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Abstract: Usually when we have to deal with an analysis of a particular data set, we often choose a statistical procedure on the 

reference of the analysis. Now if in this analysis the parametric assumptions are fulfilled we will prefer F test for the two sample scale 

problem. But if the behaviour of the data set does not fulfil these assumptions then we have to focus on some other tests. In this paper it 

is tried to throw light on the use of Adaptive tests on the context of this problem. This paper comprises of power comparison between F 

test, some traditional Non- Parametric tests and proposed Adaptive tests. Under the experiment equal and unequal sample sizes are 

taken considering different alternatives. This is done by the use of Monte Carlo simulation technique. At the end of the experiment, 

inspite of many limitations, some satisfactory results are obtained. All those results are displayed in tabular and graphical form. 
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1. Introduction 
 
To test the hypothesis of equality of two scale parameters, 
there is always a  problem that which test is to use. 
According to literature if the parent distribution is normal, 
then F test is preferred. But if the normality assumptions are 
violated specially when N is large then F test become 
extremely sensitive. In that situation a researcher has to 
focus on Non Parametric tests.  Various Non Parametric 
tests are available for using as an alternative of F test such as 
mood test, Klotz test, Seigel Tukey test, Sum of Squared 
Rank Test, Ansary Bredly test and so on. But still there is a 
problem to decide the accurate test for the particular set of 
data so that to get a valid result and draw a valid inference.. 
In this paper it is tried to get the solution by using the 
adaptive procedure. In this procedure at the very beginning 
we will collect some  reasonable  information from the data 
and then we will decide which test will be better for the data 
for further approach. In this paper power comparisons are 
made between different parametric and non parametric tests 
and then it is decided which test can be considered as our 
Adaptive test. 
 
2. Parametric Test Procedures 
 
2.1 F test 

 
Let X1, ..., Xn and Y1, ..., Ym be independent and identically 
distributed samples from two populations which each have a 
normal distribution. The expected values for the two 
populations can be different, and the hypothesis to be tested 
is that the variances are equal. Let =  and 

be the sample means. Let 

 and    be 

the sample variances. Then the test statistic 

F=  

has an F-distribution with n − 1 and m − 1 degrees of 
freedom if the null hypothesis of equality of variances is 
true. Otherwise it has a non-central F-distribution. The null 
hypothesis is rejected if F is either too large or too small. 
 
3. Non- Parametric Test Procedures for Two 

Sample Scale Problem 
 

3.1 Mood test 

 
Mood test is completely analogous to the parametric F-test 
mentioned above. Let X1,X2,..., Xn be an independent 
random sample from a distribution F and Y1, Y2, ..., Ym be 
an independent random sample from a distribution G. Now 
we combine the two sample and rank them in ascending 
order. So the array of ordered scores will be  v1<v2<...<vN .  
Here our  hypothesis (H0) is to test  that the two 
distributions, F and G, are identical with respect to scale, 
against some ordered alternative.  
 

We Replace the scores in the pooled sample by their 
corresponding ranks. Knowing that the mean of a set of 
ranks from 1 to N is (N+1)/2,we determine the sum of 
squared rank deviations about this mean for the X sample.  
 
Let  Zi be the indicator variable. Zi= 1 if the rank score i 
belongs to X Sample and 0 otherwise. 
 
The test statistic for N<20 is 

M =  
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A large value of M implies that the variability of the X 
sample is significantly greater than the variability of the Y 
sample. For small values of M, one draws the opposite 
conclusion. A table of critical values for N<20 is not 
available at the present time.  
  

When N is greater than 20, values of M approximate a 
normal distribution with E(M) = n(N2-1)/12 and Var(M)= 
nm(N+1)(N2-4)/180..In this case the test statistic is 

Z =  

 
3.2 Klotz Test 

 
Let X1,X2,..., Xn be an independent random sample from a 
distribution F and Y1, Y2, ..., Ym be an independent random 
sample from a distribution G. Now we combine the two 
sample and rank them in ascending order. So the array of 
ordered scores will be  v1<v2<...<vN .  Here our  hypothesis 
(H0) is to test  that the two distributions, F and G, are 
identical with respect to scale, against some ordered 
alternative.  
 
We Replace the scores in the pooled sample by their 
corresponding ranks. Knowing that the mean of a set of 
ranks from 1 to N is (N+1)/2,we determine the sum of 
squared rank deviations about this mean for the X sample.  
 
Let  Zi be the indicator variable. Zk= 1 if the rank score k 
belongs to X Sample and 0 otherwise. 
 
The test statistic  is: 
Klotz=  
 
When N is large then the  values of Klotz statistic 
approximate a normal distribution with E(Kl) = (1/N) 

 = mean and  
Var(Kl)= ..In this case the test 
statistic is 

 

Z =  
 
3.3Ansari Bradley Test 

 
To compute the Ansari- Bradley statistic special scores are 
attributed to the observations: 
Let Z=(X1,X2,...Xm,Y1,Y2,...,Yn) denote the combined sample. 
 
If N= m + n is even then  
 
Sample Z:        Z(1),    Z(2),... Z(N/2-1),     Z(N/2),     Z(N/2+1),     
Z(N/2+2), ...,    Z(N-1),        Z(N) 
Scores Ai:        1         2     ...      N/2-1       N/2         N/2         
N/2-1   ...       2               1 

 
If N= m + n is odd then 

Sample Z:       Z(1),     Z(2),   ...   Z((N-1)/2),     Z((N+1)/2),     
Z((N+3)/2),         ....    Z(N-1),        Z(N) 
Scores Ai:        1        2      ...     (N-1)/2       (N+1)/2         (N-
1)/2       ...       2               1 

 

The Test Statistics is: 

W=  

 
For large sample the test statistics is : 
Z=  

 

Where E(W)  =        if m + n is even. 

                       =        if m + n is odd 

Var(W)  =         if m+n is even 

=          if m+n is odd 

 

 

3.4 Siegel-Tukey Test 

 

This test replaces the pooled data from the two samples with 
are ordering of the ranks (i) from 1 to N.to illustrate the 
ranking procedure, note the following table when N is 
assumed to be an even number. 
 

Ordered score            v1    v2       v3      v4...     vN/2...    vN-3        

vN-2       vN-1        vN 

Rank Replacement     1      4        5       8  ....     N......    7           
6         3            2       
 
The indicator  random variable is Zi=1, if ith replacement 
score is associated with the X sample. 
 =0, otherwise 

 
The test statistics is- 
ST=  

 
In order to determine the significance of ST tables have been 
developed by Siegel Tukey(1960).  
 

For N>20 the distribution of ST approximates a normal 
distribution withE(ST)= n (N+1)/2 and Var (ST) = nm 
(N+1)/12.The test statistic becomes 

Z=  

 
Sum of Squared Rank Test:   let  be the random 
observations, i= 1,2,...,g and j= 1,2,..., . is the mean and 

are the standard deviation. Now the required test statistics 
is  
L=   

Where  

 
  and  

For large sample size L follows chi square distribution with 
(g-1) d.f. 
 

4. Aadaptive Procedures 
 
The objective of this paper  is to develop an adaptive test for 
scale for testing independent distributions of the continuous 
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type. It is already mentioned that an adaptive test  uses the 
data first to select a model and then makes an inference 
based on the model chosen. The models chosen ranges from 
a light-tailed one (uniform) to a heavy-tailed one (like the 
Cauchy). 
 
There are many nonparametric tests to deal with comparison 
tests in two sample cases for scale problems. For example in 
case of  skewed distributions we use the   Squared-Ranks 
test statistics . on the other hand when the distributions are 
medium-tailed or heavy-tailed such as the double 
exponential or Cauchy distributions, respectively, then 
suitable tests would be the Mood and Ansari-Bradley tests, 
respectively. But if the parent distribution is normal we use 
F test. 
 
Now let us assume we have two samples from the c.d.f.'s Fx 
(x) and Fy (x), respectively, in order to test the null 
hypothesis H0:  = 1. Then we combine the two samples and 
order the observations in increasing order of magnitude.  To 
measure the skewness we use the statistics  
Q1=   

where ,  and  the averages of the largest five 
percent of the Z's, the middle 50 percent of the Z's, and the 
smallest five percent of the Z's where the Z's denote the 
order statistics of the combined sample of all N values. 
 
The measure of kurtosis is- 
Q2=  

 
This is to determine whether the tail weight of the 
underlying distribution is light or heavy. For different 
distributions, Q1 and Q2 have been evaluated in Table 2.1.  
 
This adaptive test will depend on what values of Q1 and Q2 
are found. On the scheme we propose, we are assuming that 
the distributions we encounter are not skewed to the left. 
With this in mind we propose a classification procedure. 
First, Q1 and Q2 are computed using the combined sample of 
all N values. If Q1 < 1.5 and Q2 < 7, then we will use a 
medium-tailed model. If Q1 > 1.5 and Q2 < 2 we will use a 
right-skewed model. If Q1 > 1.5 and 2 < Q2 < 7 then we will 
use a very badly right-skewed model. If Q2 > 7, then we will 
use a heavier-tailed model.  

 

 
Figure 1.1: Diagram of above division 

 
The adaptive test A will be defined as follows..If the data 
indicate a skewed model, we will use the Squared-Ranks 
statistic  denoted by LN .If the data indicate a medium-tailed 
model, then we can one of the following tests such as  Mood 
statistic or  Klotz Statistics. When the data suggest a very 
heavy-tailed model, then we propose the Ansari-Bradley 
statistic, AN . 

 
Table 1.1: Values of Q1 and Q2 for some selected 

Distributions 
Distributions Q1 Q2 

Uniform 
Normal 

Exponential 
Double Exponential 

Logistic 

1 
1 

4.5 
1 
1 

1.9 
2.563 
2.86 
3.3 

2.86 
 

5. The Monte Carlo Study 
 
For the simulation study, F- test, Mood test, Ansary Bradley 
test, Sum of Squared Rank  test, Klotz test, Seigel Tukey test 
and adaptive tests are selected. Here six family of 
distributions are considered and these are – the Normal, the 

Cauchy, the Double exponential, the Logistic , the 
Lognormal . 
 
The study was conducted on computer at the Department of 
Statistics, Dibrugarh University. To generate the standard 
normal deviate, the method described in Monte Carlo 
Method by Hammersly and Handscomb(1964) were used 
and deviate from the other distributions were generated by 
using the inverse distribution function on uniform  deviates. 
 
In studying the  significant levels, we first considered 
distributions with scale  parameter equal to one. For each set 
of sample N = 

i
ni, i =1,2  the experiment was repeated 

5,000 times and proportion of rejection of the true null 
hypothesis was recorded and presented in table 1.2   to 2.11.   
 
For the power study of the tests, random deviates were 
generated as above for each group and added to i . 
Proportion of rejections based on 5000 replications at the 
levels .10, .05 and .01 for different combinations of  i    
were recorded and presented in the table 1.2 to table 1.11. 
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Table 1.2: Empirical Level and Power of Tests under Normal distribution 

 
  

Table 1.3: Empirical Level and Power of Tests under Normal distribution 
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Table 1.2: Empirical Level and Power of Tests under Cauchy Distribution 

 
 

Table 1.3: Empirical Level and Power of Tests under Cauchy Distribution 
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Table 1.2: Empirical Level and Power of Tests under Logistic Distribution 

 
 

Table 1.3: Empirical Level and Power of Tests under logistic Distribution 
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Table 1.2: Empirical Level and Power of Tests under Double Exopnential Distribution 

 
 

Table 1.3: Empirical Level and Power of Tests under Double Exponential Distribution: 
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Table 1.3: Empirical Level and Power of Tests under Lognormal Distribution: 

 
 

Table 1.3: Empirical Level and Power of Tests under Lognormal Distribution: 
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Table 1.2: Empirical Level and Power of Tests under Exponential distribution: 

 
 

Table 1.3: Empirical Level and Power of Tests under Exponential distribution: 

 
 

 
Figure 1.2: Comparison of Power between Different Tests Under Normal Distribution with Sample Sizes (20,20) at 10% 

Level of Significance 
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Figure 1.3: Comparison of power Between Different Tests under Cauchy Distribution with Sample Size (10,10) at 10% level 

Of Significance 
 

 
Figure 1.4: Comparison of Power between Different Tests under Logistic Distribution with Sample Sizes (10,15) at 10% 

Level of Significance 
 

 
Figure 1.5: Comparison of Power between Different Tests Under Double Exponential distribution with Sample Sizes (10,10) 

at 10% Level of Significance 
 

 

 
Figure 1.6: Comparison of Power between Different Tests Under Lognormal distribution with Sample Sizes (10,10) at 10% 

Level of Significance 
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Figure 1.7: Comparison of Power between Different Tests under Exponential Distribution with Sample Sizes (20,20) at 10% 

Level of Significance 
 

6. Discussion 
 
For comparison purposes we have considered various 
combinations of sample sizes with equal and unequal sample 
sizes. We have also considered different sets of ϭi’s for the 
study. From Tables 1.2 – 1.13 it is observed that the 
parametric  F-test   maintain  the nominal level except the 
Cauchy and  skew distribution lognormal. In these cases F-
test seems to be conservatives.  
 
Table 1.2 and table 1.3 shows  the power of tests under 
normal distribution for equal and unequal sample sizes 
respectively.  We have seen that power of   F- test is higher 
than  the other tests in this distribution in presence of various 
combinations of Scale parameters and sample sizes. So here 
we may conclude that for Normal Distribution F test is our 
Adaptive test. 
 
Table 1.4 and Table 1.5 gives the power of tests statistics 
under Cauchy distribution for equal and unequal sample 
sizes respectively. Here,we observe that Sum of Squared 
Rank Test  is more powerful than other tests both in case of 
equal and unequal sample sizes at 10%, 5% and 1% level of 
significance. So if the parent distribution is Cauchy then 
Sum of Squared Rank test is the Adaptive Test. 

  
Table 1.6 and Table 1.7 displays the power of tests under 
logistic distribution. We have seen that   Mood Test and 
Klotz test  are more powerful than other tests with both 
equal and unequal sample sizes and at 10%, 5% and 1% 
level. In this case Mood Test and Klotz test is our Adaptive 
Test.  
 
Table 1.8  and Table 1.9 shows the empirical power of tests 
under double exponential distribution. Here it is seen that 
Klotz test and F test are more powerful than the other tests 
both in case of equal and unequal sample sizes and at10%, 
5% and 1% level.. here our Adaptive Test is the Klotz Test.  
 
Table 1.10 and Table 1.11 shows the power of tests under 
lognormal distribution. Here,Sum of Squared Rank Test  is 
more powerful than the all other tests both in case of equal 
and unequal sample sizes at 10%, 5% and 1% level. So in 
this particular Distribution Sum of Squared Test is our 
Adaptive test. 
 

Table 1.12 and Table 1.13 shows the power of tests under 
Exponential distribution. Here,Sum of Squared Rank Test  is 
more powerful than the all other tests both in case of equal 
and unequal sample sizes at 10%, 5% and 1% level. So in 
this particular Distribution Sum of Squared Test is our 
Adaptive test. 
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