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Abstract: In this paper we estimated the parameters for two parameter-Birnbaum−Saunders distribution. The paper has estimated the 

parameters (shape and scale) using (Maximum likelihood, Modified moment, Lindley (1980) Bayesian approximation technique and 

Shrinkage Bayesian) methods, and then computing the value of the above-mentioned. We consider the Bayesian estimators for the 

unknown parameters of the Birnbaum_Saunders distribution under the reference prior. The Bayesian estimators cannot be obtained in 

closed forms. An approximate Bayesian approach is proposed using the idea of Lindley to obtain the Bayesian estimators. We then 

calculated and estimated all previous parameters, and compared the numerical estimation using statistical indicators mean absolute 

percentage error among the four considered estimation methods. Results are compared using Monte Carlo simulations studies carried 

out showed that the Shrinkage method gave us the best estimator. 
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1. Introduction 
 
"The two- parameter Birnbaum – Saunders distribution was 
originally proposed by Birnbaum – Saunders as a fatigue 
time distribution for fatigue failure caused under cyclic 
loading"; [5]." It was also assumed that the failure is due to 
the development and growth of a dominant crack past the 
critical value ";[14].  
 
The random variable T is said to follow a BS distribution 
with parameters α and β, denoted as BS(α, β) 
 if its cumulative distribution function (CDF) is given by 

𝐹 𝑡, 𝛼, 𝛽 = Φ  
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where Φ(.)is the standard normal CDF, α and β are the 
shape and the scale parameters, respectively. Additionally β 
is the median of the distribution: F  𝐹𝑇(β) = Φ(0) =0.5. It is 
noteworthy that the reciprocal property holds for the BS 
distribution: 𝑇−1   ~ (α, 𝛽−1). 
 
The corresponding density function of (1) is 
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It helps to derive different moments of the Birnbaum-
Saunders distribution the rth moment of T is 
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                                                                               𝑟 = 1,2 ….    (3) 
               
The Moments and measures for Birnbaum –Saunders 
distribution can be Expressed in explicit form equation (3) 
as follow: 

 

 
Where E(T) ,V(T) , CS(T) , CK(T) and CV(T) are the 
expected value ,variance ,coefficient of skewness, 
coefficient of kurtosis and coefficient of variation 
respectively. 
 
If T is a Birnbaum-Saunders distribution, i ;e .BS(α; β), 
then  T−1is also α  Birnbaum-Saunders with  parameters ( α  
, 𝛽−1). 
 
The above observation is very useful. Immediately we     
obtain 

𝐸 𝑇−1 = 𝛽−1  1 +
1

2
𝛼2                          (9) 

𝑉 𝑇−1 = 𝛼2𝛽−2  1 +
5

4
𝛼2                     (10) 

 
"A more general derivation was provided by Desmond 
(1985) based on a Biological model";[5]. Desmond (1985) 
also strengthened the physical justification for the use of this 
distribution by relaxing the assumption made by Birnbaum 
and Saunders (1969). "Desmond (1986) investigated the 
relationship between Birnbaum- Saunders distribution and 
the Inverse-Gaussian distribution";[9]. 
 
Some recent works on Birnbaum - Saunders distribution can 
be found in Barndorff – Nielsen (1986, 1991), Chang and 
Tang (1993, 1994), Johnson et al (1995), Rieck (1995, 
1999), Reid (1996), Dupuis and Mills (1998), Fraser et al 
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(1999), Upadhyay (2000),  Tsionas (2001), Wu et al (2005), 
Owen (2005) and Ng et al (2003, 2006).  
 
"Padgett (1982) carried out Bayesian estimation of reliability 
function when both parameters of the B-S distribution are 
unknown";[17]. He suggested the use of a gamma prior in 
connection with reliability estimation. "Upadhyay (2000) 
successfully used Gibbs sampler to analyze the posterior 
surfaces on three parameter B-S distribution which at times 
are difficult when using non-sample based approaches";[22], 
while Tsionas (2001) gave a posterior analysis of a linear 
regression model with disturbances from a logarithmic B-S 
distribution. "Tsionas (2001) also noted that, posterior 
distributions cannot be easily analyzed using analytical 
techniques and thus proposed posterior simulation methods 
using Metropolis algorithm"; [21]. 
 
Although some Bayesian estimation has been carried out by 
Padgett (1982), Upadhyay (2000) and Tsionas (2001), it is 
clearly noted that Bayesian estimation for the parameters or 
a function of the parameters involves evaluation of a ratio of 
two intractable integrals. "In this article, we apply the 
Lindley (1980) Bayesian approximation method to evaluate 
the Bayes estimates of the parameters for the Birnbaum – 
Saunders distribution";[13] .This paper is concerned using 
the two-parameter Birnbaum–Saunders model. Furthermore, 
we will estimate the parameters of the mentioned model 
using four methods—Maximum likelihood estimator, 
Modified Moment estimator Lindley (1980) Bayesian 
approximation technique estimator, and shrinkage Bayesian 
estimator—depending upon the iterative numerical method 
(Newton–Raphson method), and then utilized these 
parameters. Finally the four proposed estimators were 
compared using the mean absolute percentage error with 
respect to recommend the best estimator. 
 
2. Estimation Methods 
 
In this section, we introduce four methods for estimation the 
parameters of the Birnbaum–Saunders distribution. 
 

2.1 Maximum likelihood estimator method (ML) 

 
The idea behind the maximum likelihood approach to fitting 
a statistical distribution to a data set is to find the  
parameters of the distribution that maximize the likelihood 
of having observed the data. "Assuming the data are 
independent of each other, the likelihood of the data is the 
product of the likelihoods of each datum"; [4] [5].                                                               
 
Thus, the likelihood function of two-parameter Birnbaum–
Saunders is: 
 

L =  𝑓(𝑡𝑖 

𝑛

𝑖=1

, 𝛼 , 𝛽)       

L =
 𝑡𝑖

−3
2 (𝑡 + 𝛽)𝑛

𝑖=1

2𝑛𝛼𝑛𝛽
𝑛
2 2𝜋 

𝑛
2

𝑒𝑥𝑝 − 
1

2𝛼2
 (

𝑡𝑖

𝛽
− 2 +

𝑛

𝑖=1

𝛽

𝑡𝑖

)                  (11) 

 
Taking the Natural for equation (11)logarithm for the above 
likelihood function, so we get the following: 
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The partial derivative for equation (12) with respect to 
unknown parameters α and β, respectively, are: 
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Equating equation (13) to zero to solve this equation:  
 𝐿10 = 0    
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Also,  the partial derivative for log-likelihood w.r.t.  β , is as 
follows: 
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Equating equation (15) to zero to solve this equation:  
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 From equations  14  and  16  we can write the formula as: 
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 𝛽 2 − 𝛽   2𝑟 + 𝑘(𝛽 ) + 𝑟 𝑠 + 𝑘(𝛽  )  = 0             (18) 

Where, K  𝛽  =  
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Since (18) is a non-linear equation in 𝛽 , we shall use the 
Newton-Raphson method to solve for 𝛽  (see Ng et al, 2003).  
Suppose that g 𝛽 = 0  where g is a function then  
g 𝛽 = 𝛽2 − 𝛽 2𝑟 + 𝑘(𝛽) + 𝑟 𝑠 + 𝑘(𝛽)  
= 0                                                                                        (19) 
If Newton–Raphson method is instead used to solve Eq. 
(20)we would require 
g′ 𝛽 = 2𝛽 − 2𝑟 +  𝑟 − 𝛽 K′ 𝛽 − 𝐾 𝛽 .                (20) 

K′ 𝛽 =  𝐾 𝛽  2  
1

𝑛
 (𝑡ᵢ + 𝛽)−1

𝑛

𝑖=1

 

−2

                   𝑓𝑜𝑟𝛽 ≥ 0  

then the Newton iteration procedure 

𝛽𝑛+1 = 𝛽𝑛 −
g(𝛽)

g′ (𝛽)
                          𝑛 = 1,2, … … . …   (21) 

 Condition stop when  𝛽𝑖+1 − 𝛽𝑖 < 𝜖  and 𝜖 = 0 
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The  two – functions 𝑓1 𝛼  𝑎𝑛𝑑  𝑓2 𝛽     are  the  first  
derivative  of  equation (12)  with  respect  to  unknown  
parameters 𝛼  and 𝛽  and    respectively .  
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The Jacobean matrix 𝐽𝑘1
is the first derivative for 

eachfunction of 𝐿10   𝑎𝑛𝑑 𝐿01  with  respect  to  𝛼  𝑎𝑛𝑑 𝛽  or it 
is the second derivative of the equation (12) to the two – 
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The Jacobean matrix in maximum likelihood method 
estimator must be anon – singular symmetric matrix in this 
procedure because depending upon the first derivatives, so 
its inverse can be found. 
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 The absolute value for the difference between the new 
founded values with the initial value is the error term, it 

must be a symbol by 𝜖 , which is a very small value and 
assumed. 
 
Then, error term is formulated as: 
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where 𝛼𝐾  and 𝛽𝑘  are the initial values which are assumed. 
 
The asymptotic distribution for MLE of α and β  is normal 
with mean α and β and the covariance matrix is given by the 
inverse of the expectation of the Fisher information .i.e. for a 
sample of size n we have 
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Can compute the covariance matrix as 
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Where  ℎ 𝛼 = 𝛼 𝜋/2 − 𝜋𝑒2/𝛼 [1 − 𝛷(2/𝛼)] , 
 𝛷(. ) is normal C.D.F. 
 
The asymptotic variance of  𝛼    is given as 

𝑣 𝑎𝑟 𝛼  =
𝛼 2

2𝑛
                                                      (41) 

While that of  𝛽  is given by 
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              (42) 

 
2.2 Modified Moment Estimators (MO)           
 
For the usual moment estimators in a two-parameter case, 
the first and second population moments are equated with 
the corresponding sample moments. In this case, the sample 
mean and the sample variance can be equated to the right-
hand sides of (4) and (5), respectively, and the 
corresponding moment estimators of 𝛼 and 𝛽can then be 
obtained as solutions of 𝛼 and 𝛽 to these equations. It can be 
easily seen from these equations that if the sample 
coefficient of variation is greater than  5, then the moment 
estimators do not exist. If the sample coefficient of variation 
is less than  5, the moment estimators exist; however, the 
moment estimator of 𝛽 may not be unique." Instead of using 
(4) and (5), we propose to use (4) and (9) and equate them 
with the corresponding sample estimates to obtain the 
MMEs ";[14]. In this case, we have the following two 
moment equations: 

𝑠 = 𝛽  1 +
1

2
𝛼2                                                        (43) 

𝑟−1 = 𝛽−1  1 +
1

2
𝛼2                                               (44) 

Solving Esq. (43) And (44) for 𝛼  and   𝛽 , we obtain the 
MMEs for 𝛼  and  𝛽 denoted by 𝛼 𝑀𝑂  and 𝛽 𝑀𝑂  as 
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2.3 Bayes estimators (BS) 

 
We shall use a diffuse prior ℎ 𝜃 = ℎ 𝛼 , 𝛽  ∝
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Sinha, 1986 for the case of Inverse-Gaussian Distribution). It 
is noted as in Sinha (1986) that Bayes estimates of the 
parameters of the B-S ( ,  ) would require a derivation of 
the posterior distributions of  and   which is extremely 
difficult due to the complex nature of the joint posterior of (
 ,  ). The marginal posterior p.d.fs of  and   are 
obtained in order to compute the corresponding posterior 
expectations as 
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"Lindley (1980) suggested an asymptotic approximation to 
the ratio of the two integrals of the form"; [13] 

   

   











dLV

dLW

exp

exp
   (47) 

where  n ,...,, 21


, L ( ) is the log-likelihood 

function,  W  and  V  are arbitrary functions of  

 . 

Let       VUW   and  V  be the prior distribution 

of .  From (3.3) we use the expectation of   U  given the 

data  ntttt ,...,, 21


 as 

  

tUE   =  

     

   











dLV

dLVU

exp

exp
  (48) 

which is the Bayes estimator of  U  under the squared 
error loss function. 
 For two – parameter case, Lindley’s (1980) 
approximation[13] leads to:- 

  

tUE    = U + ½ [ U11σ11 + U12σ12 + U21σ21 + U22σ22 

] + ρ1 [ U1σ11 + U2σ21 ] + 

ρ2 [ U2σ22 + U1σ12 ] + ½ { L30 ( U1σ²11 + U2σ11σ12 ) +  L21 [ 
3U1σ11σ12 +U2 (σ11σ22 + 2σ²12 ) ] + L12 [ 3U2σ22σ21 +   

U1(σ22σ11 + 2σ²21 ) ] L03 (U1σ12σ22 + U2σ²22) }  (49)
               

all evaluated at MLE 






 ^

2

^

1 ,   and where  

ρ = log  V  ;  21,  


 ; 
j

j








  ;  L ij =

ji

ji L
 

 

 ;   
i

i
UU



  ; 

ji
ij

UU
 




2

  and  

σ ij  =  ( i, j )th element in the inverse of matrix {- L ij}  

evaluated at 
^


  = (

^

1 ,
^

2 );  i , j = 1,2 .   (50) 

Using Lindley’s asymptotic expansion (49), we will obtain 
Bayes estimates of   and   from (45) and (46) 
respectively and compare them with the MLE’s in (18) and 
(14). These estimates are not easy to obtain, need no special 
tables nor does expensive computer time unless one is 
conducting extensive simulation studies. 
 
Given a random sample  ntttt ,...,, 21


 from the p.d.f 

(2), the log-likelihood equation becomes 
The observed negative of the Fisher’s information matrix is 
then given by  

)51(1
2011

1102

111102202221

1211




























LL
LL

LLLL


 

 
For the diffuse prior 

   



1,  hh   ; 

We have 
ρ = log  h  = - ℓn    
 
So that  






1
1 




   and 

 





1
2 




      

 

2.3.1 Bayes Inference on     

If we define U =   such that U1 = 0







;  

U2  = 1







 and  Uij  = 0 ;        i,j = 1,2 

then, Bayes estimate of  is given as: 

     










 tE    
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  2
2203222112

2
12221121121130

2221 32
2
1









 LLLL 









                                 (52) 

all evaluated at MLE  (
^
 ,

^
 ).  

 
2.3.2 Bayes Inference on    

If we let U =   such that  

U1 = 1






    ;    U2 = 0







 

And 
Uij = 0  ;     i,j = 1,2 
then, Bayes estimate of  is given as: 

  =  

tE    

    221203
2
21221112121121

2
1130

1211 23
2
1









 LLLL 

                                                                               (53) 

All evaluated at MLE (
^
 ,

^
 ).  

 
2.3 Shrinkage Bayesian (SB): 

 
"The Shrinkage Bayesian estimator combines between the 
Shrinkage and Bayesian methods"; [1]. So , we will use the 
Bayesian estimator instead of MLE estimator in shrinkage 
method as follows. 
 

 𝛼 𝑆𝐵 = 𝛼 𝑆𝐵𝐾 +  1 − 𝐾 𝛼∘

𝛽 𝑆𝐵 = 𝛽 𝑆𝐵𝐾 + (1 − 𝐾)𝛽°

      𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝐾 ≤ 1   (54) 

 

Where k equals  𝑉 𝑎𝑟(𝛼 𝑚𝑙 ) =
𝛼 𝑚𝑙

2

2𝑛
  for 𝛼 and 

𝑉 𝑎𝑟(𝛽 𝑚𝑙 ) =
𝛽 𝑚𝑙

2
  𝛼 𝑚𝑙

2

𝑛 1+𝛼 𝑚𝑙  2𝜋 −
1
2  ℎ 𝛼 𝑚𝑙   

        for𝛽. 

 

3. Simulation Results 
 
There are many methods of simulation (especially after the 
rapid development that took place in the use of electronic 
computers), which provides the time, effort ,cost and 
achieve analytical solutions. Simulation is the imitation of 
the operation of a real-world process or system over time. 
The act of simulating something first requires a model to be 
developed; this model represents the key characteristics, 
behaviors of the selected physical , abstract system ,or 
process. The model represents the system itself, while the 
simulation represents the operation of the system over time. 
Computer simulations have become a useful part of 
mathematical modeling of many natural systems  
 
in sciences .So the simulation is a type of sampling 
techniques. A simulation study was carried out to compare 
the performance of the Maximum likelihood estimator, 
Modified moment, Bayesian estimates, Shrinkage Bayesian 
estimates of the model parameters of the B-S ( , ) 
distribution. If T has a B-S ( ,  ) distribution then the 
monotone transformation   

X =
1

2
  

𝑇

𝛽
 

1/2

−  
𝛽

𝑇
 

1/2

  

has a normal distribution with mean zero and variance 2

4
1


. A random sample from B-S ( ,  ) distribution was 
generated using this relationship by applying Box-Muller 
(1958) transformation. For our study, different sample sizes 
and different parameter values were used. At first, we took 
sample sizes as n = 25, 50, 100, the shape parameter as  = 
0.5, 1 while  =0.5, 1 .The process of simulation strategy is 
explained the numerical results in the Tables (1-6) as below. 

 
Table 1: Estimate parameters based on simulations when α=1 and β=1 

n 𝛼𝑀𝐿  𝛼𝑀𝑂  𝛼𝐵𝑆  𝛼𝑆𝐵  𝛽𝑀𝐿  𝛽𝑀𝑂  𝛽𝐵𝑆  𝛽𝑆𝐵  
25 
50 

100 

0.9638 
0.9877 
0.9889 

0.9638 
0.9877 
0.9889 

1.0120 
1.0138 
1.0019 

1.0010 
1.0003 
1.0001 

1.0207 
1.0056 
1.0028 

1.0201 
1.0059 
1.0028 

1.0207 
1.0056 
1.0028 

1.0025 
1.0006 
1.0001 

 
Table 2: Estimate parameters based on simulations when α=0.5 and β=1 
n 𝛼𝑀𝐿  𝛼𝑀𝑂  𝛼𝐵𝑆  𝛼𝑆𝐵  𝛽𝑀𝐿  𝛽𝑀𝑂  𝛽𝐵𝑆  𝛽𝑆𝐵  
25 
50 

100 

0.4867 
0.4903 
0.4965 

0.4867 
0.4903 
0.4965 

0.4386 
0.4674 
0.4857 

0.4998 
0.4999 
0.5000 

1.0044 
0.9996 
1.0021 

1.0044 
0.9996 
1.0021 

1.0044 
0.9996 
1.0021 

1.0002 
1.0000 
1.0000 

 

Table 3: Estimate parameters based on simulations when α=1 and β=0.5 
n 𝛼𝑀𝐿  𝛼𝑀𝑂  𝛼𝐵𝑆  𝛼𝑆𝐵  𝛽𝑀𝐿  𝛽𝑀𝑂  𝛽𝐵𝑆  𝛽𝑆𝐵  
25 
50 

100 

0.9622 
0.9819 
0.9920 

0.9621 
0.9818 
0.9919 

1.0999 
1.0526 
1.0273 

1.0028 
1.0007 
1.0002 

0.5082 
0.5021 
0.5042 

0.5081 
0.5020 
0.5042 

0.5082 
0.5021 
0.5042 

0.5003 
0.5001 
0.5000 

 

Table 4: Means absolute percentage (MAPE) of estimates based on simulations (α=1 and β =1.0) 
n 𝛼𝑀𝐿  𝛼𝑀𝑂  𝛼𝐵𝑆  𝛼𝑆𝐵  𝛽𝑀𝐿  𝛽𝑀𝑂  𝛽𝐵𝑆  𝛽𝑆𝐵  
25 
50 

100 

0.1137 
0.0783 
0.0585 

0.1136 
0.0783 
0.0585 

0.1267 
0.0841 
0.0600 

0.0025 
0.0009 
0.0003 

0.1413 
0.1018 
0.0676 

0.1411 
0.1019 
0.0677 

0.1413 
0.1018 
0.0676 

0.0049 
0.0017 
0.0005 
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Table 5: Means absolute percentage (MAPE) of estimates based on simulations (α=0.5 and β =1) 
n 𝛼𝑀𝐿  𝛼𝑀𝑂  𝛼𝐵𝑆  𝛼𝑆𝐵  𝛽𝑀𝐿  𝛽𝑀𝑂  𝛽𝐵𝑆  𝛽𝑆𝐵  
25 
50 

100 

0.1128 
0.0818 
0.0559 

0.1128 
0.0818 
0.0559 

0.1778 
0.1061 
0.0639 

0.0008 
0.0002 
0.0001 

0.0755 
0.0528 
0.0392 

0.0755 
0.0528 
0.0392 

0.0755 
0.0528 
0.0392 

0.0007 
0.0002 
0.0001 

 
Table 6: Means absolute percentage (MAPE) of estimates based on simulations (α=1 and β =0.5) 

    n 𝛼𝑀𝐿  𝛼𝑀𝑂  𝛼𝐵𝑆  𝛼𝑆𝐵  𝛽𝑀𝐿  𝛽𝑀𝑂  𝛽𝐵𝑆  𝛽𝑆𝐵  
25 
50 

100 

0.1164 
0.0827 
0.0560 

0.1163 
0.0827 
0.0560 

0.1590 
0.0976 
0.0624 

0.0035 
0.0011 
0.0003 

0.1395 
0.0979 
0.0704 

0.1402 
0.0981 
0.0706 

0.1395 
0.0979 
0.0704 

0.0012 
0.0004 
0.0001 

 

4. Conclusions 
 
As mentioned above, we have used four estimation methods 
which are; Maximum likelihood, Modified Moment, 
Bayesian and Shrinkage Bayesian estimators. In simulation 
study, we compare the results and we find: 
𝟏. The means absolute percentage error 

 MAPE

=
1

1000
  

𝜃 𝑖 − 𝜃

𝜃
 

1000

1

 Variant from one sample to  

another. 
 
2. For all models (α=1 and β =1.0; α=0.5 and β =1; α=1 and 
β =0.5) for estimating the fatigue life distribution parameters 
α and β, and for all sample sizes (n=25, 50,100), the 
Shrinkage Bayesian estimator is the best among all proposed 
estimators in the sense of mean absolute percentage error 
(MAPE), and then Maximum Likelihood estimator, 
Modified Moment estimator and Bayesian estimator is the 
last one. 
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