Clinical Profile of Snake Bite in a Tertiary Care Hospital in South India

Raghavendra B M¹, Neelam Devi Maravi², Debashish Barik³, Soumya Iyengar⁴

Department of Medicine, Bangalore Medical College and Research Institute

Correspondence address: Dr.Raghavendra B.M., Department of Medicine, Victoria Hospital, Fort, Bangalore. India. Pin Code- 560002

Abstract: Background & Objectives: Snake bite envenomation is a common acute life threatening medical emergency presenting to the emergency with significant morbidity and mortality. This study attempts to evaluate the clinical outcomes of snake bite with early recognition of poisonous nature of snake bite and prompt initiation of Anti snake venom. Materials and methods: The present descriptive observational study was carried out in tertiary referral hospital over a period of 6 months. Time interval between the poisonous snake bite and first administration of Anti snake venom was determined and outcomes studied. Results: Out of 360 patients enrolled, 239(66.4%) were male and 121(33.6%) were female. Maximum patients i.e. 109(30.3%) were in 21-30 age group. The patients getting treatment in <6 hours had a good outcome in 249(72%) patients whereas the outcome was poor in 3(21.4%) patients. Conclusion and interpretation: Majority of snake bite involve non poisonous bites and occurs in younger age group population. Early hospitalisation with recognition of poisonous nature of the snakebite with prompt Anti snake venom administration results in reduced complications and improved outcomes.

Keywords: AKI-Acute Kidney Injury, ASV-Anti Snake Venom, CHC-Community Health Centre, Envenomation, Neuroparalytic, PHC-Primary health Centre, Poisonous , VT- Vasculotoxic, LT- Locallytoxic, WBCT-Whole Blood Clotting Time.

1. Introduction

Snake bite is a significant public health problem causing considerable morbidity and mortality worldwide, particularly in the tropics. Snakebite is now recognized as a Neglected tropical disease (ntd) By the world health organization (who). An accurate measure of The global burden of snakebite Envenomening remains elusive,¹ the Vast majority of snakebite induced Deaths occur in Asia (15,400- 57,600 deaths per annum) and Sub-saharan africa (3,500-32,100 Deaths per annum),³ the mortality due to venomous snakebite in India is estimated between 35,000- 50,000 per annum, which is the Highest in the world according to World Health Organization (WHO) direct estimates.² Most of the estimates of incidence, morbidity and mortality associated with venomous snakebite are extrapolations from a few regional studies ³ and the actual incidence and burden would only be known from community based studies.²,³,⁶ 70 bites per 100,000 populations per year was reported in Maharashtra one of the states of India with a high incidence.⁵ The principle effects of envenomation is on the nervous system, kidneys, heart,lungs, liver, blood coagulation system, vascular endothelium and local effects at the site of bite.⁶

There are about 216 species of snakes identifiable in India, of which 52 are known to be poisonous. Medically Important snakes of India include the so called “Big 4”, Russel’s viper (Daboia russellii russellii), Cobra (Naja naja), Common Krait (Bungarus caurelues) and Saw scaled viper (Echiscarinatus) that occur throughout the country. The pit viper species - Malabar, green and the hump-nosed, sea snakes and others like the king cobra (Ophiophagus hannah), monocle cobra (Naja Kaouthia), Banded Krait (Bungarus fasciatus) and Echis sochureki are important causes in certain geographical areas. The mortality due to venomous snakebite in India continuous to be high due to various social, economic and cultural reasons.⁷

The purpose of this study to evaluate the clinical outcomes of snake bite envenomation with early recognition of poisonous snake bite and prompt initiation of Anti snake venom.

2. Materials and Methods

The present descriptive observational study was carried out in medicine wards of Victoria hospital, Bangalore medical college and Research Institute, Bangalore, India during May 2015 to October 2015. A total of 360 cases of snake bite were admitted in medicine wards during the study period. After obtaining consent, data was collected on predesigned, pretested, and structured questionnaire by interviewing the study subjects who were hospitalized during the study period. A detailed information regarding demographic and epidemiological parameters such as age, sex, residence, occupation, site of bite and place of bite, type of snake if identified, etc., was obtained. Time interval to reach the health facility after snake bite and first aid , ASV if received was asked to them. Thorough clinical examination was carried out in each case. For identification of type of snake bite (Vasculotoxic, Neuroparalytic, Locallytoxic and Nonpoisonous) opinion from treating physician was taken. All the relevant tests (20 min Whole blood clotting time, Complete blood count, PT, INR, aPTT, Liver function test, Kidney function test) were carried out. Subsequent information was collected on the day of discharge or death of the patient from the case record of the patient.

3. Results

In our study we included 360 patients out of which 239 (66.4%) were male and 121 (33.6%) were female. Maximum patients, i.e. 109 (30.3%) were belonging to 21-30 year age group. Only 3 patients (0.8%) were >70
year old. 216 patients (60%) were hospitalised for <3 days. 252 (70%) patients received treatment within 6 hours of bite constituting the maximum proportion, whereas only 3 (0.8%) patients received delayed treatment, i.e after >36 hours. In 205 (56.9%) patients there were signs of local envenomation, 221 (61.4%) patients were given anti snake venom. 35 (9.7%) patients had bleeding diathesis and 23 (6.4%) patients were transfused fresh frozen plasma.

In our study group, 64 (17.8%) and 17 (4.7%) patients were bitten by hematotoxic and neurotoxic snakes respectively. 22 (61%) patients required ICU and 26 (7.2%) patients developed acute kidney injury out of which 3 (0.8%) patients required hemodialysis. 14 patients had poor outcome in our study population out of which 8 had neurotoxic bite and 3 had hematotoxic bite. The patients getting treatment in <6 hours had good outcome in 249 (72%) patients whereas the outcome was poor in 3 (21.4%) patients. When treatment was given after 6-12 hours of bite, the outcome was good in 69 (19.9%) patients but it was poor in 8 (57.1%) patients. This association was statistically significant. When ASV was given better outcome was noted in 208 (60.1%) patients whereas out of 14 patients who had poor outcome, 13 (92.9%) had received ASV. In those requiring ICU care, 5 patients had poor outcome whereas those who did not get ICU care, in them 9 patients had poor outcome. (p<0.001). In patients who developed AKI, only 21 patients had good outcome whereas 5 patients developed poor outcome which makes 35.7% of mortality.

Table 1: Time gap in receiving definitive Rx (Hrs) in relation to outcome

<table>
<thead>
<tr>
<th>Time gap in receiving definitive Rx (Hrs)</th>
<th>Good</th>
<th>Unsatisfactory</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td><6</td>
<td>249(72%)</td>
<td>3(21.4%)</td>
<td>252(70%)</td>
</tr>
<tr>
<td>6-12</td>
<td>69(19.9%)</td>
<td>8 (57.1%)</td>
<td>77(21.4%)</td>
</tr>
<tr>
<td>12-24</td>
<td>18(5.2%)</td>
<td>3 (21.4%)</td>
<td>21(5.8%)</td>
</tr>
<tr>
<td>24-36</td>
<td>7(2%)</td>
<td>0 (0%)</td>
<td>7(1.9%)</td>
</tr>
<tr>
<td>>36</td>
<td>3(0.9%)</td>
<td>0 (0%)</td>
<td>3(0.8%)</td>
</tr>
<tr>
<td>Total</td>
<td>346(100%)</td>
<td>14(100%)</td>
<td>360(100%)</td>
</tr>
</tbody>
</table>

Table 2: Relationship between ASV administration and outcome

<table>
<thead>
<tr>
<th>ASV administration</th>
<th>Outcome</th>
<th>Total</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Good (n=346)</td>
<td>Unsatisfactory (n=14)</td>
<td>n=360</td>
</tr>
<tr>
<td></td>
<td>221 (61.4%)</td>
<td>13 (92.9%)</td>
<td></td>
</tr>
</tbody>
</table>

4. Discussion

Snakebite is a common medical emergency and an occupational hazard especially in tropical countries like India. It is observed that the snakebite affected males more (70%), as they constitute the community that is actively engaged in outdoor activities, predominantly farming in rural areas. Our study results concur with those of earlier studies, which further exemplifies that snakebite is an occupational hazard in tropical regions as recognised by WHO. In the present study, 360 cases of snake bites including poisonous and non-poisonous bites were studied in the medicine inpatient ward of Victoria hospital, Bangalore from 1st May 2015 to 31st October 2015.

Type of Snake Bite

The number of poisonous cases were 81 and the number of non-poisonous cases were 279, which shows non poisonous snake bites was clearly outnumbering the poisonous snake bites. Among the poisonous snake bites, the number of Viperine bites were 64, the number of neurotoxic bites were 17.

Age and Sex

In the present study, maximum no. of patients bitten were between the age group of 21-30 years of age. These observations go in favor of the study done by Russel et al. In the age group above 70, five bites were non-poisonous in nature. In the present study, 239 (66.4%) patients were male victims, whereas the female victims were 121 (33.6%) in number. The predominance of male victims suggests a special risk of outdoor activity. This is comparable to the studies done by other authors. Bhat et al, in 1974 reported the incidence as 7:3 (M: F). In the study by Gaurav Bhalla et al, out of 150 patients, 99 (66%) patients were male victims whereas the female victims were 51 (34%) in number.

Type of Snake

In the present study, we have noted 2 cases of snake catcher who were professionals, they had a neurotoxic cobra bite. Remaining cases were all unprovoked. 20 patients had brought snakes along with them and they were identified in this hospital. Among them 13 were vipers, 6 were cobra and 1 was krait. In the study of Ram N et al, Most patients identified the snake whereas 23.7% were unable to identify the snake species either because of ignorance or poor visibility in darkness. Many studies suggest that significant number of dead species should be brought to the hospital by the victims. They suggest that this will provide sound epidemiological data and also helps in the identification of species that are causing morbidity and mortality in a given area.

In the present study, 252 (70%) patients were admitted within first 6 hrs. In this series out of 81 cases of poisonous bites, 64 were vasculotoxic, 17 were neurotoxic. In the study done by Gaurav Bhalla et al, 76% of neuroparalytic bites got admitted within the first 6 hrs, 52 patients were admitted within the first 24 hrs but after 6 hrs, among which 15 were vasculotoxic and 4 were neurotoxic. Two neurotoxic bites expired within 1 to 2 hrs after admission.

Clinical Manifestation

In our study, we found that 34 (9.4%) patients had hematemesis, 11 (3%) patients had amputation of the right finger, 8 (2.2%) had left foot cellulitis, 5 (1.3%) patients developed nephrotoxicity, 5 (1.3%) had diplopia and only 10 (2%) patient had asaphia, unconsciousness and quadripareisis. 10 (2%) patient had bleeding gum and hemoptysis. 2 (0.5%) patients developed ptosis. In the study of Bhalla et al, 53 (69.73%) patients had local pain.

Volume 6 Issue 3, March 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY
Among which 9 (16.98%) were LT, 33 (62.26%) were VT and
11 (20.75%) were neuroparalytic bites. In the present
study, local edema was present in 64 (84.20%) patients of
poisonous snake bite. Out of which 40 patients had VT
snake bite, 11 patients had neuroparalytic snake bite, and 13
bites were LT. In VT bite 95.23% patients had local edema
while in neuroparalytic snake bite 52.38% patients had local
edema. Local cellulitis was seen in 24 (57.14%) patients of
VT snake bite and 6 (28.57%) patients of neuroparalytic
snake bites. Purohit (1944) described gum bleeding as the
commonest manifestation of viperine bite whereas Bhat et
al showed that 37 patients among 310 patients had hematnnesia , AKI was found in 26(7.2%) patients, out
of them 3 patients underwent on hemodialysis. In patients
developing AKI, poor outcome was found in 5 patients
whereas in those not developing AKI, poor outcome was
seen in 9 patients. Basu et al. (1977) observed ARF in 27
cases of viper bite and attributed it to circulatory collapse
and shock in 5 cases, direct nephrotoxicity was seen in 4
cases. Saini et al reported 8 cases of ARF and 7 cases
recovered with conservative treatment. In the present
study 22 patients required ICU care with ventilation. In the
study done by Gaurav bhalla et al., among 21
patients of neuroparalytic bite(71.42%), 15 needed
ventilator support and 4 (19.04%) patients needed only
intubation.

Mortality Rate
In the present study, 14 (3.8%) patients died. The
mortality rate of 3.8% is well below to the estimates of other
studies. Further, it is to be noted that our figures are
significantly lower than other reported estimates from New
Delhi (13.5%), Gujarat (11%), Maharashtra (4.3 and 5.4%)
within India. It is well known fact that these figures are
underestimates as several surveys have shown that
dospital data, record less than half of the deaths as many
snakebite victims choose village based traditional therapists
which are not recorded. Community based surveys would
throw light on the actual incidence and death, however only
few studies have been conducted. A Community based
survey in some localities of West Bengal have shown a
much higher annual mortality rates of 16.4 deaths/100,000 in
West Bengal. As, such focal data cannot be extrapolated to
provide national or even state estimates due to
heterogeneity of snakebite incidence.

The patients getting treatment in <6 hours had good
outcome in 249 (72%) patients whereas the outcome was
poor in 3 (21.4%) patients. When treatment was given
after 6-12 hours of bite, the outcome was good in 69(19.9%)
patients but it was poor in 7(57.1%) patients. This
association was statistically significant.

It is concluded that majority of snake bite involve non
poisonous bites and occurs in younger age group
population. Early hospitalisation with recognition of
poisonous nature of the snakebite with prompt ASV
administration results in reduced complications and
improved outcomes. With the introduction of E-108(
emergency medical aid facility at the patient’s place) in
many states of India, training of the para medical
personnel regarding recognition of the symptoms and
signs of poisonous snake bite, first aid measures along
with equipping the primary health care system with ASV
and giving wide publicity to the National Snake bite
Management Protocol 2009 which is probably the best
evidence based approach to dealing with snake bite in
India at present among medical professionals at all levels
of health care delivery system & general public may
surely bring down the mortality rate & related
complications as well as the health care costs and burden
on the tertiary level health care system. It seems
absolutely relevant and feasible given the present
deficiency in providing health care for a huge population.
Given the magnitude of the problem and the scope for
improvement in health care delivery system the
operational strategies and the probable outcomes provide
arenas for further research for the policy makers and
public health researchers.

5. Limitation
The special investigations like d-Dimer, fibrinogen, APTT,
PT, creatinine phosphokinase, peripheral smear, lipid profile
and fundal examination were not done in all patients. The
lack of renal biopsies that would demonstrate the
histological pattern of renal involvement, the lack of
complete coagulation profile as evidence for DIC, and the
lack of ELISA test to identify the snake venom are the other
crucial lacunae. Further, ASV is a key determinant of survival after
snakebite, injected early and in adequate quantities it
neutralizes the snake venom and reduces the in-hospital
mortality. Even though, we evaluated the risk factors related
to envenoming (vomiting, clotting test, neurotoxicity and
serum creatinine concentration) but did not adjust for ASV
administration to assess its association with morbidity and
mortality.

6. Acknowledgements
We wish to thank Dr. Veeramma Gowda, Professor and Head,
Department of Medicine, BMC & RI and Mr.K.P.Suresh,
Biostatistitian for their guidance and help.

7. Source of Support
Nil

8. Conflict of Interest
None

References
analysis and modelling based on regional estimates of

Ram. N et al. Pattern Of Snake Bite At Chandka Medical College Hospital Larkana. MC Vol. 18 - No.1 – Jan – March 2012 (24 - 27) Quarterly Medical Channel www.medicalchannel.pk

