storage. In this study, we proposed a novel

secure data deduplication scheme to enhance a fine-

grained ownership management by exploiting the

characteristic of the cloud data management system. The

proposed scheme features a reencryption technique that

enables dynamic updates upon any ownership changes in

the cloud storage. Whenever an ownership change occurs

in the ownership group of outsourced data, the data are

reencrypted with an immediately updated ownership

group key, which is securely delivered only to the valid

owners. Thus, the proposed scheme enhances data privacy

and confidentiality in cloud storage against any users who

do not have valid ownership of the data, as well as against

an honest-but-curious cloudserver. Tag consistency is also

guaranteed, while the scheme allows full advantage to be

taken of efficient data deduplication over encrypted data.

In terms of the communication cost, the proposed scheme

is more efficient than the previous schemes, while in

terms of the computation cost, taking additional 0.1−0.2

ms compared to the RCE scheme, which is negligible in

practice. Therefore, the proposed scheme achieves more

secure and fine-grained ownership management in cloud

storage for secure and efficient data deduplication.

Reference

[1] J. Xu, E. Chang, and J. Zhou, “Leakage-resilient

client-side deduplication of encrypted data in cloud

storage,” ePrint, IACR,

http://eprint.iacr.org/2011/538.

[2] M. Bellare, S. Keelveedhi, and T. Ristenpart,

“Message-locked encryption and secure

deduplication,” Proc. Eurocrypt 2013, LNCS 7881,

pp. 296–312, 2013 Cryptology ePrint Archive, Report

2012/631, 2012

[3] S. Halevi, D, Harnik, B. Pinkas, and A. Shulman-

Peleg, “Proofs of ownership in remote storage

systems,” Proc. ACM Conference on Computer and

Communications Security, pp. 491–500, 2011

[4] M. Mulazzani, S. Schrittwieser, M. Leithner, and M.

Huber, “Dark clouds on the horizon: using cloud

storage as attack vector and online slack space,” Proc.

USENIX Conference on Security, 2011

[5] A. Juels, and B. S. Kaliski, “PORs: Proofs of

retrievability for large files,” Proc. ACM Conference

on Computer and Communications Security, pp. 584–

597, 2007.

[6] G. Ateniese, R. C. Burns, R. Curtmola, J. Herring, L.

Kissner, Z. Peterson, and D. Song, “Provable data

possession at untrusted stores,” Proc. ACM

Conference on Computer and Communications

Security, pp. 598–609, 2007

Paper ID: 29031708 106

