Occlusion Timeline Analyses with T-Scan III System in Subjects with Neutroocclusion

Vesna Trpevska1, Gordana Kovacevska2, Alberto Benedetti3, Lidija Kanurkova4

1PHO Dental Clinical Center, Sv. Pantelejmon”, Clinic for orthodontics, Skopje, R. Macedonia,
2Faculty of Dental Medicine, University, Ss. Kiril i Metodij”, Department of prosthodontics, Skopje, R. Macedonia
3Faculty of Dental Medicine, University, Ss. Kiril i Metodij”, Department of oral and maxillofacial surgery, Skopje, R. Macedonia
4Faculty of Dental Medicine, University, Ss. Kiril i Metodij”, Department of orthodontics, Skopje, R. Macedonia

Abstract: Occlusion evaluation based only upon static parameters in such a dynamic masticatory system is unsufficient. Therefore, timeline analysis with T-Scan III System is important in diagnose, therapy plan in all phases of orthodontic treatment in every day clinical practice. The aim of this study is to analyse the occlusal force and occlusal contacts distribution over the course of time with the T-Scan III System precise analysis in subjects with neutroocclusion. We included 30 subjects with neutroocclusion, Angle Class I, at the age of 16-29 years, describing the time and force moment statistics of occlusal contacts in the sagittal and transverse axes of the occlusal plane. We analysed the bite in every 0,15 seconds from the first registered antagonistic tooth contact at inicial time t1 until terminal time t10. At time t1, 40% from the subjects with neutroocclusion occluded first in the anterior region. At time t10, subjects had dominant occlusal contacts in the premolar and molar region with 36,3%. Occlusal force distribution in the right and left halves of the dental arch changes in time. Changes in the total occlusal force (TOF) modifies the distribution of occlusal contacts. Our detailed analysis of occlusion over elapsed time showed that initially the central incisors are the teeth that come together in occlusal contact. This is a result of their role of guidance. Analysis of masticatory cycle in time shows tendency for force distribution towards the posterior region at the end of the bite.

Keywords: T-Scan III System, Occlusion Timeline Analyses, Neutroocclusion

1. Introduction

Orthodontic treatment aims to include good facial morphology, stable treatment results and good occlusion with proper bite force and articulation that creates anatomical and physiological harmony in the jaws and muscles [1]. Dental occlusion refers to the way teeth come together in the act of closure of dental arches. "The key of dentistry", as it is called, occlusion is the way the incisal edges and occlusal surfaces of the upper and lower teeth come together in the act of closure of dental arches [2]-[5]. Occlusion is the static relationship of the teeth and is basic to all aspects of dentistry. The alignment and occlusion of the dentition are extremely important in masticatory function. Basic orofacial functions such as mastication, speaking and deglutitation depend on the position of teeth in the dental arch and their relationship with antagonist teeth when they come together in occlusion. Tooth position is controlled by numerous factors such as dental arch width and the influence of surrounding soft tissues [6]-[8].

Another important factor that helps in tooth position stabilization is the occlusal contact, which prevents teeth extrusion keeping dental arch stability. In every mandibular closure a unique occlusal contact pattern of the antagonistic teeth together with the proximal teeth contact between adjacent teeth maintain the dental arch integrity and stabilization. Buccal cusps of mandibular posterior teeth and lingual cusps of maxillary posterior teeth occlude and are responsible for maintaining the vertical dimension of occlusion playing major role in the process of mastication [9].
anterior guidance. The anterior guidance plays an important role in the function of the masticatory system. Its characteristics are dictated by the exact position and relationship of the anterior teeth, which can be examined both horizontally (horizontal overlap-overjet) and vertically (vertical overlap-overbite). An important characteristic of the anterior guidance is determined by the intricate interrelationship of both these factors [10]-[12].

Occlusion has a functional role, therefore occlusal evaluation in a base of static criteria in such a dynamic masticatory system is not adequate and sufficient. Occlusion is involved in different functions of the dentition such as mastication, speaking, deglutation and esthetics. Therefore, evaluation of the occlusal dynamic parameters over the course of time is essential and very important in the diagnosis of the jaws relationship. Timeline analysis of the occlusion is important to establish function of the masticatory system [13]. T-Scan III System use is important in diagnosis, therapy plan in all phases of orthodontic treatment in every day clinical practice accomplishing occlusal balance. Occlusal stability and harmony are factors that guarantee long term success in the orthodontic treatment. The aim of this study is to analyse the occlusal force and occlusal contacts distribution in time. T-Scan III System precise analysis of the correlation between occlusal force and time, location and trajectory of Center of Force (COF) and correlation between occlusal contacts distribution and total occlusal force provide us informations about the occlusal balance of the patients with neutroocclusion.

2. Materials and Methods

In this study we included 30 subjects with neutroocclusion, Angle Class I, at the age of 16-29 years. We registred the masticatory cycle of the mandible, describng the time and force moment statistics of occlusal contacts in the sagittal and transverse axes of the occlusal plane. We analysed the bite in every 0,15 seconds from the first registred antagonistic tooth contact at inicial time t1 until terminal time t10. Trajectory and position of Center of Force (COF) in relation to the center of elliptic fields were registred. We analysed the occlusal contacts distribution for different total occlusal force (1/10 of Total Occlusal Force (TOF), ¼ of TOF, ½ of TOF, ¾ of TOF and TOF max.

Functional analysis was performed via the T-Scan III System (T-Scan III for Windows, Tekscan Inc., South Boston, MA, USA), (Figure 1.) in 30 patients with neutroocclusion. This technology eliminates the subjectivity of clinicians content and replaces it with an objective process that employs precision digital measurement technology. The T Scan III analyzes the order of occlusal contact, while simultaneously measuring the force percentage changes of those same contacts, from the moment the teeth first begin making occlusal contact, all the way to the maximum intercuspidation. The data can be saved on the hard drive to provide visual documentation of the recorded occlusal function. The system is composed of a computer with a specific board and software capable of converting information recorded by the sensor to visual and numerical information on tooth contact. The recording is taken by placing the sensor in the patient’s mouth, with the sensor support pointer between the two central incisors and keeping the scanning handle as parallel to the occlusal plane as possible. T-Scan digital occlusal evaluation was initiated by determining dental arch dimensions by measuring central incisor width [14]-[21].

Figure 1: T-Scan III System (T-Scan III for Windows, Tekscan Inc., South Boston, MA, USA)

3. Results and Discussion

In subjects with neutroocclusion (Figure 2.) there is tendency of changing the relative masticatory force over time, starting with bigger force in the anterior region, continuing with increasement of force in the posterior region over time with larger percentage of simultanity of occlusal contact.
At time t1, 40% from the subjects with neutroocclusion occluded first in the anterior region, 33% occluded first in the posterior region and 26,6% did have simultanity in their occlusal contacts. At time t10, subjects had dominant occlusal contacts in the premolar and molar region with 36,3%. At t10 there is tendecy to increase the occlusal contacts simultanity. 50% of the subjects occluded simultaneously on anterior and posterior teeth at time t10. In anterior region there is tendency to decrease the occlusal contacts distribution in time. 40% of the subjects occluded first in the anterior region at t1 and only 13,3% occluded in the anterior region at t10 (Table 1).

<table>
<thead>
<tr>
<th>Subjects with neutroocclusion n=30</th>
<th>t1</th>
<th>t10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior region</td>
<td>40%</td>
<td>13,33%</td>
</tr>
<tr>
<td>Posterior region</td>
<td>33,33%</td>
<td>36,33%</td>
</tr>
<tr>
<td>Simultaneous contact</td>
<td>26,66%</td>
<td>50%</td>
</tr>
</tbody>
</table>

Occlusal force distribution in the right and left halves of the dental arch changed in time. At t1, 57,7% of the relative occlusal force is located in the right half of the dental arch and 42,2% in the left half of the dental arch. This situation changes at t10, and there is an increase in the bilateral simultanity of the occlusal contacts with relative masticatory force distribution of 50,2% in the right half and 49,8% in the left half of the dental arch (Table 2).

<table>
<thead>
<tr>
<th>Subjects with neutroocclusion n=30</th>
<th>t1</th>
<th>t10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right half of the dental arch</td>
<td>57,76%</td>
<td>50,14%</td>
</tr>
<tr>
<td>Left half of the dental arch</td>
<td>42,24%</td>
<td>49,86%</td>
</tr>
</tbody>
</table>

The movement of the COF trajectory can be observed by playing a force movie one frame at a time. The trajectory is represented on the computer screen by a red and white line that trails the COF marker. The COF trajectory illustrates how the summary of occlusal force changes location as sequential tooth contacts occlude throughout the recorded mandibular closure. The trajectory movement indicates where the force summary is directed when more of the patients’ teeth sequentially come together [16].

According to the COF tractory, at t1 COF was located in the anterior region in 46,7% of our subjects. At t10 this percentage decreases to 10%. 53,3,3% of our subjects had COF located in the posterior region at t1 and at t10 98,4% of our subjects had COF located in the posterior region of the first permanent molar. COF tracertory over time shows tendency of pathway movement directed posteriorly (Table 3).

<table>
<thead>
<tr>
<th>Subjects with neutroocclusion n=30</th>
<th>t1</th>
<th>t10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior region</td>
<td>46,7%</td>
<td>3,33%</td>
</tr>
<tr>
<td>Posterior region</td>
<td>53,3%</td>
<td>96,67%</td>
</tr>
</tbody>
</table>

Our results are in concordance with Kerstein results [22]-[25]. In subjects with neutroocclusion there is normal distribution with tendency of bilateral, balanced symmetrical COF localization. In 55,2% from our subjects COF is located in the white ellipse, in 41,3% COF is located in the grey ellipse and there is dislocation of this center in only 3,4% from subjects with neutroocclusion (Table 4).

<table>
<thead>
<tr>
<th>Subjects with neutroocclusion n=30</th>
<th>White ellipse</th>
<th>Grey ellipse</th>
<th>COF dislocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>COF localisation</td>
<td>55,2%</td>
<td>41,3%</td>
<td>3,4%</td>
</tr>
</tbody>
</table>

The percentage of occlusal contacts distribution is changed in correlation to the amount of total occlusal force (TOF). For 1/10 of TOF 40,1% of occlusal contacts are distributed in the left half of the dental arch and 59,9% in the righthalf of the dental arch. Changes in the total occlusal force modifies the distribution of occlusal contacts. For TOF max
there is distribution of 50.17% on the left side and 49.83% on the right side of the dental arch (Table 5).

Table 5: Mean value percentage of occlusal contacts distribution for different total occlusal force (TOF) (1/10 of Total occlusal force, ¼ of TOF, ½ of TOF, ¾ of TOF and TOFmax)

<table>
<thead>
<tr>
<th>Subjects with neuroocclusion n=30</th>
<th>1/10 of TOF</th>
<th>¼ of TOF</th>
<th>½ of TOF</th>
<th>¾ of TOF</th>
<th>TOFmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>% left occlusal contacts</td>
<td>40.1%</td>
<td>40.76%</td>
<td>43.22%</td>
<td>46.73%</td>
<td>50.17%</td>
</tr>
<tr>
<td>% right occlusal contacts</td>
<td>59.9%</td>
<td>59.24%</td>
<td>56.78%</td>
<td>55.27%</td>
<td>49.83%</td>
</tr>
</tbody>
</table>

4. Conclusion

T-Scan III System is practical, quantitative method that enables and provides occlusal balance evaluation over the course of time. Subjects with neuroocclusion at t10 are characterized with ideal physiological, balanced occlusion and harmony in the masticatory system function. Our computerized system for occlusal analysis indicated that in subjects with neuroocclusion there is a tendency for bilateral equality of the tooth contacts about the sagittal axis with high degree of force equality per half arch. Location of the center of force for the antero-posterior occlusal contacts, which was measured from the incisal axis of occlusal plane, at t10 was also located in the first molar region and is symmetrical bilaterally. COF trajectory also shown tendency for pathway movement directed posteriorly. Our detailed analysis of occlusion over elapsed time showed that initially the central incisors are the teeth that come together in excursive hyperactivity decreased by measured anterior guidance development. The Journal of Cranio and Palatal Practice Publisher: Chroma, Inc. Audience: Academic Format: Magazine/Journal 2012 Oct;30 (4):243-54.

References