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1. Introduction 
 
Let  denote the class the class of functions of the form  
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which are regular in domain E = {z :0 < |z| < 1} with a 
simple pole at the origin with residue 1 there. 
 
Let s, * () and k () (0   < 1) denote the subclasses 
of  that are univalent, moromorphically starlike of order  
and meromorphically convex of order  respectively. 
Analytically (z) of the form (1.1) is in * () if and only if 
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Similarly,   k () if and only if, (z) is of the form (1.1) 
and satisfies 
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It being understood that if  = 1 then  
z

zf 1
  is the only 

function which is * (1) and k (1). 
 
The classes * () and k () have been extensively studied 
by Pommerenke [5], Clunie [1], Royster [6] and others. 
 
Since to a certain extent the work in the meromorphic 
univalent case has paralleled that of regular univalent case, it 
is natural to search for a subclass of s that has properties 
analogous to those of T* (). Juneja and Reddy [3] 
introduced the class p of functions of the form (1.1) that are 
meromorphic and univalent in E. They showed that the class 
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Also, Mogra, Reddy and Juneja [4] introduced the class of 
meromorphically starlike function of order  and type  

which is denoted by  
* ,
p
   They showed that the class 
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and extended some of the results of Juneja and Reddy [3] to 
this class.. 
 
The aim of the present paper is to introduce the class 

(p ),,   consisting the functions of the form (1.1) 
which satisfies the condition 
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 for |z| < 1. 

where 0   < 1, 0 <   1 and 1
2
1

 . 

We find a necessary and sufficient condition , coefficient 
inequality, distortion properties and radius of convexity and 
other properties. The results of this paper is generalize the 
results of Mogra, Reddy and Juneja [4]. 
 
2. Main Results 
 

Definition 2.1: (p ),,   denote the subclass of  
consisting of the functions of the form 
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, |z| < 1. 

where 0   < 1, 0 <   1 and 1
2
1

 . 
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3. Coefficient Estimates 
 
The following theorem give a sufficient condition for a 

function to be in  
* ,,  . 
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0   < 1, 0 <   1, 0   and 1
2
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 , then f   
* , , ,    . 

 Proof: Suppose (2.1) holds for all admissible values of ,  
and . Consider the expression 
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Replacing f(z) and f (z) by their series expansions, we have for 0 < |z| = r < 1. 
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Since the above inequality holds for all r, 0 < r < 1, letting r  1, we have 
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by (2.1). Hence it follows that  
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(, , ). Hence the theorem. 

Theorem 2.2: Let )(zf  
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be regular in E. Then )(zf  (p ),,   if only if (2.1) is 

satisfied. 
 

Proof: In view of theorem 2.1 it is sufficient to show that ‘only if’ part. Let us assume that  
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for all z  E. Using the fact that Re(z)  |z| for all z. 
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It follows that 
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Hence the result follows. 
Corollary 2.1: If )(zf  (p ),,   then 
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with equality for each n, for function of the form 
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(2.5) 
Remark 2.1: If )(zf  (p )1,,  i.e., replacing  = 1, 
we obtain 
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Equality holds for 
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which is known result of Mogra, Reddy and Juneja [4]. 
Remark 2.2: If )(zf  (p )1,1, i.e., replacing  = 1 

and  = 1. We obtain 
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with equality, for each n, for functions of the form. 
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which is known result of Jeneja and Reddy [3]. 
 
4. Distortion Property and Radius of Convexity 

Estimates 
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(2.6) 
where equality holds for the funciton 
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Thus for 0 < |z| = r < 1. 
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by (2.8). This gives the right hand inequality of (2.6).  
Also, 
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which gives the left hand side of (2.6). 
It can be easily seen that the function f1(z) defined by (2.7) is 
extremal for the theorem. 
 

Theorem 2.4: If f(z) is in (p ),,  , then f(z) is 
meromorphically convex of order 
    ,,,in    10 rrz  , where  
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The bound for |z| is sharp for each n, with the extremal 
function being of the form (2.5). 
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It is sufficient to show that 

 
 
 

  ,,,for    -12 rz
zf
zfz





  

or equivalently, to show that 

 
    

 







1
zf

zfzzf
                  (2.10) 

  ,,,for   rz   

where   ,,,r  is as specified in the statement of the 
theorem. 
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This will be bounded by (1-) if  
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In view of (2.9), it follows that (2.11) is true if 
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setting   ,,, rz   in (2.12), the result follows. 
 
The result is sharp, the extremal function being of the form 
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The result is sharp for  
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This is due to Mogra, Reddy and Juneja [4]. 
 

Corollary 2.3: If  1,1, pf   then f is 
meromorphically convex of order  
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The result is sharp for 
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 for some n. 

This is due to Juneja and Reddy [5]. 
 

5. Convex Linear Combinations 
 
In this section we shall prove that the class ),,(  p  is 
closed under convex linear combinations. 

Theorem 2.5: Let  
z

zf 1
0   and 
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Then   ),,(  pzf   if and only if, it can be 
expressed in the form 

    zfzf nn
n







0

 where 0n  and 1
0





n

n
 . 

Proof: Let    zfzf nn
n







0

 with 0n  and 

1
0





n

n
 . 

Then 

        zfzfzfzf nn
n

nn
n

 









1

00
0

 

    zfzf nn
nn

n  
















1
0

1
1  

 

 

 
    


















 









n
n

nn
n z

nzz 11221
12111

11 


  

 
   

n
n

n
z

nz 11221
121

1 


 



 


  

since 
   

 
 

    11221
12

12
11221

1 









 








n
n

n
n

 

 

.11 0
1






n
n

 

Therefore   ),,(  pzf  . 

Conversely, suppose   ),,(  pzf  . Since 
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This completes the proof of the theorem. 
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