A literature Review on Prediction of Chronic Kidney Disease Using Data Mining Techniques

Smitha Patil
Assistant Professor, Department of Information Science & Engg, Sir. MVIT Bangalore

Abstract: Nowadays Kidney Disease is a growing problem in the world wide. Due to the high possibility of death within a short period of time, a patient must be hospitalized and appropriately cured. Many Data Mining techniques are used in the health care industry for predicting the Kidney Disease. The Data Mining techniques, namely SVM, Naive Bayes, Decision Tree, Classification, Neural Network are used to analyze the accuracy for the kidney related disease.

Keywords: Data Mining, Chronic Kidney Disease, Data Mining Techniques

1. Introduction

Data mining is the extraction of hidden predictive information from large databases, is a powerful new technology with great potential to help companies focus on the most important information in their data warehouses [11]. Data mining techniques can be classified into supervised learning technique and unsupervised learning technique. A supervised learning algorithm analyzes the training data and produces an inferred function, which can be used for mapping new examples. An optimal scenario will allow for the algorithm to correctly determine the class labels for unseen instances. This requires the learning algorithm to generalize from the training data to unseen situations in a “reasonable” way. In Data mining, the problem of unsupervised learning is that of trying to find hidden structure in unlabeled data. Since the examples given to the learner are unlabeled, there is no error or reward signal to evaluate a potential solution.

2. Kidney Disease

Kidneys filter extra water and wastes out of blood and make urine. Kidneys also help control blood pressure so that the body can stay healthy. Kidney disease means that the kidneys are damaged and can't filter blood like they should. This damage can cause wastes to build up in the body. It can also cause other problems that can harm your health [12].

For most people, kidney damage occurs slowly over many years, often due to diabetes or high blood pressure. This is called chronic kidney disease. CKD includes condition which affects the kidney and if the kidney gets worse, waste can build to high level in the blood, which damage both kidney and leads to death.

When someone has a sudden change in kidney function because of illness, or injury, or has taken certain medications—this is called acute kidney injury. Acute kidney failure happens when kidney suddenly lose the ability to eliminate excess salts, fluids and waste materials from the blood. It develops over a few hours or few days to week. This can occur in a person with normal kidneys or in someone who already has kidney problems.

Kidney disease is a growing problem. More than 20 million Americans may have kidney disease and many more are at risk. Anyone can develop kidney disease, regardless of age or race. The main risk factors for developing kidney disease are:

- Diabetes,
- High blood pressure,
- Cardiovascular (heart and blood vessel) disease, and
- A family history of kidney failure.

2.1 Five Types of Kidney Failure

Acute Perennial Kidney Failure
Insufficient blood flow to the kidneys can cause acute perennial kidney failure. The kidneys can’t filter toxins from the blood without enough blood flow. This type of kidney failure can usually be cured once the cause of the decreased blood flow is determined.

Acute Intrinsic Kidney Failure
Acute intrinsic kidney failure can be caused by direct trauma to the kidneys, such as physical impact or an accident. Causes also include toxin overload and ischemia, which is a lack of oxygen to the kidneys. Ischemia may be caused by:

- Severe bleeding
- Shock
- Renal blood vessel obstruction
- Glomerulonephritis, which is an inflammation of the tiny filters in your kidneys

Chronic Perennial Kidney Failure
When there isn’t enough blood flowing to the kidneys for an extended period of time, the kidneys begin to shrink and lose the ability to function.

Chronic Intrinsic Kidney Failure
This happens when there is long-term damage to the kidneys due to intrinsic kidney disease. Intrinsic kidney disease is caused by a direct trauma to the kidneys, such as severe bleeding or a lack of oxygen.

Chronic Post-Renal Kidney Failure
A long-term blockage of the urinary tract prevents urination, which causes pressure and eventual kidney damage.
2.2 Symptoms of Kidney Failure

Many different symptoms can be signs of kidney failure. No symptoms are present sometimes, but usually someone with kidney failure will see a few signs of the disease. Possible symptoms include:

- A reduced amount of urine
- Swelling of your legs, ankles, and feet from retention of fluids caused by the failure of your kidneys to eliminate water waste
- Unexplained shortness of breath
- Excessive drowsiness or fatigue
- Persistent nausea
- Confusion
- Pain or pressure in your chest
- Swelling of your legs, ankles, and feet from retention
- A coma

3. Data Mining Techniques Used for Prediction

Classification is a very important data mining task, and the purpose of classification is to propose a classification function or classification model. The classification model can map the data in the database to a specific class. Classification construction methods include: Decision Tree, Naive Bayes, ANN, K-NN, Support Vector Machine, Rough Set, Logistic Regression, Genetic Algorithm, and Clustering [11].

Decision Tree: A decision tree is a structure that includes a root node, branches, and leaf nodes. Each internal node denotes a test on an attribute, each branch denotes the outcome of a test, and each leaf node holds a class label. The topmost node in the tree is the root node. The decision tree approach is more powerful for classification problems. There are two steps in this techniques building a tree & applying the tree to the dataset. There are many popular decision tree algorithms CART, ID3, C4.5, CHAID, and J48.

Artificial Neural Network (ANN): An artificial neural network (ANN), often just called a "neural network" (NN), is a mathematical model or computational model based on biological neural networks, in other words, is an emulation of biological neural system. It consists of an interconnected group of artificial neurons and processes information using a connectionist approach to computation. In most cases an ANN is an adaptive system that changes its structure based on external or internal information that flows through the network during the learning phase.

Naïve Bayes: Naïve Bayes classifier is based on Bayes theorem. This classifier algorithm uses conditional independence, means it assumes that an attribute value on a given class is independent of the values of other attributes. The Bayes theorem is as follows: Let \(X = \{x_1, x_2... x_n\} \) be a set of \(n \) attributes. In Bayesian, \(X \) is considered as evidence and \(H \) is some hypothesis means, the data of \(X \) belongs to specific class \(C \). We have to determine \(P(H|X) \), the probability that the hypothesis \(H \) holds given evidence i.e. data sample \(X \). According to Bayes theorem the \(P(H|X) \) is expressed as \(P(H|X) = \frac{P(X|H)P(H)}{P(X)} \).
attributes. Exploration of such data is a subject of data mining.

4. Comparison of Data Mining Techniques

The Data mining techniques used in kidney related diseases, in some experiments the results may differ. The table has shown the results below.

<table>
<thead>
<tr>
<th>Author</th>
<th>Kidney Disease</th>
<th>Method</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.Ramya, Dr. N.Radha</td>
<td>Chronic kidney diseases</td>
<td>Random Forest</td>
<td>78.60%</td>
</tr>
<tr>
<td>`Lambodar Jena, Narendra Ku. Kamila</td>
<td>Chronic kidney diseases</td>
<td>Back Propagation</td>
<td>80.40%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Radial Basis Function</td>
<td>85.30%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Naive Bayes</td>
<td>95%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multilayer perception</td>
<td>99.75%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SVM</td>
<td>62%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J48</td>
<td>99%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decision Table</td>
<td>94.75%</td>
</tr>
<tr>
<td>Dr. S. Vijayaran,Mr.S.Dhayanand</td>
<td>Acute Nephritic Syndrome</td>
<td>SVM</td>
<td>76.30%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chronic Kidney disease</td>
<td>87.70%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acute Renal Failure and</td>
<td>73.75%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chronic Glomerulonephritis</td>
<td>98.70%</td>
</tr>
<tr>
<td>Parul Sinha & Poonam Sinha</td>
<td>Chronic kidney diseases</td>
<td>K-Nearest Neighbour</td>
<td>78.75%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SVM</td>
<td>73.75%</td>
</tr>
<tr>
<td>Manish Kumar</td>
<td>Chronic kidney diseases</td>
<td>Random Forest</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sequential Minimal Optimization</td>
<td>95.60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Naive Bayes</td>
<td>97.90%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Radial Basis Function</td>
<td>98.80%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multilayer perception</td>
<td>98%</td>
</tr>
<tr>
<td>Abheer Y. Al-Hyari et al</td>
<td>Chronic kidney diseases</td>
<td>Decision Tree</td>
<td>93.50%</td>
</tr>
<tr>
<td>K. R. Lakshmi, Y. Nagesh and M. VeeraKrishna</td>
<td>Kidney Failure</td>
<td>ANN</td>
<td>93.50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decision Tree</td>
<td>78.44%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Logistic Regression</td>
<td>74.74%</td>
</tr>
</tbody>
</table>

5. Conclusion

The main objective of this paper is to predict the Chronic Kidney Disease and analyzed the accuracy of chronic kidney disease using different DM techniques, also analyzed that there is no single classifier which produces best result for every dataset.

References

Volume 6 Issue 3, March 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Author Profile

Mrs. Smitha Patil received the B.E degree in Information Science & Engineering from P.D.A College of Engineering Gulbarga, Karnataka and M.Tech in Computer Science & Engg. from VTU PG centre Gulbarga, Karnataka and currently working as Assistant Professor in the Dept. of Information Science & Engineering, SIR. MVIT Engg College Bangalore, Karnataka.