Macrophages: Contribution to Diseases Development and Progression

Dr. Nabeia Ali Gheryani, PhD¹, Dr. Houssein H. Elmatri, MD²

¹Department of Pathology, Faculty of Medicine, University of Benghazi
²Department of Otolaryngology, AL-Hawari Teaching Hospital, University of Benghazi

Short Title: Macrophages and Diseases

Abstract: Macrophages are versatile cells. They are derived from CD34+ bone marrow progenitors. Macrophages act as the first line of defence in the body against bacterial and viral infection. They also accumulate in acute and chronic inflammation and have an important role in healing and repair process. Studies have also indicated that macrophages participate in the development and progress of chronic disease such as rheumatoid arthritis and atherosclerosis. Many studies have suggested that macrophages play an important role in tumour cell invasion, growth, proliferation, and metastasis to distant organs. This review will summarise the role of macrophages in certain benign diseases. We also discuss the role of macrophages in tumour growth, progression and metastases.

Keywords: Macrophages, Tumour, Rheumatoid arthritis, Atherosclerosis, Inflammatory bowel diseases

1. Introduction

1.1 Origin, development and function

Macrophages are versatile inflammatory cells derived from CD34+ bone marrow cells and provide an important level of protection against bacterial and viral infection [1]. In the bone marrow, monoblasts arise from a common myeloid progenitor through a myeloblast stage. The monoblasts then divide to produce promonocytes which then differentiate into monocytes [2]. Monocytes travel in the circulation for about one or two days and then migrate to tissues where they differentiate into resident macrophages (Figure 1.1)[3]. Tissue macrophages are called histocytes in connective tissue, kupffer cells in liver, microglial cells in neural tissue, osteoclasts in bone and sinusoidal lining cells in splenic red pulp [2]. Other examples of tissue macrophages include tangible body in the germinal centre of the lymph nodes, dendritic cells, langerhans cells, lipid laden macrophages (foam cells), alveolar macrophages and macrophages of tonsils and dermis [2]. In general, macrophages are big irregular cells measuring 25-50 µm in diameter and contain a peripheral nucleus, between one and two prominent nucleoli and an abundant granular cytoplasm. To achieve their functions, macrophages have a large number of surface receptors, such as the Fc region of the IgG, IgA and IgE molecules, receptors for cytokines such as interleukin (IL)-1, IL-3, IL-10 and colony stimulating factor (CSF-1) also known as macrophage colony stimulating factor (M-CSF) [4], hormonal receptors such as insulin [5] and angiotensin [6]. Among these receptors, the Fc region of the IgG molecule receptor was the first macrophage receptor to be identified [7]. Through the binding of the Fc part of the IgG to these receptors, macrophages can perform many functions such as endocytosis, phagocytosis and secretion of certain cytokines and chemokines[1].

![Figure 1.1: Origin and types of macrophage](image-url)
A common myeloid progenitor divides in the bone marrow to produce monoblasts via myeloblast stage. The monoblasts then differentiate into promonocytes which then differentiate into monocytes. Monocytes circulate in the blood for about one or two days (depending on the species) before they then migrate to tissues where they differentiate into resident macrophages. Tissue macrophages are called kupffer cells in liver, osteoclasts in bone, alveolar macrophages in lung and microglial cells in neural tissue.

Macrophages engulf pathogens to form the phagosome which then fuses with the lysosome to digest the microbes. Engulfment of pathogens by macrophages starts with the binding of the macrophages to the pathogen through recognition molecules, the opsonins, such as IgG and fragments of the third component of complement [8]. In addition, macrophages present protein antigen to helper T cells by transferring them to the cell surface and coating them with glycoprotein encoded by class II and sometimes class I genes of the Major Histocompatibility Complex (MHC) [9,10]. Macrophages are drawn into diseased sites along trails of chemotactic stimuli in order to eliminate bacteria, virus and other pathogens [11]. Response of macrophages to different chemoattractants takes place as a result of specific receptors on the macrophage cell surface that sometimes be activated in the presence of low concentrations of chemoattractant. N-formylated peptides, leukotriene B4, and CCL2 (monocyte chemotactic protein-1 (MCP-1)) are the most well-known chemoattractant factors for monocytes/macrophages [12,13]. Macrophages release a wide array of proteins including a large number of cytokines, chemokines, growth factors, and enzymes [14]. The main functions of macrophages are summarized in table 1.1.

Studying of cell surface receptors using monoclonal antibodies has indicated heterogeneity in of macrophage phenotype. Heterogeneity among peripheral blood monocytes has also been identified which highlights the heterogeneity in myeloid cell line [15]. In mice, monocytes are subdivided according to their expression of CCR2, CD62L and CCR2+ monocytes are attracted to CCR2 ligand and accumulated in inflammatory sites [16] therefore it is known as inflammatory subset [17,18]. At the inflammatory sites, monocytes express high level of CD11c and MHC class II and live Shorty [15]. In contrast, the second monocyte subset, CCCR2- shows longer life span and is released into peripheral blood in absence of inflammation. Both subsets may differentiate into DC [15].

<table>
<thead>
<tr>
<th>Function</th>
<th>Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phagocytosis</td>
<td>Engulf necrotic debris and pathogens such as bacteria, viral, fungus and protozoa guided by chemoattractant factors secreted by theses pathogens</td>
</tr>
<tr>
<td>Antigen presentation</td>
<td>T cell activation and presentation of antigen by integrating it into cell membrane and displaying it attached to MHC class II or class I</td>
</tr>
<tr>
<td>Chemotaxis</td>
<td>Macrophages are attracted toward microbes through activation of certain chemoattractant factors such as macrophage chemotactic protein</td>
</tr>
</tbody>
</table>

Table 1.1: Main functions of macrophages [1]

1.2 Resident macrophages

Blood monocytes circulate for 1-3 days and then migrate into tissues to differentiate into resident tissue macrophages [2]. The main forms of tissue resident macrophages are listed below.

Kupffer cells

Kupffer cells are macrophages derived from monocytes and are found within the lining of the liver sinusoids. Their main function is to phagocytose bile debris, bacteria and dead red blood cells (RBCs) [19]. They are also involved in liver infections as they inhibit the proliferation of micro-organism by producing inflammatory mediators such as IL6, IL-12 and TNF-α [20,21] and also attract monocytes and neutrophils into the liver to control any infection [22]. In addition, Kupffer cells are also involved in the control of malignant liver diseases; they have a cytotoxic effect toward metastatic adenocarcinoma [23] and can also induce Fas mediated apoptosis in some metastatic malignant cells [24].

Microglial cells

Microglial cells are the main immunological cells in the central nervous system (CNS) [25]. They constitute 20% of the total glial cell population in the CNS. They migrate to the CNS during embryological development and are derived from circulating blood monocytes in adult life. They express macrophage markers (e.g. CD11b and CD68) and have the phagocytic and cytotoxic system to eliminate foreign bodies [26]. They also act as antigen presenting cells to activate T cells. Many CNS diseases such as infectious and degenerative diseases are associated with activated microglial cells [27].

Osteoclasts

Osteoclasts are multinucleate giant cells in the bone derived from circulating monocytes [28]. They are formed by the fusion of multiple monocyte/macrophage cells. They have a foam (vacuolated) cytoplasm and may contain up to 200 nuclei. However, the majority of osteoclasts contain between 5-20 nuclei. Osteoclasts produce many enzymes such as alkaline phosphatase and cathepsin K. They lie in a small groove on the bone surface called Howship’s lacunae. Osteoclasts are responsible for bone resorption [29] - a process that is important for bone growth and repair [30]. Osteoclasts decalcify the bone by acid secretion and then engulf the fragmented bone and breakdown the organic part of the bone, collagen, and the non-organic part, calcium and phosphorus, where they release these products into the circulation [31].
Dendritic cells

Dendritic cells are found mainly in skin, nose, lung and gastrointestinal lining where there is contact with the external environment[32,33]. There are two main types of dendritic cells, myeloid dendritic cells and plasmacytoid dendritic cells. They act as antigen presenting cells, activate T cells and stimulate B cell differentiation and have highly endocytic activity. Immature dendritic cells engulf and process pathogen and then start their maturation, where they migrate to lymphoid tissue to present antigens to T cells [34,35].

Alveolar macrophages

Macrophages are predominant cells in the lung [36,37] and they contain membrane-bounded cytoplasmic inclusions containing proteolytic enzymes [38]. Lung macrophages are involved in the defence against foreign bodies and pathogens [39] and have a major role in chronic granulomatous diseases such as sarcoidosis and tuberculosis [40,41].

2. **Role of Macrophages in Some Benign Conditions**

As macrophages form an important part of the immune system and are resident in nearly all tissues of the body, they play a role in many benign diseases some of which are discussed in this section.

Macrophages have a significant role in the inflammatory response [42,43] and play an important role in injury and repair [44,45]. They can attack and engulf more than 100 bacteria before they die by their own digesting enzymes. Macrophages can either use these digesting enzymes or induce apoptosis to kill pathogens [46]. Macrophages perform many important functions in inflammation: they help in antigen presentation to helper T cells via the MHC class II molecules [9,10]. Additionally, they release cytokines, chemokines, growth factors, enzymes and prostaglandins [47]. They also secrete inflammatory mediators (such as IL-1, TNF-α and proteolytic enzymes) that interact with the extracellular matrix (ECM) and facilitate the accumulation of leukocytes into inflammatory site [48].

2.1 **Role of macrophages in wound healing**

The main inflammatory cells to appear in a wound in the first few hours of injury are neutrophils which are then replaced by monocytes [49]. Monocytes move rapidly toward the wound site in response to many chemotactic factors where they then differentiate into macrophages [49]. By day five of injury, macrophages represent the main inflammatory cell and have an important role in regulating subsequent events in the healing wound [49]. One of the main functions of macrophages is to remove cellular debris by phagocytosis. Macrophages also enhance fibrosis - which is important in re-building the extracellular matrix [3] - and help in the revascularization of the wounded area by releasing many growth and angiogenic factors [50,51]. Many studies have shown that the hypoxic environment of injured tissues stimulates macrophages to secrete many angiogenic and fibrogenic factors such as Vascular Endothelial Growth Factor (VEGF), fibroblast growth factor (FGF), and platelet derived growth factor (PDGF) [52, 53,54]. The role of macrophages in wound healing is summarized in figure 1.2.

![Figure 1.2: The role of macrophages in wound healing](image)

Macrophages play an important role in all stages of wound healing including the early inflammatory stage, proliferation of cellular component of the wound and wound resolution. Macrophages promote the early inflammatory phase of the
wound by secreting pro-inflammatory cytokines which help in the accumulation of leukocytes. Macrophages also secrete growth factors that help in proliferation and differentiation of a wide range of cells in the wound. However, macrophages also then secrete anti-proliferative factors that help in the resolution phases of wound healing. Black arrows show synthesis of mediators. Red arrows show positive mediator effects. Green arrow indicates negative mediator effect. Redrawn from [49].

2.2 Role of macrophages in atherosclerosis

Atherosclerosis is a disease of larger and medium-sized arteries and is responsible for more than half of all deaths in the Western world. It is characterized by vascular inflammation and deposition of lipids, cholesterol, calcium and cellular debris within the intima of the blood vessel wall to form atheroma. As a result, atheroma causes acute and chronic lumen obstruction and decreases oxygen supply to target organs [55,56]. Lipid laden macrophages (foam cells) were detected in premature and advanced atherosclerotic lesions and are therefore thought to have an important role in the incidence and progression of atherosclerosis [57,58]. Early atherosclerotic lesions (fatty streaks) start with infiltration and proliferation of inflammatory monocytes and development of macrophage-rich atherosclerotic lesions [62]. Recent studies showed that there are two different types of monocytes which have been identified in atherosclerotic lesion, CCR2+/CX3CR1+ and CCR2-/CX3CR1+ and both of them are involved in the pathogenesis of atherosclerotic lesion [63]. Macrophages in early atherosclerotic lesions accumulate cholesterol and triglyceride to form foam cells. More advanced lesions are formed by proliferating smooth muscle cells, foam macrophages and have a central lipid core [64]. Macrophages initiate and enhance atherosclerotic lesion by phagocytosis of oxidized low density lipoprotein (LDL) via scavenger receptor [65] and secretion of inflammatory mediators such as cytokines and ECM degrading enzymes [66]. The main cytokines secreted by foam macrophages in atherosclerotic plaques are PDGF, transforming growth factor-β (TGF-β), TNF-α, IL-1, IL-6, IL-8 and M-CSF [67,68,69,70,71]. Through these cytokines, macrophages promote smooth muscle cell infiltration and proliferation and also enhance lipoprotein oxidation [72,73]. Moreover, modification of ECM elements leads to retention of lipid in the blood vessel intima. The lipid content of foam cells is composed of a large amount of natural cholesterol derived from low density lipoprotein (LDL) and a small percentage of oxidized cholesterol (oxysterols). Recent studies have shown that the oxysterol content of foam macrophages impairs the export of cholesterol out of the foam macrophage. Therefore, the presence of foam macrophages in the atherosclerotic lesion can be maintained for long periods and promote disease progression [58]. The role of macrophages in atherosclerosis was confirmed by the inhibition of atherosclerosis in the M-CSF knockout mouse model (op/op) [74,75]. M-CSF is a growth factor that promotes the survival and differentiation of macrophages [76] so in these two studies, atherosclerosis was induced in the op/op mice either by crossing them with Apolipoprotein E (ApoE) knockout mice or by feeding them a high fat diet [74,75]. ApoE is a protein that is synthesized in the liver and has an anti-atherogenic role. Removal of apoE gene leads to severe hypercholesterolemia and spontaneous atherosclerosis even with a low fat diet [77]. Qiao et al., 1997 and Smith et al., 1995 showed that a lack of M-CSF markedly reduced atherogenesis in apoE null mice [74,75]. The role of macrophages in atherosclerosis can be summarized in three major points (Figure 1.3):

1) Continuous accumulation of foam macrophages into early and late atherosclerotic lesions.
2) Macrophages are an important source of cytokines that cause smooth muscle cell proliferation and ECM degradation.
3) Macrophages promote lipoprotein oxidation.
Macrophages participate in the development and progression of atherosclerosis. Monocyte recruitment into the atherosclerotic lesion is mediated by MCP-1 expressed by endothelial cells. Monocytes accumulate into the blood vessel intima where they differentiate into macrophages and express scavenger receptors. Through its scavenger receptors, macrophages engulf oxidized LDL to become foam cells. Once formed, foam cells secrete matrix metalloproteinases (MMPs) and pro-inflammatory cytokines (IL-1 and TNF-α) to enhance smooth muscle cell proliferation and ECM degradation. Foam cells are also an important source of reactive oxygen species that oxidize more LDL, which is the main component of foam cells (modified from http://www.hdtforum.org/ktmlstandard/images/).

2.3 Role of macrophages in rheumatoid arthritis

Rheumatoid arthritis is characterized by chronic inflammation of joints [78]. Females are more commonly affected than males and also have a more severe clinical course [79]. Rheumatoid arthritis commonly affects middle aged people however people of any age can be affected [80]. The inflamed joint contains a significant number of inflammatory cells such as B cells, T cells, plasma cells, mast cells and activated macrophages [81]. However, macrophages have an important role in rheumatoid arthritis as they accumulate in large numbers in the inflamed, hypoxic [82], synovial membrane [83,84]. Monocytes migrate into the rheumatic joint where they then differentiate into macrophages [85]. These activated macrophages secrete a large number of cytokines such as TNF-α, IL-1, IL-6, IL-8, IL12, IL-18 and CSF [86,87,88], among which, TNF-α plays an essential role in the pathogenesis of rheumatoid arthritis (Figure 1.4). The binding of TNF-α to two different receptors, TNFR1 and TNFR2, activates two transcription factors, nuclear factor κB (NF-κB) and c-Jun which then allow the expression of genes that mediate different biological processes in rheumatoid arthritis [89,90]. TNF-α has the ability to enhance angiogenesis, activate chondrocytes and osteoclasts to cause the osteolytic lesions associated with the disease [91]. TNF-α also causes leukocyte accumulation [92]. Macrophages in the rheumatic joint also secrete a large amount of MCP-1 [93] and proteolytic enzymes such as elastase and collagenase [94]. All these mediators cause joint destruction and also lead to collagen and fibroblast accumulation. The role of macrophage in rheumatoid arthritis is highlighted by the regression of the disease when drugs directed toward macrophages mediators are used. e.g. administration of IL-4 and IL-13 decreases the production of TNF-α and IL-1 and hence reduce the severity of the disease [95]. Furthermore, Methotrexate and dexamethasone (drugs used for rheumatoid arthritis treatment) prevent monocyte accumulation and also decrease secretion of cytokines by activated macrophages [96,97]. Gold salts also decreases production of IL-8 and MCP-1 [98,99].

Figure 1.3: Role of macrophages in atherosclerosis

Figure 1.3: Role of macrophages in atherosclerosis

- **Lumen of blood vessel**
 - LDL
 - Monocyte

- **Endothelium**
 - Oxidized LDL
 - MCP-1

- **Intima**
 - Reactive oxygen species
 - MMPs
 - ECM alteration
 - Pro-inflammatory cytokines (IL-1, TNF-α)
 - Foam cell
 - Smooth muscle cell proliferation

- **Macrophage with scavenger receptor**
TNF-α secreted by activated macrophages in rheumatoid joints plays an important role in disease pathogenesis. Through its binding to two different receptors, TNF-α activates transcription factors that mediate endothelial cell activation, promotion of angiogenesis and enhancement of the production of cytokines and chemokines that cause leukocyte accumulation. The activation of these transcription factors also mediates the destruction of bone and cartilage associated with rheumatoid arthritis. Redrawn from [83].

2.4 Role of macrophages in inflammatory bowel disease

Inflammatory bowel disease (IBD) (Chron’s disease and Ulcerative colitis) is a chronic relapsing inflammatory disease of the gastrointestinal tract [100]. Macrophages also play an important role in the pathogenesis of the IBD ([101]. Many studies demonstrated that the accumulation of macrophages in lamina propria of small and large bowel is associated with increase expression of acid phosphatase and nonspecific esterase as well a change in the shape of the cells [102]. Macrophages detected in the inflamed bowel also showed phenotype changes [103]. Furthermore, high level of cytokines such as tumour necrosis factor alpha (TNF-α) IL-6, 8, 10 and 12 was detected in active form of IBD where the ulceration is severe and involve a large segment of the bowel [104]. Peripheral blood monocytes from patient with IBD secret high level of IL-6 [105].

3. Role of Macrophages in Malignant Tumours

Following cardiovascular disease, malignant tumours are the second most common cause of death worldwide, with lung malignancies alone contributing to 12% and breast cancer accounting for 10% of all cancer cases [106]. Other malignancies such as colorectal, stomach, liver, cervical, prostate, bladder, and non-Hodgkin’s lymphoma (NHL) are also very common [106].

The majority of malignant tumours are composed of a complex multicellular population [107] and contain a large amount of leukocytic infiltration [108]. This leukocytic infiltration is formed mainly of macrophages [109] where they show a distinct phenotype and are called tumour associated macrophages (TAMs) [110,111,112]. Therefore, macrophages are a prominent cell type in most human and experimental tumours, for example TAMs represent up to 50% of the total cell population in breast carcinoma [113,114,115]. Chemoattractants produced by neoplastic cells such as CSF-1 [116,117], MCP-1 [118, 119, 120] and VEGF [121,122,123,124] are thought to enhance the accumulation of TAMs in tumours. Hypoxia also is an important stimulus for the attraction of TAMs to different tumours [127,128,129,130] also it enhances tumour proliferation and progression [125, 126]. It has been shown that TAMs accumulated in the hypoxic area of endometrial cancer [131], breast cancer [132] and ovarian tumours [133] and as tumour size increases, its centre becomes more hypoxic which leads to the accumulation of more TAMs [134,135].

Macrophages in healthy or inflamed tissue express a classically activated (or ‘M1’) phenotype that is activated by lipopolysaccharide (LPS) and interferon γ (INF-γ) and are capable of inhibiting tumour cell division through the secretion of IL-1 and TNF-α [112,136,137]. Macrophages can also bind tumour cells and lyse them by a process called macrophage-mediated tumour cytotoxicity. This is a non-phagocytic process which is selective for tumour cells and is also antibody independent [138]. Another process used by...
the macrophage to lyse tumour cells is the antibody-dependent cellular toxicity process. In this process, macrophages lyse antibody-coated tumour cells [139]. In contrast, macrophages in primary and secondary tumours are often activated by tumour derived molecules and hypoxia to become alternatively activated (or 'M2' like) and enhance tumour growth and metastasis [112]. Although TAMs share several features with M2-activated macrophages, they have a variable phenotype depending upon tumour type, stage and their location in the tumour microenvironment and therefore, show different responses to treatments in different tumours [140,141,142].

Recent studies have suggested that macrophages promote tumour growth due to their ability to secrete a number of tumour mitogens including epidermal growth factor (EGF, a potent chemotactic factor for epithelial cells) [143,144,145], angiogenesis stimulating factors like VEGF [114,122,146,147,148,149,150,151,152], acidic fibroblast growth factor (aFGF), basic fibroblast growth factor (bFGF), PDGF [153], TNF-α, IL-1, and IL-8 [154,155,156,157,158]. Macrophages also play an important role in promoting tumour cells ability to metastasize [159,160,161,162]. The migration of tumour cells is enhanced by the expression of EGF in macrophages, the differentiation and survival of said macrophages are in turn promoted by CSF-1 secreted by the tumour cells [143,162,163] (Figure 1.5).

Macrophages also stimulate resident cells such as fibroblasts and adipocytes to play a significant role in tumour growth and metastasis [164,165,166,167,168,169,170]. In many human tumours, a high number of macrophage infiltration is associated with bad prognosis [47,171] and accumulation of macrophages in certain tumours can be used as an indication of relapse of the primary tumour [172]. Moreover, high levels of M-CSF, which promotes the survival and differentiation of macrophages [173], is also associated with poor prognosis [174, 175,176,177]. Therefore transgenic mouse models that deplete macrophages with high efficiency have been used to assess the effect of macrophage depletion on tumour angiogenesis and progression [178,179].

(1) Invasion: TAMs breakdown the basement membrane by secretion of a variety of proteases and attract tumour cells into surrounding stroma. (2) Angiogenesis: TAMs promote angiogenesis by secretion of angiogenic factors. (3) Immunosuppression: TAMs secrete immunosuppressive factors such as prostaglandin E2 (PGE2) and IL-10 that suppress the anti-tumour effects of other cells such as T cells. (4) Metastases: TAMs enhance tumour cell metastases through the secretion of EGF. Re-drawn from [180].

4. Concluding Remarks

The aim of this review has been to illustrate the potential importance of macrophages in benign and malignant lesions. Although, unequivocal evidence from both human and
murine diseases has certainly established a causative role for macrophages in certain diseases, yet, much is still to be learned about role of macrophages in these diseases. To further elucidate the role of macrophages in diseases, the use of macrophages depletion mouse model is recommended. And sincemost of the available models are either nonspecific, use toxic materials or are associated with severe development abnormalities, the use of inductive and specific models will be highly important. Mouse models that deplete more than 70% of macrophages will associated with a sever health problem and immune compression side effect in the mouse which will has a huge impact on the accuracy of any results, therefore, mouse model with moderate, about 50%, ablation will be more suitable [181]. The inducibility of the ablation also should be taking inconsideration as this may affect the study.

5. Acknowledgements

The authors gratefully thank Dr. Gaynor Miller (Academic Unit of Bone Biology, university of Sheffield, UK) for her help in revising of the materiel in this article.

References

