A Review on Various Routing Attacks on Wireless Sensor Network

Dharmendra Singh Chouhan¹, Pritesh Jain²
¹Pursuing M. Tech, Patel College of Science & Technology, Indore
²Associate Professor, Patel College of Science & Technology, Indore

Abstract: Security is an important factor for several sensor network applications. Wireless sensor Networks (WSN) when deployed in hostile environments as static or mobile, an antagonist will try to physically capture some of the nodes, once a node is captured, it collects all the credentials like keys and identity etc. the attacker will re-program it and repeat the node so as to form replicas and listen the transmitted messages or adjust the functionality of the network. Identity felony ends up in 2 sorts attack: clone and Sybil. In particularly a catastrophic attack against sensor networks wherever one or more node(s) illegitimately claims an identity as replicas is known as the node replication attack. The replication attack is tremendously injurious to many important functions of the sensor network like routing, resource allocation, mis-behavior detection, etc. This paper inspect the threat posed by the replication attack and a number of other novel techniques to find and preserve adjacent to the replication attack, and considers their effectiveness in each static and mobile WSN.

Keywords: Security, Clone, Sybil, node replication attack and static WSN

1. Introduction

A Wireless sensor Network (WSN) may be a assortment of sensors with limited resources that collaborate so as to achieve a common goal. sensor nodes operate in belligerent environments like battle fields and scrutiny zones. due to their operative nature, WSNs ar typically neglected, thus at risk of many forms of novel attacks. The mission-critical nature of sensor network applications implies that any cooperation or defeat of sensory reserve due to a malicious attack launched by the adversary-class will cause significant harm to the whole network. Sensor nodes expanded in a battlefield could have intelligent adversaries operative in their surroundings, intending to subvert harm or hijack messages exchanged within the network. The settlement of a sensor node will result in greater damage to the network. The wealth challenged nature of environments of operation of detector nodes mostly differentiates them from different networks. All security quick fix proposed for sensor networks need to operate with minimal energy usage, while securing the network. The basic security requirements of WSN are ease of use, discretion, reliability and messages [16].

We classify detector network attacks into 3 main categories [7] [8]: Identity Attacks, Routing Attacks & Network Intrusion. Identity attacks intend to steal the integrity of legitimate nodes in operation within the sensor network. The pinpoint attacks are Sybil attack and Clone (Replication) attack. In a Sybil attack, the WSN is superseding by a malicious node that forges an over sized variety of fake identities so as to disrupt the network’s protocols. A node replication attack is an attempt by the adversary to add one or additional nodes to the network that use identical ID as another node within the scenario.

Routing attack will place the rogue nodes on a routing path from a source to the base station could attempt to tamper with or discard legitimate data packets. a number of the routing attacks are sinkhole Attack, False routing data attack, Selective forwarding attack, and Wormholes. The antagonist creates an over sized sphere of influence, which can attract all traffic destined for the base station from nodes which may be many hops away from the compromised node that is known as sinkhole attack. False routing attack means interjecting false direction-finding organize packets into the system. concession node may waste to forward or forward selective packets known as as Selective forwarding attack. Within the wormhole attack, 2 or more malicious colluding nodes create higher level virtual tunnel within the network, that is employed to move packets between the tunnel finish points. Network intrusion is an unauthorized entrance to a organism by each an exterior perpetrator, or by an insider with insignificant privileges.

In this paper we are focuses on an individuality attack well-known as replication attack wherever one or more nodes illegitimately maintain an individuality of reasonable node and replicated in complete WSN network as shown Figure 1. Reason for selecting this attack is that it will form the basis of a variety attacks such Sybil attack, routing attacks and link layer attacks, also known as as denial of service attacks that affects availability of network.

Figure 1: Replication Attack

The recognition of node replication attacks in a wireless antenna network is so a fundamental problem. some centralized and circulated explanations have only just been recommend. though, these solutions are not gratifying. First, they are energy and memory stringent: a significant
drawback for any protocol that is to be used in resource constrained environment like a sensor network. Further, they're susceptible to specific adversary models introduced in this paper.

2. Significance of Replication Attack and Background Node Replication Attack

Wireless device network, associate individual 1st physically captures only one or few of appropriate nodes, then clones or replicates them fabricating those replicas have the similar character (ID) with the imprison node, and eventually expands a capricious number of clones throughout the network cause of node replication attack are as follows:

It creates an extensive damage to the network as a result of the replicated node also has the same identity because the legitimate member.

It creates various attacks by extracting all the key credentials of the captured node. It debases the monitoring operations by injecting false data. It will cause jamming within the network, rettle the operations within the network and additionally initiates the Denial of Service (DoS) attacks too. It is difficult to tell apart replicated node and therefore authentication is difficult.

A WSN is either stationary or mobile. In static wireless sensor networks (SWSNs), the sensor nodes are stationary or static; that's, the device nodes ar use at random, and once deployment their positions do not diversity. On the further hand over, in portable wireless sensor networks (MWSNs), the sensor nodes will pass on their own, and once readying, showing at completely different locations at different times. the benefits include 1) localized detection; 2) effectiveness and efficiency; 3) system-wide organization avoidance; and 4) network-wide revocation avoidance.

3. Detection Methods

Supported on the detection methodologies, categorize the clone attack detection.

1) Detection Techniques for Stationary WSNs
2) Detection Techniques for Mobile WSNs

4. Detection Techniques For Stationary WNS's

The detection of node replication attack in static WSNs that are categories in the main into 2 sorts as centralized and distributed methods.

(A) Centralized methods: In integrated methods base position is consider to be a strong central that is responsible for info convergence and decision making. during the detection growth every node within the network sends its location allegation (ID, Location Info) to base station (sink node) through its neighboring nodes. Upon receiving the complete location allegation, the bottom station checks the node Ids on their location, and if it finds 2 locations with constant ID, it hikes a clone node.

(A.1) Random Key Pre distribution: the basic plan is that the keys used consistent with the random key pre distribution scheme should follow a certain pattern and those keys whose convention go above a threshold can be evaluator to be replica. inside the protocol, the number Blossom filters is used to collect key usage statistics. every node makes a counting Blossom filter of the keys it uses to communicate with near nodes. It appends a random number (nonce) to the Blossom filter and encrypts the result using foundation position communal key; this encrypted data organization is forwarded to base station. Base station decrypts the Blossom filters it receives, discards duplicates, and polls the number of time every key used in the network. Keys used above a threshold expense are considered cloned. Base station makes a blossom filter from the cloned keys, encrypts the list using its furtive key and broadcasts this filter to the sensor network adopting a gossip protocol. every node decrypts base stations blossom filter removes cloned
keys from its keying, and terminates connections using cloned keys.

(A.2) SET: The network is randomly divided into exclusive subgroup. each of the subsets includes a subspace leader, and members are one hop removed from their subgroup leader. Multiple roots are randomly set to construct multiple sub trees, and each subgroup is a node of the sub tree. each subgroup leader collects member information and forwards it to the root of the sub tree. The crossing operation is performed on each root of the sub tree to detect replicated nodes. If the crossing of all subsets of a sub tree is vacant, there aren't any clone nodes during this sub tree. in the end, every root ahead its information to the foundation station (BS), the base station detects the clone nodes by computing the crossing of any 2 received sub trees. SET identify clone nodes by causing node info to the bs from set leader to the root node of a randomly created sub tree and so to the bs.

(B) Distributed Techniques: Distributed techniques consist no essential ability exists, and particular exposure method known as claimer-reporter-witness is provided within which the recognition is performed by nearby circulated node (B). the base station detects the clone nodes by computing the crossing of any 2 received sub trees. SET identify clone nodes by causing node info to the bs from set leader to the root node of a randomly created sub tree and so to the bs.

Figure 3: Detection techniques for stationary WSNs

3) Pseudo every which way elite network locations. The pseudo random operate is taking as associate input ID, random range. Each node within the pathway (from claim node to the witness purpose) onwards the message to its neighbor nearest to the destination. Hence, the replicated nodes are going to be detected in every detection step. Once next time the RED executes, the witness nodes are going to be take issue since the random worth that is broadcasted by the bachelor's degree is modified.

5. Objective

An objective of this thesis work is as follow:
- The study target analysis of WSN Routing Protocol.
- Prepare the Wireless sensing element Network (WSN) state of affairs with simulation time of ten0sec with 10 nodes, fifteen nodes and twenty nodes.
- Analyzing the consequences of residual energy, throughput, normalized routing load and network lifespan in WSN state of affairs with completely different atmosphere.
- Analyzing the results of AODV, AOMDV, DSDV and PEGASIS protocols to investigate that one style of protocol provides higher performance.

Proposed algorithmic program

The planned algorithmic program is predicated on the trust values of individual nodes. All the nodes of wireless ad-hoc network have a particular trust worth. The algorithmic program encompasses the subsequent steps:

[A] Initialization:
1. Trust values of all the collaborating nodes square measure set to be initialized by specific previously assigned trust value.
2. Initialize the trust value of every node with 100.
3. Assumption: 1 trust value = 10 packets dropped.

[B] Updating of hope values:
1. If the packs are properly pass on from one node to another node:
 (a) If the correctly transmitted no of packets is between 1 and 10, then trust values of the respective nodes will be incremented by one time.
 Updated trust value = old trust value + 1;
 (b) If the correctly transmitted number of packets is greater than 10, then the updated trust value will be:
 Updated trust value = old trust value + (properly pass on packs / 10);
2. If the packets are dropped/delayed:
 (a) The number of dropped or delayed packets is between 1 and 10, and then trust value of that particular node is decremented by one.
 Renew trust value = old trust value – 1;
 (b) The numeral of dropped or delayed packets is greater than 10, then hope value of that exacting node will be,
 Renew trust value = old trust value – (Packet dropped or delayed / 10);
3. If the hope value of exacting node is depressing, next print “Invalid node”.

[C] Isolating the Packet drop node as of the system
1. If (renew trust value < Threshold trust value)
Then the particular node is treated as malicious node (Black hole node)

2. If (Updated trust value > Threshold trust value)
Then the particular node is treated as legitimate node.
Stop comparing the trust values of nodes with threshold.

6. Conclusion

In this paper we discussed classification of detection mechanisms for replication attack in static WSN. Distributed detection approach is additional advantages than centralized approaches since single point failure. In witness supported strategy of circulated come up to, uncertainty introduced in selecting witnesses at varied levels like whole network and restricted to geographical grids to avoid prediction of future witnesses. If chosen witness node itself cooperation node or replica node then recognition of replication attack is uncertain. There is also trade-off between communication charge visual projection and recognition time. All the approaches dealt with static WSN. With the deployment information (like order, neighbourhoods, and group members with locations) all the nodes within the network should recognize highest deployed generation that impractical and cannot move be a part of alternative teams since neighbours or fingerprints vary. Some WSN application needs mobile nodes. the complete access become complex once considering for mobile nodes that dealt with location claims(only) and deployment information are not appropriate for mobile WSN, given that position transforms time to time in portable wireless sensor network. And a few alternative approaches for mobile WSN are discussed.

References