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Abstract: Multi-objective traveling salesman problem (MOTSP) is a well-known NP hard problem. In this paper, IBEA  and NSGA-II 

algorithm  is proposed to solve the MOTSP and compare the result of each algorithm  and find a better algorithm based  on the 

execution time it takes to find the Pareto-optimal solutions. The result shows that even though the two algorithm finds the true pare to 

front NSGA_II is better algorithm for  MOTSP problem  compare to  IBEA   
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1. Introduction   
 
Multi-traveling salesman problem (MOTSP) is an 
extension of traveling salesman problem, which is a 
famous NP hard problem, and can be used to solve many 
real world problems, such as railway transportation, 
routing and pipeline laying. The literature related to this 
MOTSP and its practical applications has been reviewed 
(Sofge, D., Schultz, A., & De Jong, K., 2002)In this work, 
different formulations are highlighted, and exact and different 
heuristics methods .For solving the problem are described 
Many  Population-based metaheuristic algorithms for the 
MTSP were proposed by (Sofge, D., Schultz, A., & De Jong, 
K., 2002), (Zhao, 2008), (Király, 2011)and (Yu, 2012). 
(Chang, 2012) considered the routing problem of the courier 
service for a city. The problem is formulated as a MOmTSP 
by considering hard time windows (MOmTSPTW). A multi-
objective scatter search is proposed to minimize the 
operating costs and to improve the level of service. This 
paper gone find optimal solution by considering two 
objectives(i) The length of the total tour between the cities 
and (ii)the total cost  between the cities  
 
This paper use NSGA-II and IBEA to find the optimal 
solutions and compare the result based on the execution time 
it takes to find the optimal solution 
 
2. Non-dominated Sorting based Genetic 

Algorithm-II 
 
The NSGA-II is a multi-objective evolutionary optimization 
algorithm based on non-dominated sorting of the population.  
In multi-objective problem, there is a set of solutions better 
than all the other ones in the search space which is named 
the Pareto optimum or set of non-dominated solutions.  The 
Pareto optimum is the set of non-dominated solutions 
considering the entire search space. Multi-objective 
evolutionary methods try to find this solution set by using 
each objective separately, without aggregating them as a 
unique objective 
 
Defination1. Dominance: A solution x (1) is said to dominate 
the other solution x(2)  if both the following conditions are 
true:  
i) The solution x(1)  is no worse than x(2)  in all objectives, or  

∀𝑗 = 1,2. . 𝑚 𝑓𝑗(𝑥(1)) ≤ 𝑓𝑗(𝑥 2 ) 

Thus, the solutions are compared based on their objective 
function values.  
ii) The solution x(1)  is strictly better than x (2) in at least one 

objective, or  
∃𝑗 = 1,2. . 𝑚 𝑓𝑗(𝑥(1)) < 𝑓𝑗(𝑥 2 ) 

 
If any of the above condition is violated, the solution x(1)  
does not dominated the solution x(2) .   
Defination2. Non-dominated sorting approach: First, for 
each solution calculate two entities: 
i) domination count 𝑛𝑖  the number of solutions which 

dominate the solution 𝑖 , and 
ii) 𝑆𝑖 , a set of solutions which the solution 𝑖 dominates. At 

the end of this procedure, all solutions in the first non-
dominated front will have their domination count as 
zero. Now, for each these solutions (each solution 𝑖 with 
𝑛𝑖 = 0 ), we visit each member ( 𝑗) of its set 𝑆𝑖  and 
reduce its domination count by one. In doing so, if for 
any member j the domination count becomes zero, we 
put it in a separate list𝑃′. After such modifications on 𝑆𝑖 
are performed for each 𝑖 with 𝑛𝑖  =  0, all solutions of 
𝑃′ would belong to the second nondominated front. The 
above procedure can be continued with each member of 
𝑃′ and the third non-dominated front can be identified. 
This process continues until all solutions are classified.  

Step1    for each   𝑖 ∊ 𝑝, 𝑛𝑖 = 0 initialize 𝑠𝑖 = ∅For all j ≠
i and   j ∈ p , perform Step 2    and then proceed to Step 3. 
Step2  If   i°j  (i dominate j ) , update   S p = Sp ∪ {j} . 
Otherwise,  j °i , set 𝑛𝑖 = 𝑛𝑖 + 1 
Step3  If 𝑛𝑖 = 0, keep 𝑖 in the first non-dominated front 
𝑝1 (we called this set 𝑃′ in the above paragraph). Set a front 
counter = 1 . 
Step4  While𝑝𝑘 ≠ ∅, perform the following steps.  
Step5 Initialize 𝑄 = ∅  for storing next non-dominated 
solutions. For each 𝑖 ∈ 𝑝𝑘 and for each ∈ 𝑠𝑖 ,            
Step5a Update   𝑛𝑗 = 𝑛𝑗 − 1.            
Step5b If 𝑛𝑗 = 0 keep 𝑗 in  , or perform Q = Q ∪ {j} .  
Step6 Set 𝑘 = 𝑘 + 1 and 𝑝𝑘 = 𝑄.Go to Step4  
 
In NSGA-II procedure, at any generation  𝑡 , the offspring 
population  𝑄𝑡 is first created by using the parent population 
 𝑃𝑡  and the usual genetic operators. Thereafter, the two 
populations are combined together to form a new population 
 𝑅𝑡  of size 2𝑁 .  Then, the population 𝑅𝑡  classified into 
different non-domination classes. Thereafter, the new 
population is filled by points of different non-domination 
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fronts, one at a time. The filling starts with the first non-
domination front( of class one) and continues with points of 
the second non-domination front, and so on. Since the 
overall population size of  is 2𝑁 , not all fronts can be 
accommodated in 𝑁 slots available for the new population. 
All fronts which could not be accommodated are deleted. 
When the last allowed front is being considered, there may 
exist more points in the front than the remaining slots in the 
new population. Instead of arbitrarily discarding some 
members from the last front, the points which will make the 
diversity of the selected points the highest are chosen. The 
crowded-sorting of the points of the last front which could 
not be accommodated fully is achieved in the descending 
order of their crowding distance values and points from the 
top of the ordered list are chosen. The crowding distance i d 
of point is a measure of the objective space around i which is 
not occupied by any other solution in the population (Elham 
Zhoulaian, 2014) 
 
3. Indicator-Based Evolutionary Algorithm 

(IBEA) 
 

Indicator-Based Evolutionary Algorithm (IBEA) is 
developed by (Eckart Zitzler and Simon Künzli ) (Deb, 
2001).it is s one of the very first multiobjective optimizers to 
integrate user preferences in a clear and mathematically 
sound way. The main contribution of IBEA was to open up a 
new research area on the design of multiobjective 
optimization algorithms which employ a so-called quality 
indicator in their (environmental) selection procedure 
(Brockhoff, 9 Jun 2015). 
 
Before we describe the original IBEA algorithm in more 
detail, let us mention that we consider, w.l.o.g., 
minimization problems here where the Pareto dominance 
relation ≺ is defined between solutions x1  and  x2  as  
x1 ≺    x2  if and only if fi(x1)  ≤  fi(x2)   for all objective 
functions fi ∶  X →  Z (1 ≤  i ≤  k) and fi(x1)  <  fi(x2) for 
at least one objective function. In this case, we also say x1 
dominates x2 An m − ary quality indicator is furthermore a 
function I ∶  Ωm →  R  that maps m  solution sets x1 . . . , xm  
from the set of all possible solutions (x1. . . , xm  ∈  Ω =  2x ) 
to a real number. Nowadays, mostly unary quality indicators 
such as the standard hypervolume indicator are used in both 
performance assessment and the definition of solution 
quality within the environmental selection. Instead, IBEA 
itself is based on binary quality indicators that map two 
solution sets to a real number. To be more precise, the 
fitness of a solution x1 in IBEA’s population P is assigned 
by 

 −e − I ({x2  }, {x1  })/

x2  ∈P /{x1  }

k 

where κ >  0  is a parameter of the algorithm and c =
 maxx1 , x2 ∈ P |I(x1 , x2)| is the maximum indicator value 
between any two population members. This fitness 
assignment scheme of IBEA has the theoretical property that 
if a solution x1 dominates solution x2  then also  F(x1)  >
 𝐹(x2) as long as the chosen binary indicator I itself is 
“dominance preserving”1 (Brockhoff, 9 Jun 2015). Note that 
in the following, we abuse the mathematical notation and 
write I(x,y) instead of I({x},{y}) if x and y are single 
solutions. Examples of dominance preserving binary 

indicators are the binary hypervolume and the binary ε-
indicator which, for that reason, have been proposed to be 
used in the original IBEA publication. The binary (additive) 
ε-indicator assigns to two solution sets A and B the minimal 
objective value ε by which all solutions in A have to be 
improved (along each objective) in order to (weakly) 
dominate all solutions in B (Brockhoff, 9 Jun 2015) 
 
Iε + (A, B)  =  min ε ∈ ∀x2  ∈  B∃x1  ∈  A ∶  fi(x1) − ε ≤
 fi(x2) for i ∈ {1, . . . , k} . The binary ε-indicator is 
negative if all solutions in B are dominated by at least one 
solution in A. The binary hypervolume indicator used in 
(Eckart Zitzler and Simon K)assigns to two solution sets A 
and B the “volume of the space that is dominated by B but 
not by A with respect to a predefined reference point” in 
objective space (Eckart Zitzler and Simon K):  

IHD  A, B =  
IH B − IH A   if ∀x2 ∈ B∃x1 ∈ A: x1 < x2  

IH A + B − IH A else
  

where IH  (.) denotes the standard (unary) hypervolume 
proposed in (Brockhoff, 9 Jun 2015)and the index “HD” 
stands for “hypervolume difference”. Also IHD  (A,B) is 
negative if all solutions in B are dominated by at least one 
solution in A. Note also that neither of the two binary 
indicators is symmetric, i.e., typically I(A, B)  ≠  I(B, A) 
holds. The corresponding IBEA variants using the above 
defined hypervolume and ε-indicator are denoted IBEAHD  
and IBEAε+ respectively here. A binary quality indicator I is 
called dominance preserving if for all solutions x1 , x2 , x3  ∈
 X both x1 <  x2 =⇒  I({ x1}, { x2})  <  𝐼({x2}, {x2}) 
and x1 <  x2 =⇒  I({x3}, {x1})  ≥  I({x3}, {x2}) hold. 
(Brockhoff, 9 Jun 2015) 

 
4. Problem Description   
 
The Multi-objective traveling salesman problem (MOTSP)  
could be defined by a complete (directed or undirected) 
graph G =(N,E,c) with being the set of N nodes, E being the 
set of edges fully connecting the nodes, and c being a 
function that assigns to each 𝑒𝑑𝑔𝑒 (𝑖, 𝑗) ∈ 𝐸  a vector 

𝑐𝑖𝑗1 … . 𝑐𝑖𝑗𝑘 , where each element 𝑐 𝑖𝑗𝑘  corresponds to a 
certain measure like distance, cost, etc. between nodes i and 
j. For the following we assume that  𝑐𝑖𝑗𝑘 … . 𝑐𝑗𝑖𝑘 , for all 
pairs of nodes 𝑖, 𝑗 and objectives k, that is, we consider only 
symmetric problems. The MOTSP is also the problem of 
finding “minimal” Hamiltonian circuits of the graph, that is, 
a set of closed tours visiting each of the 𝑛 =  |𝑁| nodes of 
G exactly once; here “minimal” refers to the notion of Pareto 
optimality. 
 
5. Implementation  
 

Initial population  
Every gene of the chromosome represent a city and the 
sequence between the genes reflects the trip, for example the 
code is 0 1 2 3 4 5 0, which express that the trip go through 
the number 0 city to number 1 then 2, ...... at last return the 
original city. After initialize population, every chromosome 
represents a random arranged of city’s natural number. 
Suppose a coding of chromosome is a0a1...an-1a0 for the bi-
objective TSP, the two evaluative fitness functions are 
defined as follows: The length of the total tour: 𝐿𝑒𝑛𝑔𝑡 =
 𝑑𝑖𝑠𝑡(𝑎0, 𝑎1) + 𝑑𝑖𝑠𝑡(𝑎1, 𝑎2) + ⋯ + 𝑑𝑖𝑠𝑡(𝑎𝑛 −

Paper ID: ART20171809 DOI: 10.21275/ART20171809 1493



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 6 Issue 3, March 2017 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

1, 𝑎0). 𝐻𝑒𝑟𝑒, 𝑑𝑖𝑠𝑡(𝑎𝑖, 𝑎𝑗) means the distance between city ai, 
and city aj. The total cost: 𝐶𝑜𝑠𝑡𝑠 =  𝑐𝑜𝑠𝑡(𝑎0, 𝑎1) +
𝑐𝑜𝑠𝑡(𝑎1, 𝑎2) + ⋯ + 𝑐𝑜𝑠𝑡(𝑎𝑛 − 1, 𝑎0) . Here, 𝑐𝑜𝑠𝑡(𝑎𝑖, 𝑎𝑗) 
means the cost between city 𝑎𝑖, and city 𝑎𝑗. 
 
IBEA Algorithm (algorthim-1) 

 

Input: α (population size)  
N (maximum number of generations)  
κ (fitness scaling factor)  
 

Output: A (Pareto set approximation) 
Step 1: Initialization: Generate an initial population P of 
size α; set the generation counter m to 0. 
Step 2: Fitness assignment: Calculate fitness values of 
individuals in P, i.e., for all 𝑥1 ∈  𝑃  set 𝐹(𝑥1) = 𝑥2 ∈
𝑃\{𝑥1} − 𝑒 − 𝐼({𝑥2}, {𝑥1})/𝜅. 
Step 3: Environmental selection: Iterate the following three 
steps until the size of population P does not exceed α: 
1. Choose an individual x ∗ ∈  P  with the smallest fitness 
value, i.e., F(x ∗)  ≤  F(x) for all x ∈  P.  
2. Remove x ∗ from the population.  
3. Update the  fitness  values of the remaining individuals, 
i.e., F(x) = F(x) + e − I({x ∗}, {x})/κ for all x ∈  P. 
Step 4: Termination: If m ≥  N or another stopping criterion 
is satisfied then set A to the set of decision vectors 
represented by the no dominated individuals in P. Stop.  
Step 5: Mating selection: Perform binary tournament 
selection with replacement on P in order to fill the temporary 
mating pool P’. 
Step 6: Variation: Apply recombination and mutation 
operators to the mating pool P’ and add the resulting 
offspring to P. Increment the generation counter (m = m +1) 
and go to Step 2. (Eckart Zitzler and Simon K) 
On this paper we use κ (fitness scaling factor) =0.05 
 
NSGA-II algorithm fitness assignment  

First objective function for each path is calculated then 
paths are ranking based on dominance concept of 
Defination1 and non-dominated sorting of Defination2.  
 

Objective function =[F1 F2]                           ……………(1)  
where :- 
 

i) F1= dist(a0,a1)+dist(a1,a2)+…+dist(an-1,a0    ….(2) 
 (the total length it take for each chromosome) 
ii) 𝐹2 =  𝑐𝑜𝑠𝑡 𝑎0,𝑎1 + 𝑐𝑜𝑠𝑡 𝑎1, 𝑎2 + ⋯ + 𝑐𝑜𝑠𝑡 𝑎𝑛 − 1,𝑎0  

……………………….(3) 
(The total cost it takes to travel for each chromosome ) 
 
To get an estimate of the density of solutions 
surrounding a particular solution in the population, the 
average distance of two solutions on either side of 
solution i along each of the objectives is calculated. 
This quantity serves as an estimate of the perimeter of 
the cuboid formed by using the nearest neighbors as the 
vertices. The crowding distance ( i d ) computation 
requires sorting the population according to each 
objective function value in ascending order of 
magnitude. Thereafter, for each objective function, the 
boundary populations are assigned an infinite or very 
large distance value. All other intermediate populations 
are assigned a distance equal to the absolute normalized 

difference in the function values of two adjacent 
populations. This calculation is continued with other 
objective functions. The overall crowding distance 
value is calculated as the sum of individual distance 
values corresponding to each objective. The procedure 
for calculating the crowding distance is given below: 
(Deb, 2001) 

𝑑1
𝑖 =

/𝑓1
𝑖+1𝑓1

𝑖−1/

𝑓1
𝑚𝑎𝑥 𝑓1

𝑚𝑎𝑥                      ……………..(4) 

𝑑2
𝑖 =

/𝑓2
𝑖+1𝑓2

𝑖−1/

𝑓2
𝑚𝑎𝑥 𝑓2

𝑚𝑎𝑥       ………………………(5) 
Crowding distance 

 𝑑𝑖 = 𝑑1
𝑖 + 𝑑2

𝑖    …………………………(6) 
In Equations (4) and  (5) 𝑓𝑖−1and 𝑓𝑖+1are objective function 
values of two solutions on either side of solution i . 𝑓𝑚𝑎𝑥 and 
𝑓𝑚𝑖𝑛 are maximum and minimum values of each objective 
function respectively 
Tournament Selection is utilized as the selection operator and 
the order crossover (OX) used 
 
6. Experiment Results and Analysis 
 
The proposed algorithm has been implemented in matlab 
R2016a  on a CPU Intel Corei7 with 2.5GHz and 8 GB of 
RAM. In the experiment process number of generation set to 
10000 and test each algorithm with different number of 
population and by 5 times execution .The result shows   in 
the form of Table 1 
 
Table 2: Performance Comparison of NSGA-II and IBEA 

Number of 
population 

NSGA-II 
(running time) 

IBEA 
(running time) 

20 3.7514e-01 5.4825e_01 
50 3.2714e-01 7.7695e-01 

 
7. Conclusion  
 
In this paper NSGA-II and IBEA has been implemented 
for solving MOTSP. The Experimental results obtained 
show that this two approach can find optimal path but based 
on Run time it takes to find the result  NSGAII has  better 
performance  than IBEA for MOTSP problem 
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